
Lectures 9 & 10: Fredholm operators

Let X be a compact Hausdorff space. Recall (Definition 3.10) that KpXq is defined as the

group completion of the commutative monoid of equivalence classes of complex (finite rank) vector

bundles on X. So a general element is represented as the formal difference of two vector bundles. In

this lecture we develop another model for K-theory which is more flexible and useful in geometric

applications. For example, it allows us to include Example 1.11, but it will allow quite a bit more.

The basic idea is as follows. Suppose H0, H1 are complex vector spaces and T : H0 Ñ H1 a

linear map. Then there is an exact sequence

(9.1) 0 ÝÑ kerT ÝÑ H0 T
ÝÝÑ H1 ÝÑ cokerT ÝÑ 0

The exactness means that, choosing splittings, there is an isomorphism

(9.2) H0 ‘ cokerT – H1 ‘ kerT,

and so formally we identify the difference H1 ´ H0 with kerT ´ cokerT in Kpptq – Z. This

equality of dimensions is a basic theorem in linear algebra. Now imagine that we have a continuous

family of linear operators parametrized by X, and perhaps the vector spaces H0, H1 also vary in

a locally trivial way and so form vector bundles over X. Then their formal difference defines an

element of KpXq. The kernels and cokernels of T , however, in general are not locally trivial. In

fact their dimensions typically jump. (As a simple example take X “ R, H0 “ H1 “ C, and Tx the

linear map multiplication by x P R.) In some sense we control the jumping by considering not the

kernel and cokernel, but the entire vector spaces H0, H1. The new idea is to allow H0, H1 to be

infinite dimensional while requiring that kerT, cokerT be finite dimensional. An operator with this

property is called Fredholm. In continuous families there is jumping of kernels and cokernels, but

that is controlled by by considering finite dimensional subspaces containing the kernels where there

is no jumping. In this way we make sense of the formal difference between kernels and cokernels.

A canonical open cover of the space of Fredholm operators implements this idea universally.

The infinite dimensional vector spaces H0, H1 have a topology, and there are many species of

infinite dimensional topological vector spaces. We use Hilbert spaces: the topology is induced from

a Hermitian metric, and this retains the usual Euclidean notions of length and angle. The theory is

equally smooth for Banach spaces [Pa1, §VII]. We also need to topologize the space of continuous

linear maps HompH0, H1q. In this lecture we use the norm topology, which makes this a Banach

space. However, other choices are possible and we will see later that the compact-open topology

is a more flexible and applicable choice [ASe1], [FM, Appendix B]. We remark that the Hilbert

spaces H0, H1 needn’t be infinite dimensional, though much of the theory becomes trivial if not.

Some functional analysis

We remind of some basics. Let H0, H1 be Hilbert spaces. A linear map T : H0 Ñ H1 is

continuous if and only if it is bounded, i.e., there exists C ą 0 such that

(9.3) }Tξ} ď C}ξ}, ξ P H0.
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In that case the infimum over all C which satisfy (9.3) is the operator norm }T }. Let HompH0, H1q

denote the linear space of continuous linear maps. The operator norm is complete and makes

HompH0, H1q a Banach space. The operator norm satisfies

(9.4) }T2 ˝ T1} ď }T1} }T2}

whenever the composition makes sense. Let HompH0, H1qˆ Ă HompH0, H1q denote the subspace

of invertible linear operators.

Theorem 9.5.

(i) If T : H0 Ñ H1 is continuous and bijective, then T´1 is continuous.

(ii) HompH0, H1qˆ Ă HompH0, H1q is an open subspace.

(iii) HompH0, H1qˆ is contractible in the norm topology.

(i) is the open mapping theorem. (ii) is proved by constructing a ball of invertible operators around

any given invertible using the power series for 1{p1`xq. (iii) is a theorem of Kuiper [Ku] which we

prove soon.

We remark that if V Ă H is a finite dimensional subspace of a Hilbert space H, then V is closed

and V K is a closed complement. For any closed subspace V Ă H the quotient H{V inherits a

Hilbert space structure by identifying it with V K via the quotient map V K
ãÑ H ։ H{V .

Fredholm operators

Definition 9.6. Let H0, H1 be Hilbert spaces. A continuous linear map T : H0 Ñ H1 is Fredholm

if its range T pH0q Ă H1 is closed and if kerT, cokerT are finite dimensional. Let FredpH0, H1q Ă

HompH0, H1q denote the subset of Fredholm operators, topologized with the norm topology.

The closed range condition is redundant [Pa1, §VII], but as cokerT is not Hausdorff if T is not

closed range it seems sensible to include it as part of the definition. The numerical index of a

Fredholm operator is defined as

(9.7) indT “ dimkerT ´ dim cokerT.

Remark 9.8. From some point of view this definition has the wrong sign! For if H0, H1 are finite

dimensional we identify T : H0 Ñ H1 as an element of H1 b pH0q˚. It is the domain which is

dualized, not the codomain, so we expect the minus sign in (9.7) on the subspace kerT of the

domain. This sign mistake causes minor headaches in certain parts of index theory; for example,

see [Q, §2].

We give several examples.

Example 9.9. If H is separable it has a countable basis e1, e2, . . . in the sense that any element

of H can be written as
ř

n anen where the complex coefficients satisfy
ř

n |an|2 ă 8. For each k P Z

define the shift operator Tk which on the basis is

(9.10) Tkpejq “

#
ej´k, j ą k;

0, j ď k.
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Then Tk is Fredholm of index k. This shows there exist Fredholm operators of any index.

Example 9.11. The differential operator d{dx is Fredholm acting on complex-valued functions on

the circle S1 with coordinate x. We use Hilbert space completions—Sobolev spaces—of the space

of smooth functions:

(9.12)
d

dx
: L2

1pS1q ÝÑ L2pS1q

The index is 0: the kernel and cokernel are each 1-dimensional. This example generalizes to elliptic

operators on compact manifolds.

The canonical open cover

Recall that a linear map T : H0 Ñ H1 is transverse to a subspace W Ă H1, written T &́ W ,

if T pH0q ` W “ H1. Fix Hilbert spaces H0, H1. For each finite dimensional subspace W Ă H1

define

(9.13) OW “ tT P FredpH0, H1q : T &́ W u.

Observe that OW Ă OW 1 if W Ă W 1.

Proposition 9.14.

(i) OW Ă HompH0, H1q is open. FredpH0, H1q Ă HompH0, H1q is open.

(ii) tOW uW is an open cover of FredpH0, H1q.

(iii) If X is compact and T : X Ñ FredpH0, H1q continuous, then T pXq Ă OW for some finite

dimensional W Ă H1.

Proof. Fix T0 P OW . Observe that T &́ W if and only if H0 T
ÝÝÑ H1

։ H1{W is surjective, and

the latter is true if the composition

(9.15) pT´1
0 W qK H0 T

H1 H1{W

is an isomorphism. That is true for T “ T0, and since (Theorem 9.5(ii)) isomorphisms are open

in Hom
`
T´1
0 W,H1{W

˘
and the map HompH0, H1q Ñ Hom

`
pT´1

0 W,H1{W
˘
is continuous, the

space of transverse maps (9.13) is open as well. This proves (i). That every Fredholm operator

is transverse to a finite dimensional subspace follows directly from the finite dimensionality of its

cokernel, which proves (ii). For (iii) the cover tT´1OW uW of X has a finite subcover indexed by

finite dimensional subspaces W1,W2, . . . ,WN . Define W “ W1 ` W1 ` ¨ ¨ ¨ ` WN . �

On OW we have the parametrized family of vector spaces KW Ñ OW whose fiber at T P OW is

the finite dimensional subspace T´1W Ă H0.

Lemma 9.16. KW Ñ OW is a locally trivial vector bundle.
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Proof. Fix T0 P OW and let p : H0 Ñ T´1
0 W be orthogonal projection. On the open set U of T P OW

for which (9.15) is an isomorphism the restriction of p to T´1W is an isomorphism T´1W Ñ T´1
0 W ,

as is easily verified. Topologize KW as a subspace of HompH0, H1q ˆ H0. Since the map pT, ξq ÞÑ

pT, ppξqq is continuous, we have a local trivialization of the restriction of KW Ñ OW to U with the

constant vector bundle with fiber T´1
0 W . �

Corollary 9.17. The function

(9.18)
ind: FredpH0, H1q ÝÑ Z

T ÞÝÑ dimkerT ´ dim cokerT

is locally constant.

Proof. Observe that for T P OW the sequence

(9.19) 0 ÝÑ kerT ÝÑ T´1W
T

ÝÝÑ W ÝÑ cokerT ÝÑ 0

is exact, from which

(9.20) indT “ dimkerT ´ dim cokerT “ dimT´1W ´ dimW.

The right hand side is locally constant on OW , by Lemma 9.16. �

Fredholms and the K-theory of a compact space

As a preliminary we prove that the composition of Fredholms is Fredholm and that the numerical

index behaves well under composition. For convenience we now consider Fredholm operators on a

fixed Hilbert space H.

Lemma 9.21. If T1, T2 P FredpHq, then T2 ˝ T1 P FredpHq and indT2 ˝ T1 “ indT1 ` indT2.

Proof. If T2T1 &́ W , then T2 &́ W and T1 &́ T´1
2 W . Thus

indT2T1 “ dimT´1
1 T´1

2 W ´ dimW

“ dimT´1
1 T´1

2 W ´ dimT´1
2 W ` dimT´1

2 W ` dimW

“ indT1 ` indT2.

(9.22)

�

Suppose X is compact Hausdorff and T : X Ñ FredpHq is continuous. By Proposition 9.14(iii)

there exists a finite dimensional subspace W Ă H such that Tx &́ W for all x P X. Then

T ˚KW Ñ X is a vector bundle, and we define

(9.23) rT ˚KW s ´ rW s P KpXq.
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Theorem 9.24 (Atiyah-Jänich). Assume X is compact Hausdorff. Then T ÞÑ rT ˚KW s ´ rW s is

a well-defined map

(9.25) i : rX,FredpHqs ÝÑ KpXq

which is an isomorphism of abelian groups.

The map i sends a family of Fredholm operators to its index in K-theory.

Corollary 9.26. The numerical index

(9.27) ind: π0 FredpHq ÝÑ Z

is an isomorphism.

This follows from Theorem 9.24 by taking X “ pt.

Proof. We first prove that i is well-defined. If W1,W2 are finite dimensional subspaces for which

Tx &́ Wi for all x P X, then the same holds for W1 ` W2, so it suffices to check well-definedness

of (9.23) for subspaces W Ă W 1. In that case there is a short exact sequence

(9.28) 0 ÝÑ T ˚KW ÝÑ T ˚KW 1 ÝÑ W 1{W ÝÑ 0

of vector bundles over X. Choosing a splitting we construct an isomorphism W 1{W ‘ T ˚KW –

T ˚KW 1 and then, adding W to both sides, we obtain an isomorphism W 1 ‘T ˚KW – W ‘T ˚KW 1 .

It follows that rT ˚KW 1s ´ rW 1s “ rT ˚KW s ´ rW s P KpXq.

To check that the index (9.25) is invariant under homotopy, suppose that H : r0, 1s ˆ X Ñ

FredpHq is a continuous map. Choose W Ă H such that Hpt,xq &́ W for all pt, xq. Then by

Theorem 2.1 the restrictions of H˚KW Ñ r0, 1s ˆ X to the ends of r0, 1s ˆ X are isomorphic, and

it follows that the K-theory classes (9.23) on the two ends agree.

The domain rX,FredpHqs of (9.25) is a monoid by pointwise composition. To see that i is a

homomorphism of monoids, begin as in the proof of Lemma 9.21 by choosing W Ă H such that

pT2T1qx &́ W for all x P X. Let E1
x “ pT2q´1

x pW q. For each x0 P X there is an open neighborhood

of x P X such that the orthogonal projection of E1
x to E1

x0
is an isomorphism and pT1qx &́ E1

x0
.

Cover X by a finite set of such neighborhoods and let V Ă H be a subspace containing the sum of

the corresponding E1
x0

such that pT1qx &́ V for all x P X. Let Ex denote the orthogonal projection

of E1
x to V and define F Ñ X by Fx “ T´1

1 Ex. Note that orthogonal projection is an isomorphism

E1 –
ÝÝÑ E. Compute

ipT2T1q “ rpT2T1q˚KW s ´ rW s

“ rpT2T1q˚KW s ´ rT ˚
2 KW s ` ipT2q

“ rF s ´ rEs ` ipT2q

“ rT ˚
1 KV s ´ rV s ` ipT2q

“ ipT1q ` ipT2q.

(9.29)
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In the penultimate step we use the exact sequence 0 Ñ F Ñ T ˚
1 KV Ñ V {E Ñ 0, analogous

to (9.28).

To prove that i is surjective observe from Proposition 3.15 that any element of KpXq has the

form rEs ´ N for some vector bundle E Ñ X and N P Z
ě0. By Example 9.9 there is a constant

family of Fredholm operators whose index is N . Embed E ãÑ E in a trivial bundle (Proposition 3.15

again) and define px P EndE as orthogonal projection with kernel Ex. Finally, embed E ãÑ H and

extend px to be the identity on E
K.

To prove that i is injective, if ipT q “ 0 for T : X Ñ FredpHq, then for some finite dimensional

vector space E there exists an isomorphism

(9.30) T ˚KW ‘ E
ϕ

ÝÝÑ W ‘ E

of vector bundles over X. The fiber of T ˚KW at x P X is T´1
x W . Add to (9.30) the isomorphism

Tx : pT´1
x W qK Ñ H ։ WK to obtain the family of isomorphisms

(9.31) H ‘ E
Φx“Tx`ϕx

ÝÝÝÝÝÝÝÝÝÑ H ‘ E.

Then t ÞÑ T ` tϕ is a homotopy from T to this family of invertibles. By Kuiper’s Theorem 9.5(iii)

the latter is homotopically trivial. (To obtain operators on H rather than H ‘ E conjugate by an

isomorphism H Ñ H ‘ E.)

Since i is a bijective homomorphism of monoids, and KpXq is an abelian group, it follows that

rX,FredpHqs is also an abelian group and i is an isomorphism of abelian groups. �

Further remarks

We will have more to say about Fredholm operators in future lectures. For now a few comments

will suffice.

(9.32) Invertibles as a fat basepoint. In homotopy theory we work with pointed topological spaces,

that is, topological spaces with a distinguished basepoint. For sure FredpHq has one—the identity

operator—though if H0 ­“ H1 then FredpH0, H1q does not have a distinguished basepoint. In both

cases there is a natural contractible subspace, the subspace of invertible operators. So we can work

with the pair pFredpHq,FredpHqˆq in lieu of a pointed space.

(9.33) Relative K-theory. In this spirit if pX,Aq is a pair of spaces and T : X Ñ FredpHq such

that Ta is invertible for all a P A, then T defines an element in the relative K-theory group KpX,Aq.

(Take this as the definition of relative K-theory.) The support of a Fredholm family is the set of

points at which the Fredholm operator fails to be invertible. The family of linear operators in

Example 1.11 is trivially Fredholm, since they act on a finite dimensional space, and the support

is the set of eigenvalues of the given operator.
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(9.34) Topology of FredpHq. By Corollary 9.26 we can write

(9.35) FredpHq “
ž

n

FredpnqpHq

as the disjoint union of connected spaces of Fredholms of a fixed index. The components are all

homeomorphic, and the underlying homotopy type is that of BU , the classifying space of the group

described in Remark 3.32.

Half of a cohomology theory (Bonus material)

In lecture we covered these ideas following [A1, Ha] in the context of compact Hausdorff spaces.

At this point we have defined a map

(9.36) X ÞÝÑ KpXq “ rX,FredpHqs

which attaches an abelian group to every space X. For compact Hausdorff spaces Theorem 9.24

asserts that this is the same as Definition 3.10. It is conventional to restrict to a category of “nice”

spaces, such as CW complexes or compactly generated spaces. We will see that for free we obtain

half of a cohomology theory through suspensions and loopings, but we need new ideas to recover

the other half. For K-theory that idea is Bott periodicity (Theorem 3.33, Theorem 3.35) In the

next several lectures we give a proof of Bott periodicity in the context of Fredholm operators.

A reference for this section is [A1].

(9.37) Pointed spaces. Let S denote a convenient category of spaces (CW complexes, compactly

generated spaces), S˚ the category of pointed spaces—spaces with a (nondegenerate) basepoint—

and S2 the category of (excisive) pairs. There are functors

(9.38)

S2 S˚

pX,Aq X{A

pX, tx0uq X

where in the last formula X has basepoint x0. Note that unpointed spaces S map to S2 via

X ÞÑ pX,Hq, and

(9.39) X{H “ X` “ X > t˚u

is the union of X with a disjoint basepoint. Recall that the suspension ΣX of a pointed space is

the smash product S1 ^ X.
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Definition 9.40. A cohomology theory is a sequence of abelian group-valued functors

(9.41) rKn : Sop˚ ÝÑ AbGp,

one for each n P Z, and a sequence of natural transformations

(9.42) rKnpXq ÝÑ rKn`1pΣXq, X P S˚,

such that

(i) if ft : X Ñ Y is a homotopy, then

(9.43) f˚
0 “ f˚

1 :
rKnpY q ÝÑ rKnpXq;

(ii) for f : X Ñ Y with mapping cone Cf and j : Y ãÑ Cf the inclusion, the sequence

(9.44) rKnpCf q
j˚

ÝÝÝÑ rKnpY q
f˚

ÝÝÝÑ rKnpXq

is exact;

(iii) the suspension homomorphisms (9.42) are isomorphisms; and

(iv) if X “
Ž
αPA

Xα, then the natural map

(9.45) rKnpXq ÝÑ
ź

αPA

rKnpXαq

is an isomorphism.

(9.46) Nonpositive degree K-theory. From the definition

(9.47) K0pXq “ rX,FredpHqs

developed earlier in this lecture we extract the reduced cohomology

(9.48) rK0pXq “
“
pX,x0q, pFredpHq, idHq

‰

of a pointed space, where we use the identity operator as the basepoint in the space of Fredholms.

Then for nonnegative integers n P Z
ě0 define

(9.49) rK´npXq “ rK0pΣnXq “ rΣnX,FredpHqs “ rX,Ωn FredpHqs,

where X is pointed and maps and homotopies preserve basepoints. Just as the space of Fredholms is

the classifying space (9.47) for K0, its nth loop space is the classifying space for K´n. To define Kn

for n ą 0 it is clear that we need deloopings of FredpHq. That is the challenge for any cohomology

theory.

Remark 9.50. For example, we can define H0pX;Zq “ rX,Zs, where Z is a discrete space with

basepoint 0 P Z. Its loop spaces are all trivial—they consist of one point—and so H´npX;Zq “ 0

for n ą 0. But this gives no clue how to define HnpX;Zq for n ą 0.



Topics in Geometry and Physics: K-Theory (Lecture 9) 9

(9.51) Bott periodicity. For K-theory the groups rK´npXq, n ą 0, are periodic and so it is easy

to extend to positive degree. We sketch the proofs in the next few lectures for both the real and

complex cases.

Theorem 9.52 (Bott). There are homotopy equivalences Ω2 FredpHq » FredpHq and Ω8 FredpHRq »

FredpHRq.

(9.53) Suspensions as Thom complexes. We give an alternative picture of suspension and a twisted

version. Let X be an unpointed space. Its nth suspension is

(9.54) ΣnX` “ X ˆ Sn
L
X ˆ t˚u » X ˆ R

n
L
X ˆ

`
R
nzBrp0q

˘
,

where Brp0q Ă R
n is the open ball of radius r ą 0.

The construction generalizes to twisted suspensions, replacing X ˆ R
n by a real vector bundle

V Ñ X. Fix an inner product on the bundle and also fix a real number r ą 0. Define Brp0q Ă V

as the open subspace of vectors of norm strictly less than r. The quotient space

(9.55) XV “ V {
`
V zBrp0q

˘

is the Thom complex of V , and up to homeomorphism it is independent of the inner product and

choice of r ą 0. Note that XV has a natural basepoint.
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