
Lecture 14: Proof of Bott periodicity (con’t)

There are many spaces of operators in the proof, and it is confusing to follow at first. So we’ll

first try to sort things out a bit.

For a super Hilbert space Hs “ H0 ‘ H1 we have a sequence of spaces of skew-adjoint odd

Fredholm operators which exhibit just two homeomorphism types, as in (12.52). Letting H denote

a (non-super) Hilbert space, and identifying H “ H0 “ H1, we can identify Fred0pHsq with

F “ FredpHq by identifying
`
0 ´T˚

T 0

˘
with T ; see (12.41). Also, the argument after (12.71) shows

that we can identify Fred´1pHsq with the space pF of skew-adjoint Fredholms (on pCℓC´1 b Hsq0)

by identifying A with e1A restricted to the even subspace. We proved in Corollary 13.35 that

F has the homotopy type Z ˆ BGL8, which is then the homotopy type of all spaces in the first

line of (12.52). Its loop space ΩF has the homotopy type GL8. Theorem 13.39, whose proof

we complete in this lecture, says that that is also the homotopy type of the nontrivial component
xF˚ of pF . The identification with Fred´1pHsq, which we re-define to denote only this nontrivial

component, then determines the homotopy type of the spaces in the second line of (12.52) as GL8.

This completes the proof of Bott periodicity, which in this form is Corollary 12.56.

Fiber bundles, fibrations, and quasifibrations

If p : E Ñ B is a continuous map with contractible fibers we might like to conclude that p is a

homotopy equivalence, but that is not always true. (Counterexample: Take E “ B “ R and p the

identity map, but topologize E as a discrete set and B with the usual topology.) Not surprisingly,

we need control over the fibers. The three classes of maps in the title are successively more general

yet retain just such control. Namely, assuming the base is path connected, the fibers are respectively

(i) homeomorphic, (ii) homotopy equivalent, (iii) weakly homotopy equivalent.

For convenience assume B is path connected, and always assume that E,B are metrizable.

(14.1) Fiber bundles. We already discussed these in (12.23).

Definition 14.2. p : E Ñ B is a fiber bundle if for every b P B there exists an open neighborhood U

and a local trivialization

(14.3)

U ˆ p´1pbq p´1pUq

B

Many important maps in geometry are fiber bundles.

(14.4) Fibrations. Now assume that E,B are pointed spaces with basepoints e, πpeq “ b. A

fibration is characterized by the homotopy lifting property.

Definition 14.5. p : E Ñ B is a fibration if for every pointed space X, continuous map f : r0, 1s ˆ

X Ñ B and lift f̃0 : X Ñ E of f0 there exists an extension f̃ : r0, 1s ˆ X Ñ E lifting f .
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The lift is encoded in the diagram

(14.6)

t0u ˆ X
f̃0

E

p

r0, 1s ˆ X
f

f̃

B

Theorem 14.7. Suppose p : E Ñ B is a fibration.

(i) p˚ : πnpE, p´1pbq, eq Ñ πnpB, bq is an isomorphism for all n P Z
ě0.

(ii) There is a long exact sequence

(14.8) ¨ ¨ ¨ ÝÑ πnpF, eq ÝÑ πnpE, eq ÝÑ πnpB, bq ÝÑ πn´1pF, eq ÝÑ ¨ ¨ ¨

in which F “ p´1pbq.

Proposition 14.9. Let p : pE, eq Ñ pB, bq be a fibration, b1 P B, and Pe

`
E; p´1pb1q

˘
the space of

paths in E which begin at e and terminate on the subspace p´1pb1q. Then p induces a fibration

(14.10) Pe

`
E; p´1pb1q

˘
ÝÑ PbpB; b1q

with contractible fibers, so is a weak homotopy equivalence.

The last conclusion follows from the long exact sequence (14.8). We leave the reader to provide a

proof of Proposition 14.9 using the homotopy lifting property.

(14.11) Quasifibrations. A quasifibration is a map for which the statements in Theorem 14.7 hold,

but the homotopy lifting property does not necessarily hold. See Figure 4 for a typical example.

 

Figure 4. A quasifibration which is not a quasifibration

Definition 14.12. Amap p : E Ñ B (of unpointed spaces) is a quasifibration if p˚ : πnpE, p´1pbq, eq Ñ

πnpB, bq is an isomorphism for all b P B, e P p´1pbq, and n P Z
ě0.

The long exact sequence (14.8) follows.

An equivalent condition is that the natural map from each fiber to the homotopy fiber is a weak

homotopy equivalence.

Quasifibrations are useful in part because of the following criterion to recognize them. This was

proved by Dold-Thom [DT], who introduced quasifibrations.
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Theorem 14.13. Suppose q : E Ñ B is a surjective map with B path connected. Let

(14.14) F0B Ă F1B Ă F2B Ă ¨ ¨ ¨

be an increasing filtration of B with
8Ť

n“0
FnB “ B such that

(i) q
ˇ̌
U

is a quasifibration for all open U Ă FnBzFn´1B, and

(ii) For n ě 1 there exists an open neighborhood Un Ă FnB of Fn´1B and deformation retractions

(14.15)
Un

htÝÝÝÑ Fn´1B

q´1Un
HtÝÝÝÑ q´1Fn´1B

such that H1 : q
´1pbq Ñ q´1ph1bq is a weak homotopy equivalence.

Then q is a quasifibration.

There is a nice exposition of quasifibrations in [Ha2, pp. 476–481] based on [Ma]. You will find

the proofs of the theorems and much more there.

The basic diagram

We continue where we left off in Lecture 13. Introduce

(14.16) pF˚ “ tT P π´1p pG˚q : }T } “ 1u.

Thus an operator T : H Ñ H in pF˚ satisfies:

(14.17)

T is Fredholm,

T ˚ “ ´T,

}T } “ 1,

ess specT “ t`i,´iu.

Lemma 14.18. pF˚ is a deformation retract of xF˚.

Proof. First use the deformation retraction
`
p1 ´ tq ` t}πpT q´1}

˘
T onto the subspace of S P xF˚

with }πpSq´1} “ 1. Then deformation retract iR symmetrically onto r´i,`is and use the spectral

theorem. (The symmetry ensures we stay in the space of skew-adjoint operators.) �

Corollary 14.19. π̂ : pF˚ Ñ pG˚ is a homotopy equivalence

Now we have the basic diagram

(14.20)

pF˚
δ

π̂

P1pU,´U cptq

ρ

pG˚
ǫ

P1pG,´1q
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Both δ and ǫ are given by the formula

(14.21) x ÞÝÑ expπtx, 0 ď t ď 1.

In (14.20) we know that π̂ is a homotopy equivalence and we need to prove that ǫ is a homotopy

equivalence (Theorem 13.47). We will do so by proving that δ, ρ are homotopy equivalences.

That ρ is a weak homotopy equivalence follows directly from Proposition 14.9 once we observe

(see (13.31)) that U Ñ G is a principal fiber bundle (hence fibration) with fiber U cpt. All spaces in

the game have the homotopy type of CW complexes, so weak homotopy equivalences are homotopy

equivalences.

Proposition 14.22. Evaluation at the endpoint is a homotopy equivalence

(14.23) P1pU,´U cptq ÝÑ ´U cpt

Proof. The map (14.23) is a fibration with fiber ΩU , and the latter is contractible by Kuiper’s

Theorem 12.1. �

From the basic diagram (14.20) we are reduced to proving the following.

Theorem 14.24. The map

(14.25)
q : pF˚ ÝÑ ´U cpt

T ÞÝÑ exppπT q

is a homotopy equivalence.

A dense quasifibration

To gain some intuition, let’s look at a few fibers of the map q in (14.25). We write P P ´U cpt as

P “ ´ idH `ℓ where ℓ P cptpHq is a compact operator.

Example 14.26. Suppose that ℓ has finite rank. Then K “ kerpℓq is a closed subspace of finite

codimension and H “ K ‘ KK; the dimension of KK is finite. Suppose T P q´1pP q so expπT “ P

and T satisfies the conditions in (14.17). The first observation is that T
ˇ̌
KK is determined by P

ˇ̌
KK .

For on this finite dimensional space we can diagonalize the operators and we are studying the map

exppπ´q : r´i,`is Ñ T, which is an isomorphism except at the endpoints, both of which map

to ´i P T. On KK the operator P does not have eigenvalue ´i so the logarithm (inverse image

under q) is unique. On the other hand, the operator T
ˇ̌
K

has spectrum contained in t`i,´iu, and

by the last condition in (14.17) both `i and ´i are in the spectrum with “infinite multiplicity”. It

follows that there is a decomposition

(14.27) K “ K` ‘ K´

with T
ˇ̌
K˘

“ ˘i and dimK` “ dimK´ “ 8. The fiber q´1pP q is then identified with the Grass-

mannian of all splittings (14.27). This Grassmannian is diffeomorphic to the homogeneous space

UpKq
L
UpK`qˆUpK´q. All three unitary groups are contractible by Kuiper, hence so is the fiber.
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Example 14.28. Suppose e1, e2, . . . is an orthonormal basis of the Hilbert space H. Consider the

following two operators in ´U cpt:

(14.29)
P1penq “ exp

`
πip1 ´

1

n
q
˘

P2penq “ exp
`
πip1 `

p´1qn

n
q
˘

There is a unique operator Ti : H Ñ H which exponentiates to Pi under exppπ´q, but as the

essential spectrum of T1 is t`iu it is not an element of pF˚. Thus q´1pP1q is empty whereas

q´1pP2q has a single point.

Since not all fibers of q are weakly homotopy equivalent, q is not a quasifibration. However, it

is still a homotopy equivalence. Atiyah-Singer prove this by proving that q is a quasifibration over

the dense subspace of operators of the form treated in Example 14.26, and in turn the inclusion of

the subspaces of both base and total space are homotopy equivalences.

Definition 14.30. Let n P Z
ą0. Define

(i) ´U cptpnq Ă ´U cpt as the subset tP “ ´ idH `ℓ : rank ℓ ď nu,

(ii) pF˚pnq Ă pF˚ as the subset q´1
`
´U cptpnq

˘
.

In each case we have an increasing filtration of the unions

(14.31)

´U cptp8q “
8ď

n“1

´U cptpnq

pF˚p8q “
8ď

n“1

pF˚pnq

The first union is the space of all unitaries which differ from ´ idH by a finite rank operator. That

resembles the union of the groups (13.26) in which we fix the subspaces on which the operator

deviates from ´ idH . In any case the homotopy type of the unions are the same.

Proposition 14.32. The inclusion maps

(14.33)
i : ´ U cptp8q ÝÑ ´U cpt

i : pF˚p8q ÝÑ pF˚

are homotopy equivalences.

Proposition 14.34. q
ˇ̌

pF˚p8q
is a quasifibration with contractible fibers.

Theorem 14.24 follows immediately from these propositions.

We sketch the proofs (literally) and defer to [AS3] for details. For Proposition 14.32 we must

show that any compact X Ă pF˚ can be deformed to a subset of pF˚pnq for some n. We do that by

a spectral deformation, illustrated in Figure 5 in which 0 ă α ă 1. The key observation is that
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Figure 5. Spectral deformation for Proposition 14.32

any operator in pF˚ has only a finite spectrum in the interval r´iα, iαs as the essential spectrum

is t´i,`iu. The argument for U cpt is similar.

For Proposition 14.34 we use the Dold-Thom criterion Theorem 14.13. To verify condition (i) we

sup up the argument in Example 14.26 to show that over the subspace where rank ℓ “ n is constant

the kernels K form a vector bundle, as do their orthogonal complements. Thus the restriction of q

over this subspace is a fiber bundle with contractible fibers, so in particular is a quasifibration on

any open subset. For (ii) we observe that an operator in ´U cptpnq has at most n eigenvalues not

equal to ´1. We need to deform a neighborhood of ´U cptpn ´ 1q in ´U cptpnq to ´U cptpn ´ 1q.

Let Un be the subset where there is such an eigenvalue with negative real part. Make a spectral

deformation as illustrated in Figure 6. It is easy to check that the induced map on fibers is a

homotopy equivalence.

 

Figure 6. Spectral deformation for Proposition 14.34

McDuff’s proof of Bott periodicity (Bonus material)

We begin with the observation of an exchange between finite and infinite dimensions. Let V be

a finite dimensional complex vector space and H an infinite dimensional Hilbert space. Then

whereas GLpHq is contractible (Kuiper), GLpV q definitely has interesting topology: the colimit

for dimV large is the homotopy type GL8. On the other hand, the space FredpHq of Fredholm

operators is interesting—it has the homotopy type Z ˆ BGL8—whereas the space EndpV q is

contractible.

McDuff [McD] gave a proof of Bott periodicity by constructing a variation of (14.25) from finite

dimensional spaces which exchanges the spaces of interest: the total space in her quasifibration is

contractible, whereas it is the fibers of (14.25) which are contractible. Thus her quasifibration has
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the form

(14.35)

Z ˆ BGL8 pt

GL8

This shows that ΩGL8 » Z ˆ BGL8. It is trivial that ΩpZ ˆ BGL8q » GL8, and the two

statements together immediately imply Bott periodicity.

For each finite dimensional vector space V we let upV qď1 be the subspace of skew-adjoint oper-

ators with operator norm ď 1, and as in (14.25) consider the map

(14.36)
q : upV qď1 ÝÑ UpV q

T ÞÝÑ exppπT q

This is a quasifibrations with fibers the Grassmannian of the p´iq-eigenspace, exactly as in the

analysis of Example 14.26. The idea is to replace V by the colimit C8 of finite dimensional vector

spaces and work with a “restricted Grassmannian” and “restricted general linear group”. Details

of the argument are worked out in the series of papers [AP], [Beh1], [Beh2]; the latter also works

out real Bott periodicity.

We want not only Bott periodicity but also a geometric model of K-theory. As we meet Fredholm

operators in geometry this alternative proof, while very beautiful and elegant, does not suffice for

our purposes.
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