
FIBER BUNDLES AND VECTOR BUNDLES

DANIEL S. FREED

In lecture I gave some examples of fiber bundles and one example of a non-fiber bundle. As your

texts does not cover this material I’m recording formal definitions and some elementary properties

here. Then I will discuss the particular case of vector bundles and the construction of the tangent

bundle, which is the immediate object of interest. Intuitively, the tangent bundle is the disjoint

union of the tangent spaces (see (20)). What we must do is define a manifold structure on this

disjoint union and then show that the projection of the base is locally trivial.

Fiber Bundles

Definition 1. Let π : E → M be a map of sets. Then the fiber of π over p ∈ M is the inverse

image π−1(p) ∈ E.

In some cases, as in the context of fiber bundles, it it convenient to denote the fiber π−1(p) as Ep.

If π is surjective then each fiber is nonempty, and the map π partitions the domain E:

(2) E =
⊔

p∈M

Ep

Recall that ‘∐’ and ‘⊔’ are notations for disjoint union; that is, an ordinary union in which the

sets are disjoint. (So ‘disjoint’ functions as an adjective; ‘disjoint union’ is not a compound noun.)

Definition 3. Let π : E → M be a surjective map of manifolds. Then π is a fiber bundle if for

every p ∈ M there exists a neighborhood U ⊂ M of p, a manifold F , and a diffeomorphism

(4) ϕ : π−1(U) −→ U × F

such that the diagram

(5) π−1(U)
ϕ

π

U × F

π1

U

commutes. If π′ : E′ → M is also a fiber bundle, then a fiber bundle map ϕ : E → E′ is a smooth

map of manifolds such that the diagram

(6) E
ϕ

π

E′

π′

M
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commutes. If ϕ has an inverse, then we say ϕ is an isomorphism of fiber bundles.

In the diagram π1 : U × F → U is projection onto the first factor. (We will often use the notation

πk : X1 × X2 × · · · × Xn → Xk for projection onto the kth factor of a Cartesian product.) The

commutation of the diagram is the assertion that π = π1 ◦ϕ, which means that ϕ maps fibers of π

diffeomorphically onto F . The manifold F may vary with the local trivialization.

Definition 7. The modification of Definition 3 in which F is fixed once and for all defines a fiber

bundle with fiber F .

You should prove that we can always take F to be fixed on each component of M .

Terminology: E is called the total space of the bundle and M is called the base. As mentioned,

F is called the fiber.

Example 8. The simplest example of a fiber bundle is π = π1 : M ×F → M , where M and F are

fixed manifolds. This is called the trivial bundle with fiber F . A fiber bundle is trivializable if it is

isomorphic to the trivial bundle.

The characteristic property of a fiber bundle is that it is locally trivializable: compare (5) and (6).

Exercise 9. Prove that every fiber bundle π : E → M is a submersion.

Remark 10. We can also define a fiber bundle of topological spaces: in Definition 3 replace ‘manifold’

by ‘topological space’ and ‘diffeomorphism’ by ‘homeomorphism’.

Transition Functions

A local trivialization of a fiber bundle is analogous to a chart in a smooth manifold. Notice,

though, that a topological manifold has no intrinsic notion of smoothness, so we must define

smooth manifolds by comparing charts via transition functions and then specifying an atlas of

C∞ compatible charts. By contrast, when defining the notion of a fiber bundle we already know

what a smooth manifold is and so only assert the existence of smooth local trivializations. But we

can still construct fiber bundles by a procedure analogous to the construction of smooth manifolds

when we don’t have the total space as a manifold.

Let π : E → M be a fiber bundle and ϕ1 : π
−1(U1) → U1 × F and ϕ2 : π

−1(U2) → U2 × F two

local trivializations with the same fiber F . Then the transition function from ϕ1 to ϕ2 is

(11) g21 : U1 ∩ U2 −→ Aut(F )

defined by

(12) (ϕ2 ◦ ϕ
−1

1
)(p, f) =

(

p, g21(p)(f)
)

, p ∈ U1 ∩ U2, f ∈ F.

Here Aut(F ) is the group of diffeomorphisms of F . The map g21 is smooth in the sense that the

associated map

(13)
g̃21 : (U1 ∩ U2)× F −→ F

(p , f) 7−→ g21(p)(f)
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is smooth. When we come to vector bundles F is a vector space and the transition functions land in

the finite dimensional Lie group of linear automorphisms; then the map (11) is smooth if and only

if (13) is smooth. Note in the formulas that g21(p)(f) means the diffeomorphism g21(p) applied

to f .

Just as the overlap, or transition, functions between coordinate charts encode the smooth struc-

ture of a manifold, the transition functions between local trivializations encode the global properties

of a fiber bundle.

We can use transition functions to construct a fiber bundle when we are only given the base and

fiber but not the total space. For that start with the base manifold M and the fiber manifold F

and suppose {Uα}α∈A is an open cover of M . Now suppose given transition functions

(14) gα1α0
: Uα0

∩ Uα1
−→ Aut(F )

for each pair α0, α1 ∈ F , and assume these are smooth in the sense defined above using (13). We

demand that gαα(p) be the identity map for all p ∈ Uα, that gα1α0
= g−1

α0α1
on Uα0

∩ Uα1
, and that

(15) (gα0α2
◦ gα2α1

◦ gα1α0
)(p) = idF , p ∈ Uα0

∩ Uα1
∩ Uα2

.

Equation (15) is called the cocycle condition. We are going to use the transition functions (14) to

construct E from the local trivial bundles Uα × F → Uα, and the cocycle condition (15) ensures

that the gluing is consistent. So define

(16) E =
⊔

α∈A

(Uα × F )
/

∼

where

(17)
(

pα0
, f

)

∼
(

pα1
, gα1α0

(f)
)

, pα0
= pα1

∈ Uα0
∩ Uα1

, f ∈ F.

The projections π1 : Uα × F → Uα fit together to define a surjective map π : E → M . It is

straightforward to verify that each fiber π−1(p) of π is diffeomorphic to F . Also, observe that the

quotient map restricted to Uα × F is injective.

Proposition 18. The quotient (16) has the natural structure of a smooth manifold and π : E → M

is a fiber bundle with fiber F .

I will only sketch the proof, which I suggest you think through carefully. Once we prove E is

a manifold then the fiber bundle property—the local triviality—is easy as the construction comes

with local trivializations. Equip E with the quotient topology: a set G ⊂ E is open if and only if

its inverse image in
⊔

α∈A

(Uα × F ) is open. This topology is Hausdorff: if q1, q2 ∈ E have different

projections in M they can be separated by open subsets of M ; if they lie in the same fiber, then

we use the fact that F is Hausdorff to separate them in some Uα × F . The topology is also

second countable: since M is second countable there is a countable subset of A for which E is the

quotient (16), and then as F is second countable we can find a countable base for the topology.

To construct an atlas, cover each Uα by coordinate charts of M and cover F by coordinate charts.

Then the Cartesian product of these charts produces charts of Uα × F , and so charts of E. It

remains to check that the overlap of these coordinate charts is C∞.
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Vector Bundles

The notion of fiber bundle is very general: the fiber is a general manifold. In many cases the

fibers have extra structure. In lecture we met a fiber bundle of affine spaces. There are also fiber

bundles of Lie groups. One important special type of fiber bundle is a vector bundle: the fibers are

vector spaces.

Definition 19. A vector bundle is a fiber bundle as in Definition 3 for which the fibers π−1(p), p ∈

M are vector spaces, the manifolds F in the local trivialization are vector spaces, and for each p ∈ U

the local trivialization (4) restricts to a vector space isomorphism π−1(p) → F .

As mentioned earlier, the transition functions (14) take values in the Lie group of linear automor-

phisms of the vector space F . (For F = R
n we denote that group as GLnR.)

You should picture a vector bundle over M as a smoothly varying locally trivial family (2) of

vector spaces parametrized by M . “Smoothly varying” means that the collection of vector spaces

fit together into a smooth manifold.

The Tangent Bundle

Let M be a smooth manifold and assume dimM = n. (If different components of M have

different dimensions, then make this construction one component at a time.) One of the most

important consequences of the smooth structure is the tangent bundle, the collection of tangent

spaces

(20) π :
⊔

p∈M

TpM −→ M

made into a vector bundle. We can construct it as a vector bundle using Proposition 18 as follows.

Let {(Uα, xα)}α∈A be a countable covering of M by coordinate charts. (As remarked earlier count-

ability is not an issue and we can use the entire atlas.) Then we obtain local trivializations (4) for

each coordinate chart:

(21)

ϕα : π
−1(Uα) −→ U × R

n

ξ =
∑

i

ξi
∂

∂xi
7−→ (p; ξ1, ξ2, . . . , ξn),

where ξ ∈ TpM . This is well-defined, but so far only a map of sets as we have not even topologized

the total space in (20). But we can still use (21) to compute the transition functions via (12).

Namely, define gα1α0
: Uα0

∩ Uα1
→ GLnR by

(22) gα1α0
(p) = d(xα1

◦ x−1
α0

)p.

In other words, the transition functions for the tangent bundle are the differentials of the overlap

functions for the charts.


