
Lecture 13: Topology of skew-adjoint Fredholm operators

We present background and many of the ideas in the proof of Theorem 12.55, the key result in

the proof of Bott periodicity given by Atiyah and Singer [AS3]; the last part of the proof is deferred

to the next lecture. In this lecture we get as far as explaining the contractible components of

skew-adjoint Fredholms and so making complete Definition 12.42 for n odd. We emphasize the two

key deformations in the proof: the deformation retraction to unitary operators (12.2) and modding

out by the contractible space of compact operators. For the latter we need to know that a fiber

bundle E Ñ M with contractible fibers is a homotopy equivalence, conditions for which are set out

in Proposition 12.26. The real case is parallel to the complex case. We will not present complete

proofs, but highlight most of the main ideas as a reader’s guide to [AS3]. We work in an ungraded

(non-super) situation which contains most of the key ideas. Along the way we review basic facts

about compact operators and the relation to Fredholm operators. We also introduce Banach Lie

groups which have the homotopy type of BGL8; see [F3] for more along these lines. In the first

part of this lecture we give some context; see the end of Lecture 9 for additional relevant material.

In particular, we describe the geometric model of K-theory that we are developing, something

very important for the rest of the course. (Some of the technical background, especially for the

equivariant case that we will use later, may be found in the appendix to [FHT1].)

We continue with some of the notation from previous lectures.

The periodic K-theory spectra

We present the definition of a spectrum and its antecedents: prespectra and Ω-prespectra. These

definitions and terms vary in the literature. Spectra are the basic objects of stable homotopy theory.

Definition 13.1.

(i) A prespectrum T‚ is a sequence tTnunPZą0 of pointed spaces and maps sn : ΣTn Ñ Tn`1.

(ii) An Ω-prespectrum is a prespectrum T‚ such that the adjoints tn : Tn Ñ ΩTn`1 of the

structure maps are weak homotopy equivalences.

(iii) A spectrum is a prespectrum T‚ such that the adjoints tn : Tn Ñ ΩTn`1 of the structure

maps are homeomorphisms.

Obviously a spectrum is an Ω-prespectrum is a prespectrum. We can take the sequence of pointed

spaces Tn0
, Tn0`1, Tn0`2, . . . to begin at any integer n0 P Z. If T‚ is a spectrum which begins at n0,

then we can extend to a sequence of pointed spaces Tn defined for all integers n by setting

(13.2) Tn “ Ωn0´nTn0
, n ă n0.

Note that each Tn, in particular T0, is an infinite loop space:

(13.3) T0 » ΩT1 » Ω2T2 » ¨ ¨ ¨

Example 13.4. Let X be a pointed space. The suspension prespectrum of X is defined by setting

Tn “ ΣnX for n ě 0 and letting the structure maps sn be the identity maps. In particular,

for X “ S0 we obtain the sphere prespectrum with Tn “ Sn.
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(13.5) Spectra from prespectra. Associated to each prespectrum T‚ is a spectrum1 LT‚ called its

spectrification. It is easiest to construct in case the adjoint structure maps tn : Tn Ñ ΩTn`1 are

inclusions. Then set pLT qn to be the colimit of

(13.6) Tn

tnÝÝÝÑ ΩTn`1
Ωtn`1
ÝÝÝÝÑ Ω2Tn`2 ÝÑ ¨ ¨ ¨

which is computed as an union. For the suspension spectrum of a pointed space X the 0-space is

(13.7) pLT q0 “ colim
ℓÑ8

ΩℓΣℓX,

which is usually denoted QX.

(13.8) Homotopy and homology of prespectra. Let T‚ be a prespectrum. Define its homotopy

groups by

(13.9) πnpT q “ colim
ℓÑ8

πn`ℓTℓ,

where the colimit is over the sequence of maps

(13.10) πn`ℓTℓ

πn`ℓtℓ
ÝÝÝÝÑ πn`ℓΩTℓ`1

adjunction
ÝÝÝÝÝÝÑ πn`ℓ`1Tℓ`1

For an Ω-prespectrum the composition (13.10) is an isomorphism and there is no need for the

colimit. Similarly, define the homology groups as the colimit

(13.11) HnpT q “ colim
ℓÑ8

rHn`ℓTℓ,

where rH denotes the reduced homology of a pointed space. We might be tempted to define the

cohomology similarly, but that does not work.2

(13.12) Cohomology theory of a spectrum. A prespectrum T‚ determines a cohomology theory hT

on CW complexes and other nice categories of spaces. Assume for simplicity that T‚ is an Ω-

prespectrum. Then the reduced cohomology of a pointed space X is

(13.13) h̃nT pXq “ rX,Tns,

where we take homotopy classes of pointed maps. All the computational tools (long exact sequences,

spectral sequences, etc.) work for generalized cohomology theories. One account is [DaKi].

1The notation ‘L’ indicates ‘left adjoint’.
2Homotopy and homology commute with colimits, but cohomology does not: there is a derived functor lim1 which

measures the deviation.
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(13.14) Periodic K-theory spectra. Theorem 12.55 tells that Fredholm operators give an Ω-prespectrum

whose nth space is FrednpHq and whose structure maps are the adjoint of α in (12.54). Bott period-

icity (Corollary 12.56) tells that this spectrum is 2-periodic. It is the periodic complex topological

K-theory spectrum; the corresponding cohomology groups of a space X are denoted KnpXq. The

real version of the theorems gives an Ω-prespectrum whose nth space is FrednpHRq; the structure

maps are the adjoint of α. Now the spectrum is 8-periodic and the corresponding cohomology

groups are KOnpXq, the real K-theory groups.

The geometric model of K-theory

Our point of view in this course is to develop a geometric model of K-theory and to see it

arise in geometry and physics. Were we to discuss real singular cohomology in place of K-theory

the geometric model of interest is restricted to smooth manifolds: the de Rham complex. A

closed differential form on a smooth manifold determines a real cohomology class, and this brings

topological methods into differential geometry. Absent the geometric model we would not be able

to recognize and use the topology underlying Chern-Weil forms, a symplectic form, and many other

closed forms which occur naturally in geometry.

The paper [FHT1], especially the appendix, contains much more about this model of K-theory,

including the equivariant and twisted cases which we need later in the course.

(13.15) Untwisted classes. The model so far consists of a fixed super Hilbert space H “ H0 ‘H1

with the left action of a fixed superalgebra CℓCn , the complex Clifford algebra. (It is important

that every irreducible Clifford module appear infinitely often in the Hilbert space, which is why

in Definition 12.42 we write the Hilbert space as CℓCn b H 1 for an infinite dimensional separable

Hilbert space with no Clifford action.) Then a K-theory class in KnpXq on a space X is represented

geometrically by a family X Ñ FrednpHq of odd skew-adjoint Fredholm operators on the fixed

Hilbert space H which commute with the fixed algebra CℓCn .

(13.16) Invertibles. Kuiper’s theorem asserts that the invertibles are a contractible subspace

of FrednpHq; see (9.32) and (9.33). Thus families of invertible operators determine the zero

K-theory class, and more generally families of Fredholms X Ñ FrednpHq determine a class relative

to the subspace A Ă X consisting of x P X such that T pxq is invertible.

(13.17) Twisted classes. A more flexible model is obtained by allowing the Hilbert space H and

the superalgebra CℓCn to also depend on the point x P X. As usual, we want them to vary in a locally

trivial family, so form fiber bundles. We need to pay some point-set attention to define a locally

trivial family of Hilbert spaces, though in fact Definition 1.12 goes over verbatim. We can generalize

the standard Clifford algebras to central simple superalgebras and so consider fiber bundles of such

equipped with a supermodule which is a Hilbert space bundle. Now the family of odd skew-adjoint

Fredholms act on variable Hilbert spaces; they still commute with the superalgebra action. This is

a geometric model for twisted K-theory which we will come to shortly.

Of course, there is a real version as well. This model extends nicely to groupoids, as we will

discuss in a future lecture.



4 D. S. Freed

(13.18) Finite rank vector bundles. It is convenient to allow finite rank Hilbert bundles, i.e.,

ordinary finite rank vector bundles, via a simple construction. Let E Ñ X be a finite rank complex

vector bundle. Fix a Z{2Z-graded Hilbert space H “ H0 ‘ H1 whose homogeneous subspaces are

infinite dimensional. Then E ‘H is a Hilbert bundle and the constant family of Fredholms 0‘ idH
has kernel the original vector bundle E Ñ X. In the sequel we use finite rank bundles as geometric

representatives of K-theory with no further comment.

(13.19) Warning about finite dimensional representatives of K1. Suppose E “ E0 ‘ E1 Ñ X

is a finite rank complex super vector bundle with a CℓC´1-module structure on each fiber. Let

e1 denote the action of the Clifford generator and ǫ the grading operator. Define e2 “ ie1ǫ. Then

a simple computation shows that e22 “ e21 “ ´1 and e1e2 “ ´e2e1. One interpretation is that

E Ñ X automatically extends to a bundle of CℓC2 -modules. Another is that e2 is an invertible odd

skew-adjoint endomorphism of finite rank CℓC´1-modules, and furthermore the homotopy t ÞÑ te2

connects the zero operator on E to an invertible operator. Adding the identity on a fixed infinite

dimensional CℓC´1-module, as in (13.18), we see that we get the zero element of K1pXq from this

finite rank CℓC´1-module over X.

A similar argument works for finite rank real Clifford modules except in degrees congruent to 0, 8

pmod 8q.

Compact operators

Let H0, H1 be ungraded Hilbert spaces.

Definition 13.20.

(i) An operator T : H0 Ñ H1 is finite rank if the image T pH0q Ă H1 is a finite dimensional

subspace.

(ii) An operator T : H0 Ñ H1 is compact if the closure T
`
BpH0q

˘
Ă H1 of the image of the unit

ball is compact.

We topologize the set cptpH0, H1q Ă HompH0, H1q of compact operators by the norm topology.

Some basic facts whose proof we leave to the reader: The space of compact operators is closed, and

in fact is the closure of the set of finite rank operators. The composition of a bounded operator

and a compact operator is compact. Hence the compact operators cptpHq Ă EndpHq on a Hilbert

space H form a closed 2-sided ideal in the space of bounded operators. A Hilbert space H is finite

dimensional if and only if idH : H Ñ H is compact.

We will prove a basic fact (Proposition 13.23) relating Fredholm and compact operators. It

will be convenient to first prove that the closed range condition is superfluous in the definition

(Definition 9.6) of a Fredholm operator.

Lemma 13.21. Let H0, H1 be Hilbert spaces and T : H0 Ñ H1 a continuous linear map with finite

dimensional kernel and finite dimensional cokernel. Then T is Fredholm.

We use the fact that a finite dimensional subspace of a Hilbert space is closed.

Proof. The kernel kerT is a closed finite dimensional subspace of H0 and the image of T equals

that of T restricted to the closed subspace pkerT qK, so to prove that T is closed range we may
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assume that T is injective. Choose a finite dimensional complement V to T pH0q Ă H1; it exists

since T has finite dimensional cokernel. Then

(13.22) H1 “ T pH0q ‘ V “ V K ‘ V,

where the latter is the direct sum of closed subspaces. Let π denote orthogonal projection onto V K.

Then πT is bijective and continuous, so by the open mapping theorem its inverse F is also contin-

uous.

Now suppose tξnu Ă H0 is a sequence such that Tξn Ñ η8 as n Ñ 8. Then πTξn Ñ πη8.

Apply TF to conclude that Tξn Ñ TFπη8. It follows that η8 “ TFπη8, which shows that η8 lies

in the image of T . This proves that T has closed range. �

Proposition 13.23. A bounded operator T : H0 Ñ H1 is Fredholm if and only if there exist bounded

operators S, S1 : H1 Ñ H0 such that idH0 ´ST and idH1 ´TS1 are compact.

We can replace ‘compact’ by ‘finite rank’, as is clear from the proof, which also makes clear that

we can choose S1 “ S. The operators S, S1 are called parametrices for T .

Proof. If T is Fredholm, write H0 “ kerT ‘ pkerT qK and H1 “ T pH0qK ‘ T pH0q as orthogonal

sums of closed subspaces. Since T restricted to pkerT qK is an isomorphism onto T pH0q, it has a

continuous inverse on those spaces by the open mapping theorem. Define S “ S1 to be the extension

of this inverse by zero on T pH0qK.

Conversely, if the parametrices exist, restrict idH0 ´ST to kerT to deduce that idkerT is compact.

Also, the operator idH1 ´TS1 is compact and preserves T pH0q, thus idcokerT is compact. �

We turn now to groups—in fact, complex Banach Lie groups—and so switch notation to empha-

size that the linear spaces of operators we have been using are Lie algebras:

(13.24)

Aut ÝÑ GL

End ÝÑ gl

cpt ÝÑ cpt

We often omit the Hilbert space from the notation for visual clarity.

Definition 13.25. GLcptpHq “ tP : H Ñ H such that P is invertible and P ´ idH is compactu.

GLcpt is a Banach Lie group with Lie algebra cpt.

Fix a filtration H1 Ă H2 Ă H3 Ă ¨ ¨ ¨ of H by subspaces with dimHn “ n such that
8Ť

n“1
Hn “ H.

We can achieve this by choosing a countable basis (H is always assumed separable) and letting

Hn be the span of the first n basis vectors. There is an induced increasing sequence of groups

(13.26) GLpH1q Ă GLpH2q Ă GLpH3q Ă ¨ ¨ ¨

where the nth group consists of invertible operators which are the identity on HK
n .
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Theorem 13.27 (Palais [Pa3]). The inclusion
8Ť

n“1
GLpHnq ãÑ GLcptpHq is a homotopy equiva-

lence.

The union of the groups (13.26), denoted GL8, has the colimit topology: a subset is open iff its

intersection which each group in (13.26) is open. We encountered this group—rather its deformation

retraction to the unitary subgroup (and with a different notation)—in Remark 3.32.

The Calkin algebra and its subgroups

Definition 13.28. The Calkin algebra of a Hilbert spaceH is the quotient algebra EndpHq{ cptpHq.

Since the ideal of compact operators is closed, the Calkin algebra inherits a Banach space structure.

(It is not only a Banach algebra but a C˚-algebra.) So we can talk about unitary elements, skew-

adjoint elements, the spectrum of an element, etc. We usually use the notation ‘gl{cpt’ to emphasize

that the Calkin algebra is the Lie algebra of a Banach Lie group.

That group is the quotient GL{GLcpt. The quotient map GL Ñ GL{GLcpt is a principal bundle.

(To prove that we need the existence of local sections, which follows from a theorem of Bartle and

Graves, for example; see also [Pa2].) Kuiper’s Theorem 12.1 asserts that GL is contractible. It

follows from Theorem 12.28 that GL Ñ GL{GLcpt is a universal bundle in the sense that it classifies

principal GLcpt-bundles (over metrizable bases). In particular, we have proved

Proposition 13.29. The group GL{GLcpt has the homotopy type BGL8.

We now have two homotopy types on the table: GL8 and BGL8. There are also two homotopy

types in (12.52). The main result implies a match if we replace BGL8 with Z ˆ BGL8.

Now we bring in the deformation retraction to unitaries (12.2). GL retracts to the contractible

group U , as in Corollary 12.3, and GLcpt retracts onto U cpt, which has the same homotopy type.

Denote

(13.30) G “ U{U cpt,

which is a deformation retract of GL{GLcpt and thus has the homotopy type BGL8. We summarize

the groups defined so far in the diagram

(13.31)

U d.r.

Ucpt

GL

GLcpt

gl

π

G “ U{U cpt
d.r. GL{GLcpt gl{cpt

The labeled horizontal arrows are deformation retractions and the first two vertical arrows are

principal bundles.

Let pgl{cptqˆ Ă gl{cpt denote the Banach Lie group of invertible elements.

Lemma 13.32. GL{GLcpt is the identity component of pgl{cptqˆ.
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We leave the proof to the reader; it can be found in [F3]. The intuition is that GL{GLcpt is a

Banach Lie group with Lie algebra the Calkin algebra gl{cpt. So too is pgl{cptqˆ.

The following is a restatement of Proposition 13.23.

Proposition 13.33. π´1
`
pgl{cptqˆ

˘
“ Fred Ă gl. Also, π´1

`
GL{GLcpt

˘
“ Fredp0q is the space of

Fredholm operators of numerical index zero.

For the latter statement we use Corollary 9.26. We summarize in an expanded version of (13.31):

(13.34)

U d.r.

Ucpt

GL

GLcpt

gl

π

Fred

π

Fredp0q

π

G “ U{U cpt
d.r. GL{GLcpt gl{cpt pgl{cptqˆ GL{GLcpt

The central vertical map is the quotient by cpt which defines the Calkin algebra. To the right are

restrictions of that quotient to Fredholm operators. To the left are principal bundles with total

space a group.

Corollary 13.35. The space Fredp0q of Fredholm operators of index zero has the homotopy type

BGL8 and the space Fred of all Fredholm operators has the homotopy type Z ˆ BGL8.

Since Fred0pHq in (12.52) is isomorphic to the space of Fredholm operators on an ungraded Hilbert

space, this determines the homotopy type of the spaces in the first line of (12.52).

Remark 13.36. It follows that G also has the homotopy type BGL8. We caution that [AS3] uses

the symbol ‘G’ for the unitary retraction of pgl{cptqˆ, a group whose identity component is our ‘G’.

Spaces of skew-adjoint Fredholm operators

Recall that the Lie algebra of the group of unitary operators is the space of skew-adjoint operators.

(This is true in finite dimensions.) For any space of operators, or operator algebra, we use a “hat” to

denote the subspace of skew-adjoint elements. Thus if we use F “ Fred for all Fredholm operators,

then pF is the notation for skew-adjoint Fredholms.

(13.37) An ungraded version of Fred1. This is essentially a reprise of the text following (12.70).

Let H “ H0 ‘H1 be a super Hilbert space and suppose A Ă Fred1pHq. Let e1 denote the action of

the Clifford generator. Then e1A is even and skew adjoint: pe1Aq˚ “ A˚e˚
1 “ p´Aqp´e1q “ Ae1 “

´e1A. Let T denote its restriction to the even part of CℓC1 b H. The loop map (13.41) which

appears below is essentially the Atiyah-Singer map (12.70); see (12.71).

(13.38) Main theorem. We now state the ungraded version of Theorem 12.55 whose proof we

sketch in the next lecture.

Theorem 13.39 ([AS3]). The space pF has three components

(13.40) pF “ pF` > pF´ > pF˚.
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The components pF˘ are contractible, and the map

(13.41)
α : pF˚ ÝÑ ΩF

T ÞÝÑ pcosπt ` T sinπt, 0 ď t ď 1q

is a homotopy equivalence.

Notice that the Atiyah-Singer loop map (13.41) has domain a space of skew-adjoint operators and

codomain loops in a space related to a Lie group (Theorem 13.33). So we might expect—after

retracting to unitaries which do have skew-adjoints as the Lie algebra—that (13.41) is closely

related to exponentiation from a Lie algebra to a Lie group. It is.

(13.42) The contractible components of skew-adjoint Fredholms. In the diagram

(13.43)

pF
cpt

pG d.r. {GL{GLcpt

the vertical arrow is a fiber bundle with contractible fibers and the horizontal arrow is a deformation

retraction. So pG is homotopy equivalent to pF . Now an element x P pG is unitary skew-adjoint, so

xx˚ “ 1 and x “ ´x˚, which implies x2 “ ´1. It follows that specx Ă t`i´iu. Since the spectrum

is nonempty, there are three possibilities. This decomposes pG into three disjoint subspaces which

one can prove are components:

(13.44) pG “ pG` > pG´ > pG˚

Furthermore, the spaces pG˘ each contain a single element ˘i. The decomposition (13.40) of pF
follows as does the contractibility of the two components consisting of skew-adjoint Fredholms

whose essential spectrum is t`iu or t´iu.

Remark 13.45. There are contractible components of FrednpHRq in the real case if n ” 1 pmod 4q.

(13.46) The noncontractible component of skew-adjoint Fredholms. Replacing the spaces in (13.41)

by homotopy equivalent spaces, we reduce the remaining part of Theorem 13.39 to the following.

Theorem 13.47. The exponential map

(13.48)
ǫ : pG˚ ÝÑ ΩG

x ÞÝÑ pexpπtx, 0 ď t ď 1q

is a homotopy equivalence.

Now, as promised, the loop map is exponentiation, since x2 “ ´1 implies

(13.49) cosπt ` x sinπt “ expπtx.

We sketch a proof of Theorem 13.47 in the next lecture.
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