
Lecture 3: Group completion and the definition of K-theory

The goal of this lecture is to give the basic definition of K-theory. The process of group comple-

tion, which “completes” a commutative monoid M to an abelian group KpMq, loses information

in general. In our topological setting what is retained is the stable equivalence class of a vector

bundle. The notion of stability occurs in many guises, and they are all different facets of K-theory.

We begin with a basic proposition which allows us to replace the noncompact general linear

groups with compact groups of isometries. This is convenient in many arguments. After describing

group completion, we define K-theory and prove one of the basic theorems about the existence of

inverses (Proposition 3.15). The basic building blocks of any cohomology theory is the value of that

theory on spheres, and we prove in Proposition 3.26 that for K-theory those values are homotopy

groups of the stable unitary group (stable orthogonal group in the real case).

A deformation retraction from Gram-Schmidt

Proposition 3.1. There are deformation retractions

(3.2)
GLnC ÝÑ Un

GLnR ÝÑ On

Here Un Ă GLnC is the subgroup of unitary matrices and On Ă GLnR is the subgroup of orthogonal

matrices. The reader should supply pictures for the case n “ 1; the deformation retractions in that

case is the first step in the general proof.

Proof. The proof is the same in both cases; for convenience, we use the notation of the complex

version. Identify GLnC with the space of bases of Cn: the columns of an invertible nˆnmatrix form

a basis. Then Un is the subspace of orthonormal bases. The Gram-Schmidt process, which converts

an arbitrary basis into an orthonormal basis, is a composition of deformation retractions. The first

takes a basis e1, . . . , en and constructs one in which |e1| “ 1. The deformation fixes e2, . . . , en and

at time t P r0, 1s has first vector
`
p1 ´ tq ` t{|e1|

˘
e1. The second step we move e2 only and make it

orthogonal to e1 via the path e2 ´ txe2, e1ye1. Now repeat. Move e2 to have unit norm and then

move e3 to be orthogonal to both e1 and e2. After 2n ´ 1 steps we are done. �

Group completion and universal properties

(3.3) The group completion of a commutative monoid. Recall that a commutative monoid M is

a set with a commutative, associative composition law M ˆ M Ñ M and a unit 0 P M .

Definition 3.4. Let M be a commutative monoid. A group completion pA, iq of M is an abelian

group A and a homomorphism i : M Ñ A of commutative monoids which satisfies the following

K-Theory (M392C, Fall ’15), Dan Freed, September 8, 2015

1



2 D. S. Freed

universal property: If B is an abelian group and f : M Ñ B a homomorphism of commutative

monoids, then there exists a unique group homomorphism f̃ : A Ñ B which makes the diagram

(3.5) M
i

f

A

f̃

B

commute.

The definition does not prove the existence of the group completion—we must provide a proof—

but the universal property does imply a strong uniqueness property. Namely, if pA, iq and pA1, i1q are

group completions of M , then there is a unique isomorphism φ : A Ñ A1 of groups which makes

the diagram

(3.6) M
i

i1

A

φ

A1

commute. The proof uses four applications of the universal property (to f “ i and f “ i1 to

construct the isomorphism and its inverse, and then two more to prove the compositions are identity

maps). To construct an explicit group completion, define A as the quotient of M ˆ M in which

pm1,m2q is identified with pm1 ` n,m2 ` nq for all m1,m2, n P M . Addition in A is defined

component-wise in M ˆ M , the unit is r0, 0s, and ´rm1,m2s “ rm2,m1s. (The square brackets

denote the equivalence class.)

Example 3.7. If M “ Zě0 under addition, then the group completion is Z under addition. If

M “ Zą0 under multiplication, then the group completion is Qą0 under multiplication.

Example 3.8. If M “ Zě0 under multiplication, then the group completion pKpMq, iq is the trivial

group. For there exists x P KpMq such that x ¨ ip0q “ 1, and so for any n P M we have

(3.9) ipnq “
`
x ¨ ip0q

˘
¨ ipnq “ x ¨

`
ip0q ¨ ipnq

˘
“ x ¨ ip0 ¨ nq “ x ¨ ip0q “ 1.

Now apply uniqueness of the factorization.

This example is the first illustration of how information may be lost in passing to the group

completion.

The abelian group KpXq for X compact

Let X be a compact1 Hausdorff space. Let Vect–pXq denote the set of isomorphism classes of

complex vector bundles E Ñ X. Then the operation of direct sum on vector bundles induces a

commutative, associative composition law on Vect–pXq; the equivalence class of the zero vector

bundle is a unit.

1The definitions work for any paracompact Hausdorff X, but for noncompact spaces may give the “wrong” group.
We give a more general definition later.
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Definition 3.10. KpXq is the group completion of the commutative monoid Vect–pXq.

Remark 3.11. For the empty set we have Vect–pHq “ KpHq “ 0, since there is a unique vector

bundle over H.

(3.12) Functorial property. Let Topc denote the category of compact Hausdorff spaces and con-

tinuous maps. Then X ÞÑ KpXq is a contravariant functor from Topc to the category of abelian

groups. For a continuous map f : X Ñ X 1 induces a pullback on bundles. Furthermore, it follows

immediately from Corollary 2.22 that K is a homotopy functor: homotopic maps f0 » f1 induce

equal maps on K-groups.

Remark 3.13. The functor X ÞÑ Vect–pXq to commutative monoids is also a homotopy functor.

However, it is more difficult to compute, which is why we pass to the group completion. The group

completion loses information in principle, but experience shows that the trade-off for increased

computability is a good deal.

(3.14) Real K-theory. The proofs work equally for real vector bundles. The group completion of

Vect
–

R pXq, the commutative monoid of real vector bundles, is denoted KOpXq.

Proposition 3.15. Let X be a compact Hausdorff space and π : E Ñ X a vector bundle. Then

there exists a vector bundle E1 Ñ X such that E ‘ E1 Ñ X is trivializable.

Observe that if X ­“ H, then Z ãÑ KpXq as the group completion of the trivial bundles. Prove this

by choosing applying K to the unique map X Ñ pt and a section pt Ñ X obtained by choosing

a point of X. Proposition 3.15 implies that for any α P KpXq there exists α1 P KpXq such that

α ` α1 “ N for some N P Z.

Proof. Let tU1, . . . , UKu be a finite cover for which the restriction of E to each Ui is trivializable.

Let tρ1, . . . , ρKu be a partition of unity subordinate to tU1, . . . , UKu. For each open set Uj choose

a basis of sections e1j , . . . , e
n
j of E˚

ˇ̌
Ui

Ñ Ui. Then S “ tρ1e
1
1, ρ1e

2
1, . . . , ρ1e

n
1 , ρ2e

1
2, ρ2e

2
2, . . . u is a set

of nK sections of E˚ Ñ X. Let V “ pCSq˚ be dual to the vector space with basis S. Evaluation

defines a map of vector bundles E Ñ V of E to the bundle with constant fiber V , and this is an

injective map of vector bundles. Let E1 “ V {E be the quotient bundle, so that we have a short

exact sequence

(3.16) 0 ÝÑ E ÝÑ V ÝÑ E1 ÝÑ 0

of vector bundles over X. Any short exact sequence of vector bundles splits (2.28), and a splitting

determines a trivialization of E ‘ E1. �

(3.17) Reduced K-theory. Any space X has a unique map X Ñ pt to the 1-point space, and the

induced map Z “ Kpptq Ñ KpXq is injective if X is nonempty, in which case it is the injection

mentioned after the statement of Proposition 3.15. (If X is nonempty the map X Ñ pt admits

sections.)

Definition 3.18. The reduced K-theory group is the quotient rKpXq “ KpXq{Kpptq.
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Proposition 3.19. Let X be a compact Hausdorff space, E,E1 Ñ X vector bundles. Then rEs “

rE1s P rKpXq if and only if E ‘ Cr – E1 ‘ Cr1

for some r, r1.

Proof. If rEs “ rE1s then there exists s P Zě0 and a vector bundle F Ñ X such that E ‘ F –

E1 ‘ F ‘ Cs. By Proposition 3.15 there exists F 1 Ñ X such that F ‘ F 1 – Cr. The forward

implication follows; the backward implication is immediate from Definition 3.18. �

Bundles E,E1 which satisfy the hypothesis of Proposition 3.19 are said to be stably equivalent,

and the reduced K-theory is the group of stable equivalence classes of vector bundles.

Fiber bundles

The definition of a fiber bundle is simpler than that (Definition 1.12) of a vector bundle: the

fibers of a fiber bundle are topological spaces with no additional structure. Thus a vector bundle

is a special case of a fiber bundle.

Definition 3.20. A fiber bundle is a surjective continuous map π : E Ñ X of topological spaces

which admits local trivializations: every point x P X has an open neighborhood U containing x

and a topological space F such that there exists a homeomorphism ϕ : U ˆ F Ñ E
ˇ̌
U
which makes

the diagram

(3.21)

U ˆ F
ϕ

pr1

E
ˇ̌
U

π

U

commute.

Example 3.22. Let π : E Ñ X be a complex vector bundle. There are many associated fiber

bundles; we indicate the total space. PE is a fiber bundle whose fibers are the projectivizations

of the fibers of E. More generally, for k ě 0 we have the bundle of Grassmannians GrkE; the

projectivization is k “ 1. If E has a metric then we can form the sphere bundle SpEq. There is a

bundle of groups AutpEq. If rank: E Ñ Z is the constant function r, then IsopCn, Eq is the bundle

of frames (bases) of E. It is a principal fiber bundle, or principal bundle for short: its fibers are

right torsors over the group GLnC.

Fiber bundles satisfy the homotopy lifting property—they are fibrations. Assume that E, X are

pointed spaces with basepoints e, πpeq “ b. A fibration is characterized by the homotopy lifting

property.

Definition 3.23. p : E Ñ X is a fibration if for every pointed space S, continuous map f : r0, 1s ˆ

S Ñ X and lift f̃0 : S Ñ E of f0 there exists an extension f̃ : r0, 1s ˆ S Ñ E lifting f .

The lift is encoded in the diagram

(3.24)

t0u ˆ S
f̃0

E

p

r0, 1s ˆ S
f

f̃

X
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For a proof that fiber bundles are fibrations, see [Ha2, p. 375].

Recall that a topological space F is m-connected if every continuous map φ : S Ñ F with domain

a CW complex S of dimension ď m is null homotopic.

Proposition 3.25. Let X be a CW complex of dimension ď n, π : E Ñ X be a fiber bundle, and

suppose the fibers of π are pn ´ 1q-connected. Then π admits a section.

Proof. We give the proof for a finite CW complex by inducting over the skeleta Xk Ă X. Since

X0 is a discrete set of points, there is a section of E
ˇ̌
X0

Ñ X0. Now suppose we have a section

over the pk ´ 1q-skeleton and consider a k-cell with characteristic map Φ: Dk Ñ Xk. Since Dk is

contractible there is a trivialization2 F
–

ÝÝÑ Φ˚
E. The section on the pk ´ 1q-skeleton then pulls

back via BΦ to a map Sk´1 Ñ F . By hypothesis this map is null homotopic, so extends over Dk

and, unwinding with the trivialization and Φ, extends the section over this k-cell. �

Bott periodicity

We express the reduced K-theory of spheres as homotopy groups of unitary groups.

Proposition 3.26. Let n be a nonnegative integer and N ě n{2. Then there is an isomorphism

(3.27) πn´1UN ÝÑ rKpSnq.

Proof. We construct (3.27) as a composition of isomorphisms of sets

(3.28) πn´1UN
i

ÝÝÑ rSn´1, UN s
j

ÝÝÑ Vect
–

N pSnq
k

ÝÝÑ rKpSnq

Here Vect
–

N pSnq is the set of isomorphism classes of complex vector bundles of rank N over Sn.

The homotopy group is the set of homotopy classes of pointed maps Sn´1 Ñ UN which send a

basepoint ˚ P Sn´1 to the identity e P UN . The first map i forgets basepoints; its inverse sends a

map f : Sn´1 Ñ UN to fp˚q´1f .

The second map j is the clutching construction (1.16), where we write the sphere as the union

Sn “ DnYSn´1Dn of two closed hemispheres along the equator. The proof that j is an isomorphism

has three ingredients. First, any vector bundle admits a hermitian metric, so the clutching map

can be assumed an isometry. Second, to show j is well-defined we apply Corollary 2.24. We need to

prove that homotopic clutching maps lead to isomorphic bundles. A homotopy of clutching maps

leads to a bundle over r0, 1s ˆ Sn, and then Theorem 2.1 applies. Third, distinct homotopy classes

of clutching maps construct non-isomorphic bundles, which follows from the fact that there is a

unique homotopy class of trivializations on Dn.

To show that k is an isomorphism we need to show that a complex vector bundle E Ñ Sn of

rank ą N is stably equivalent to a bundle of rank N (surjectivity of k) and that stably isomorphic

bundles of rank N are isomorphic (injectivity of k). To prove the first statement it suffices to

construct a nonzero section of E Ñ Sn. For such a section spans a trivial line subbundle L Ă E,

2The homotopy invariance arguments in Lecture 2 apply to general fiber bundles, not just vector bundles.
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and by splitting the short exact sequence 0 Ñ L Ñ E Ñ E{L Ñ 0 we see that E is stably

equivalent to E{L, which has rank one less and we can iterate. To construct a nonzero section, fix

a hermitian metric on E Ñ Sn and consider the sphere bundle SpEq Ñ Sn, a fiber bundle with

fiber S2N´1. If 2N ´ 1 ě n it follows from Proposition 3.25 that SpEq Ñ Sn admits a section.

For the second statement suppose E0, E1 Ñ Sn have rank N and for some r ą 0 there exists

an isomorphism ϕ : E0 ‘ Cr –
ÝÝÑ E1 ‘ Cr. Choose metrics (Lemma 2.36) and homotop ϕ to an

isometry (Proposition 3.1). Consider the fiber bundle3

(3.29) p : IsompE0 ‘ Cr, E1 ‘ Crq ÝÑ SpE1 ‘ Crq

where p maps an isometry to the image of p0, . . . , 0, 1q P Cr, which lies in the unit sphere bundle.

The isometry ϕ defines a section of the bundle IsompE0‘Cr, E1‘Crq Ñ Sn; its composition with p

is a section s of the bundle

(3.30) SpE1 ‘ Crq Ñ Sn.

Now we apply a relative version of Proposition 3.25 to homotop s to a constant section with value

p0, . . . , 0, 1q P Cr: pull (3.30) back over r0, 1s ˆ Sn and extend the section which at t0u ˆ Sn is ϕ

and at t1u ˆ Sn is the constant. Here the base is pn ` 1q-dimensional and the fiber p2pN ` rq ´ 2q-

connected. Finally, use the homotopy lifting property of (3.29) (see (3.24)) to construct a homotopy

of ϕ to a family of isomorphisms which is the identity on the last copy of C, and so restricts to an

isomorphism E0 ‘ Cr´1 –
ÝÝÑ E1 ‘ Cr´1. �

Corollary 3.31. The inclusion UN ãÑ UN`1 induces an isomorphism πn´1UN
–

ÝÝÑ πn´1UN`1 if

N ě n{2.

Remark 3.32. The common value of πn´1UN for N large is the stable homotopy group of the unitary

group. It is the homotopy group of a topological group U “ U8 which can be constructed as the

colimit of U1 ãÑ U2 ãÑ U3 ãÑ ¨ ¨ ¨ . There are prettier geometric models for the same homotopy

type, even Banach Lie group models.

Theorem 3.33 (Bott). There are isomorphisms

(3.34) πn´1U – rKpSnq –

#
Z, n even;

0, n odd.

We will give several proofs of Theorem 3.33 as well as stronger forms of Bott periodicity.

For complex vector bundles and unitary groups the periodicity has period 2. There is an anal-

ogous 8-periodic statement in the real case; the stable unitary group U is replaced by the stable

orthogonal group O.

3The map p is also a map of fiber bundles over Sn.
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Theorem 3.35 (Bott). There are isomorphisms

(3.36) πn´1O – ĄKOpSnq –

$
’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

Z, n ” 0 pmod 8q;

Z{2Z, n ” 1 pmod 8q;

Z{2Z, n ” 2 pmod 8q;

0, n ” 3 pmod 8q;

Z, n ” 4 pmod 8q;

0, n ” 5 pmod 8q;

0, n ” 6 pmod 8q;

0, n ” 7 pmod 8q;

A vocal rendition of Z{2Z , Z{2Z , 0 , Z , 0 , 0 , 0 , Z is known as the Bott song.
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