
Lecture 2: Homotopy invariance

We give two proofs of the following basic fact, which allows us to do topology with vector bundles.

The basic input is local triviality of vector bundles (Definition 1.12).

Theorem 2.1. Let E Ñ r0, 1s ˆX be a vector bundle. Denote by jt : X Ñ r0, 1s ˆX the inclusion

jtpxq “ pt, xq. Then there exists an isomorphism

(2.2) j˚
0E

–
ÝÝÑ j˚

1E.

The idea of both proofs is to construct parametrized trivializations along the axes r0, 1s ˆ txu, x P

X, of the cylinder r0, 1s ˆ X. For the first proof we assume that X is a smooth manifold and

that the vector bundle is smooth. Then we write a differential equation (parallel transport via

a covariant derivative) which gives infinitesimal trivializations. The solution to the differential

equation gives the global isomorphism. For the second proof we only assume continuity, so X is

a (paracompact, Hausdorff) space, and use the local triviality of vector bundles in place of an

(infinitesimal) differential equation. Then a patching argument constructs the global isomorphism.

Partitions of unity are used as a technical tool in both situations.

Differential equations are used throughout differential geometry to prove global theorems. In this

case we use an ordinary differential equation, for which there is a robust general theory. For partial

differential equations the global questions are more delicate. (Think, for example, of the Ricci

flow equations which “straighten out” the metric on a Riemannian 3-manifold to one of constant

curvature.)

(2.3) Partitions of unity. The definition of ‘paracompact’ varies in the literature. Sometimes it

includes the Hausdorff condition. The usual definition is that that every open cover of X has

a locally finite refinement, or one can take the following theorem as a definition. Recall that a

partition of unity is a set A of continuous functions ρα : X Ñ r0, 1s, α P A, with locally finite

supports such that
ř

α

ρα “ 1. It is subordinate to an open cover tUiuiPI if there exists a map

i : A Ñ I such that supp ρα Ă Uipαq.

Theorem 2.4. Let X be a paracompact Hausdorff space and tUiuiPI an open cover.

(i) There exists a partition of unity tρiuiPI subordinate to tUiuiPI such that at most countably

many ρi are not identically zero.

(ii) There exists a partition of unity tσαuαPA subordinate to tUiuiPI such that each σα is compactly

supported.

(iii) If X is a smooth manifold, then we can take the functions ρi, σα to be smooth.

For a proof, see [War, §1].
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Covariant derivatives

(2.5) Differentiation of vector-valued functions. Let M be a smooth manifold and E a complex1

vector space. The differential of smooth E-valued functions is a linear map

(2.6) d : Ω0
M pEq ÝÑ Ω1

M pEq

which satisfies the Leibniz rule

(2.7) dpf ¨ eq “ df ¨ e` f ¨ de, f P Ω0
M pCq, e P Ω0

M pEq,

where ‘¨’ is pointwise scalar multiplication. However, it is not the unique map with those properties.

Any other has the form

(2.8) d`A, A P Ω1
M pEndEq.

It acts as the first order differential operator

(2.9)
d`A : Ω0

M pEq ÝÑ Ω1
M pEq

e ÞÝÑ de`Apeq

The last evaluation is the pairing EndEbE Ñ E. The directional derivative in a direction ξ P TpM

at some point p P M is

(2.10) deppξq `Appξqpeq.

Observe that the space of differentiations of E-valued functions is the infinite dimensional vector

space Ω1
M pEndEq.

(2.11) Differentiation of vector bundle-valued functions. Let π : E Ñ M be a smooth vector bun-

dle. The local triviality (Definition 1.12) implies the existence of an open cover tUiuiPI of M

and vector bundle isomorphisms ϕi : Ui ˆ Ei Ñ π´1pUiq for some vector spaces Ei. Using ϕi we

identify sections of E over Ui with Ei-valued functions on Ui, and so transport the differentiation

operator (2.6) to a differentiation operator2

(2.12) ∇i : Ω
0
Ui

pEq ÝÑ Ω1
Ui

pEq,

that is, a linear map satisfying the Leibniz rule (2.7), where now e P Ω0
Ui

pEq. Let tρiuiPI be a

partition of unity satisfying Theorem 2.4(i,iii). Let ji : Ui ãÑ M denote the inclusion. Then

(2.13)

∇ : Ω0
M pEq ÝÑ Ω1

M pEq

e ÞÝÑ
ÿ

i

ρi∇ipj
˚
i eq

1The discussion applies without change to real vector spaces and, below, real vector bundles.
2‘∇’ is pronounced ‘nabla’.
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defines a global differentiation on sections of E. The first-order differential operator (2.13) is called

a covariant derivative, and the argument given proves their existence on any smooth vector bundle.

If ∇,∇1 are covariant derivatives on E, then the difference ∇1 ´ ∇ is linear over functions, as

follows immediately from the difference of their Leibniz rules, and so is a tensor A P Ω1
M pEndEq.

Therefore, the set of covariant derivatives is an affine space over the vector space Ω1
M pEndEq.

Remark 2.14. The averaging argument with partitions of unity works to average geometric objects

which live in a convex space, or better sections of a bundle whose fibers are convex subsets of

affine spaces. For example, it is used to prove the existence of hermitian metrics on complex vector

bundles, and also the existence of splittings of short exact sequences of vector bundles (2.28).

(2.15) Parallel transport. Let γ : r0, 1s Ñ M be a smooth parametrized path. The covariant

derivative pulls back to a covariant derivative on the pullback bundle F :“ γ˚E Ñ r0, 1s. We use

the covariant derivative to construct an isomorphism

(2.16) ρ : F0 ÝÑ F1

from the fiber over 0 to the fiber over 1, called parallel transport. A section s : r0, 1s Ñ F of

F Ñ r0, 1s is parallel if ∇B{Bts “ 0.

Lemma 2.17. Let P denote the vector space of parallel sections. Then the restriction map P Ñ F0

which evaluates a parallel section at 0 P r0, 1s is an isomorphism.

Proof. Assume first that F Ñ r0, 1s is trivializable and fix a basis of sections e1, . . . , en, where

n “ rankF . Define functions Ai
j : r0, 1s Ñ C by

(2.18) ∇
d{dtej “ Ai

jei.

(Here and forever we use the summation convention to sum over indices repeated once upstairs and

once downstairs.) Then the section f jej is parallel if and only if

(2.19)
df i

dt
`Ai

jf
j “ 0, i “ 1, . . . , n.

The fundamental theorem of ordinary differential equations asserts that there is a unique solution f j

with given initial values f jp0q, which is equivalent to the assertion in the lemma.

In general, by the local triviality of vector bundles and the compactness of r0, 1s, we can find

0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ ă tN´1 ă tN “ 1 such that F
ˇ

ˇ

rti´1,tis
Ñ rti´1, tis is trivializable. Make the

argument in the preceding paragraph on each interval and compose the resulting parallel transports

to construct (2.16). �

(2.20) Parametrized parallel transport. We turn now to Theorem 2.1.

Proof of Theorem 2.1—smooth case. Let ∇ be a covariant derivative on E Ñ r0, 1s ˆ M . Use

parallel transport along the family of paths r0, 1s ˆ txu, x P M, to construct an isomorphism (2.2).

�
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The ordinary differential equation of parallel transport (2.19) is now a family of equations: the

coefficient functions Ai
j vary smoothly with x. Therefore, we need a parametrized version of the

fundamental theorem of ODEs: we need to know that the solution varies smoothly with parameters.

One reference for a proof is [La, §IV.1].

Proof for continuous bundles

Now we turn to the case when X is a space, and we follow [Ha, §1.2] closely; we defer to that

reference for details. Choices of local trivializations replace choices of local covariant derivatives in

this proof.

Proof of Theorem 2.1—continuous case. Observe first that if ϕ : U ˆ E
–

ÝÝÑ E is a trivialization of

a vector bundle E Ñ U , then for any p, q P U the trivialization gives an isomorphism Ep Ñ Eq of

the fibers which varies continuously in p, q. Thus a trivialization of a vector bundle E Ñ ra, bs over

an interval in R gives an isomorphism Ea Ñ Eb.

Now if E Ñ r0, 1s ˆX is a vector bundle, we can find an open cover of r0, 1s ˆX such that the

bundle is trivializable on each open set; then by compactness of r0, 1s an open cover tUiuiPI of X

such that the bundle is trivializable on each r0, 1s ˆ Ui; and, choosing trivializations, continuous

isomorphism E
ˇ

ˇ

tauˆUi

Ñ E
ˇ

ˇ

tbuˆUi

for any 0 ď a ď b ď 1. (We use the observation in the previous

paragraph.) Choose a partition of unity tρiuiPI subordinate to tUiuiPI , and order the countable set

of functions which are not identically zero: ρ1, ρ2, . . . . Define ψn “ ρ1 ` ¨ ¨ ¨ ` ρn, n “ 1, 2, . . . ,

and set ψ0 ” 0. Let Γn Ă r0, 1s ˆ X be the graph of ψn. The trivialization on r0, 1s ˆ Un gives

an isomorphism ψ̃n : E
ˇ

ˇ

Γn´1

–
ÝÝÑ E

ˇ

ˇ

Γn

. The composition ¨ ¨ ¨ ˝ ψ̃2 ˝ ψ̃1 is well-defined by the local

finiteness of tρiu and gives the desired isomorphism (2.2). �

Remark 2.21. If X is a smooth manifold, then we choose ρi to be smooth and this proof produces

a smooth isomorphism.

Consequences

We prove some standard corollaries of Theorem 2.1.

Corollary 2.22. Let f : r0, 1sˆX Ñ Y be a continuous map between topological spaces, ft : X Ñ Y

its restriction to ttu ˆX, and let E Ñ Y be a vector bundle. Then f˚
0E – f˚

1E.

Proof. Apply Theorem 2.1 to f˚E Ñ r0, 1s ˆX. �

Corollary 2.23. Let X be a contractible space and E Ñ X a vector bundle. Then E Ñ X is

trivializable.

Proof. The identity map idX is homotopic to a constant map c : X Ñ X, and the pullback c˚E Ñ X

is a constant vector bundle with fiber Ec. Now apply Corollary 2.22. �

Corollary 2.24. Let X “ U1 Y U2 be the union of two open sets, Ei Ñ Ui vector bundles, and

α : r0, 1s ˆ U1 Y U2 Ñ Iso
`

E1

ˇ

ˇ

U1XU2

, E2

ˇ

ˇ

U1XU2

˘

a homotopy of clutching data. Then the vector

bundles E0 Ñ X and E1 Ñ X obtained by clutching with α0, α1 are isomorphic.
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Here Isop´,´q is the set of isomorphisms between the indicated vector bundles.

Proof. Clutch over r0, 1s ˆX and apply Theorem 2.1. �

Let Vect–pXq denote the set of isomorphism classes of vector bundles over X. It is a commutative

monoid : the sum operation is defined by direct sum

(2.25) rEs ` rE1s “ rE ‘ E1s

and the zero element is represented by the constant vector bundle with fiber the zero vector space.

In fact, Vect–pXq is a semiring, with multiplication defined by

(2.26) rEs ˆ rE1s “ rE b E1s

Corollary 2.27. Let f : X Ñ Y be a continuous map. Then the induced pullback f˚ : Vect–pY q Ñ

Vect–pXq depends only on the homotopy class of f .

We write Vect
–
R

pXq and Vect
–
C

pXq to indicate the ground field explicitly.

Further applications of partitions of unity

(2.28) Short exact sequences of vector bundles. Let

(2.29) 0 ÝÑ E1 i
ÝÝÑ E

j
ÝÝÑ E2 ÝÑ 0

be a short exact sequence of vector bundles over a space X.3 A splitting of (2.29) is a linear map

E2 s
ÝÑ E such that j ˝ s “ idE2 . A splitting determines an isomorphism

(2.30) E2 ‘ E1 s‘i
ÝÝÝÑ E.

Lemma 2.31. The space of splittings is a nonempty affine space over the vector space HompE2, E1q.

Let’s deconstruct that statement, and in the process prove parts of it. First, if s0, s1 are splittings,

then the difference φ “ s1 ´ s0 is a linear map E2 Ñ E such that j ˝φ “ 0. The exactness of (2.29)

implies that φ factors through a map φ̃ : E2 Ñ E1: in other words, φ “ i ˝ φ̃. This, then, is the

affine structure. But we must prove that the space of splittings is nonempty. First, we observe

that any short exact sequence of vector spaces splits, and so using local trivializations we deduce

that splittings of (2.29) exist locally on X. Now we use a partition of unity argument. Remember

that partitions of unity can be used to average sections of a fiber bundle whose fibers are convex

subsets of affine spaces. Of course, an affine space is a convex subset of itself. I leave the details to

the reader.

3These can be real, complex, or quaternionic.
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(2.32) Inner products on vector bundles. Recall that if E is a complex vector space, then an inner

product is a bilinear map

(2.33) x´,´y : E ˆ E ÝÑ C

which satisfies

xξ̄1, ξ2y “ xξ̄2, ξ1y, ξ1, ξ2 P E,(2.34)

xξ, ξy P R
ą0, ξ P E, ξ ­“ 0 .(2.35)

Here E denotes the conjugate vector space, which is the same abelian group as E but with scalar

multiplication conjugated. The space of inner products on E is a subset of the vector space of

bilinear maps (2.33) which are symmetric in the sense of (2.34); it is the convex cone of elements

which satisfy the positivity condition (2.35).

Lemma 2.36. A complex vector bundle E Ñ X admits a positive definite hermitian inner product.

The space of inner products is contractible.

The proof is similar to that of Lemma 2.31 and is left to the reader. We emphasize the importance

of the convexity of the set of inner products on a single vector space.
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