Problem Set # 10

M392C: Riemannian Geometry

- 1. Let X be a complex manifold and $P \to X$ a holomorphic principal $GL_m\mathbb{C}$ -bundle. Show that a $GL_m\mathbb{C}$ -invariant horizontal distribution $H \subset TP$ is invariant under the complex structure I if and only if the corresponding connection form $\Theta \in \Omega^1(\mathfrak{gl}_m\mathbb{C})$ is of type (1,0).
- 2. Let X be a smooth manifold with an almost complex structure, i.e., a section I of $\operatorname{End}(TX) \to X$ which satisfies $I^2 = -\operatorname{id}_{TX}$. The +i-eigenspace of I is a complex distribution $T_{(1,0)}X \subset TX \otimes \mathbb{C}$. Its Frobenius tensor Φ is a (2,0)-form with values in $T_{(0,1)}X = \overline{T_{(1,0)}X}$. Assume that $\Phi = 0$. Let ∇ be a torsionfree covariant derivative on $TX \to X$. (Why does one exist?) For (real) vector fields ξ, η set

$$\nabla'_{\xi}\eta = \nabla_{\xi}\eta - (\nabla_{I\eta}I)\xi - I\big((\nabla_{\eta}I)\xi\big) - 2I\big((\nabla_{\xi}I)\eta\big).$$

Prove that ∇' is a torsionfree covariant derivative which satisfies $\nabla' I = 0$.

- 3. Let X^{2m} be a complex manifold with complex structure I and suppose $\langle -, \rangle$ is a Riemannian metric on X. Assume I is orthogonal. Let ω be the associated 2-form. Here are two more proofs that $d\omega = 0$ implies X is Kähler.
 - (a) Show that ω has type (1, 1).
 - (b) Let ∇ denote the Levi-Civita covariant derivative on $TX \to X$. Show that for vector fields ξ, η, ζ we have

$$2\langle (\nabla_{\xi}I)\eta,\zeta\rangle = 3d\omega(\xi,I\eta,I\zeta) - 3d\omega(\xi,\eta,\zeta).$$

Conclude that X is Kähler if $d\omega = 0$.

(c) Let $\theta^1, \ldots, \theta^{2m}$ be a local orthonormal coframing adapted to *I*: the dual framing ξ_1, \ldots, ξ_{2m} satisfies $\xi_2 = I\xi_1, \xi_4 = I\xi_3$, etc. Show that

$$\omega = \theta^1 \wedge \theta^2 + \theta^3 \wedge \theta^4 + \cdots$$

Let Θ^i_j denote the Levi-Civita connection forms, characterized by the equations

$$d\theta^{i} + \Theta^{i}_{j} \wedge \theta^{j} = 0$$
$$\Theta^{i}_{j} + \Theta^{j}_{i} = 0$$

Show that I is parallel if and only if $\Theta I = I\Theta$ if and only if

$$\Theta_2^3 + \Theta_1^4 = 0$$
$$\Theta_1^3 - \Theta_2^4 = 0$$
$$\dots$$

Prove that this is satisfied if and only if $d\omega = 0$.

- 4. (a) Let V be an m-dimensional complex vector space with a Hermitian metric. Its automorphisms group is denoted U(V). Let SU(V) denote the closed Lie subgroup of automorphisms which act trivially on $\bigwedge^m V^*$. Show that these are precisely the automorphisms of determinant one. An element of $\bigwedge^m V^*$ is a *complex volume form* on V: it attaches a complex number to the complex parallelepiped spanned by m (ordered) vectors in V.
 - (b) Let X^{2m} be a Riemannian manifold whose holonomy group is a subgroup of SU_m . Construct a nonzero parallel complex volume form $\Omega \in \Omega_X^{m,0}$. Prove that $d\Omega = 0$.