Problem Set \# 10

M392C: Riemannian Geometry

1. Let X be a complex manifold and $P \rightarrow X$ a holomorphic principal $G L_{m} \mathbb{C}$-bundle. Show that a $G L_{m} \mathbb{C}$-invariant horizontal distribution $H \subset T P$ is invariant under the complex structure I if and only if the corresponding connection form $\Theta \in \Omega^{1}\left(\mathfrak{g l}_{m} \mathbb{C}\right)$ is of type $(1,0)$.
2. Let X be a smooth manifold with an almost complex structure, i.e., a section I of $\operatorname{End}(T X) \rightarrow X$ which satisfies $I^{2}=-\mathrm{id}_{T X}$. The $+i$-eigenspace of I is a complex distribution $T_{(1,0)} X \subset T X \otimes \mathbb{C}$. Its Frobenius tensor Φ is a (2,0)-form with values in $T_{(0,1)} X=\overline{T_{(1,0)} X}$. Assume that $\Phi=0$. Let ∇ be a torsionfree covariant derivative on $T X \rightarrow X$. (Why does one exist?) For (real) vector fields ξ, η set

$$
\nabla_{\xi}^{\prime} \eta=\nabla_{\xi} \eta-\left(\nabla_{I \eta} I\right) \xi-I\left(\left(\nabla_{\eta} I\right) \xi\right)-2 I\left(\left(\nabla_{\xi} I\right) \eta\right)
$$

Prove that ∇^{\prime} is a torsionfree covariant derivative which satisfies $\nabla^{\prime} I=0$.
3. Let $X^{2 m}$ be a complex manifold with complex structure I and suppose $\langle-,-\rangle$ is a Riemannian metric on X. Assume I is orthogonal. Let ω be the associated 2 -form. Here are two more proofs that $d \omega=0$ implies X is Kähler.
(a) Show that ω has type $(1,1)$.
(b) Let ∇ denote the Levi-Civita covariant derivative on $T X \rightarrow X$. Show that for vector fields ξ, η, ζ we have

$$
2\left\langle\left(\nabla_{\xi} I\right) \eta, \zeta\right\rangle=3 d \omega(\xi, I \eta, I \zeta)-3 d \omega(\xi, \eta, \zeta)
$$

Conclude that X is Kähler if $d \omega=0$.
(c) Let $\theta^{1}, \ldots, \theta^{2 m}$ be a local orthonormal coframing adapted to I : the dual framing $\xi_{1}, \ldots, \xi_{2 m}$ satisfies $\xi_{2}=I \xi_{1}, \xi_{4}=I \xi_{3}$, etc. Show that

$$
\omega=\theta^{1} \wedge \theta^{2}+\theta^{3} \wedge \theta^{4}+\cdots
$$

Let Θ_{j}^{i} denote the Levi-Civita connection forms, characterized by the equations

$$
\begin{aligned}
d \theta^{i}+\Theta_{j}^{i} \wedge \theta^{j} & =0 \\
\Theta_{j}^{i}+\Theta_{i}^{j} & =0
\end{aligned}
$$

Show that I is parallel if and only if $\Theta I=I \Theta$ if and only if

$$
\begin{aligned}
& \Theta_{2}^{3}+\Theta_{1}^{4}=0 \\
& \Theta_{1}^{3}-\Theta_{2}^{4}=0
\end{aligned}
$$

Prove that this is satisfied if and only if $d \omega=0$.
4. (a) Let V be an m-dimensional complex vector space with a Hermitian metric. Its automorphism group is denoted $U(V)$. Let $S U(V)$ denote the closed Lie subgroup of automorphisms which act trivially on $\bigwedge^{m} V^{*}$. Show that these are precisely the automorphisms of determinant one. An element of $\bigwedge^{m} V^{*}$ is a complex volume form on V : it attaches a complex number to the complex parallelepiped spanned by m (ordered) vectors in V.
(b) Let $X^{2 m}$ be a Riemannian manifold whose holonomy group is a subgroup of $S U_{m}$. Construct a nonzero parallel complex volume form $\Omega \in \Omega_{X}^{m, 0}$. Prove that $d \Omega=0$.

