Problem Set # 11

M392C: Riemannian Geometry

- 1. Let X be a Kähler manifold, I the complex structure on TX, and R its Riemann curvature tensor.
 - (a) Show that for real tangent vecturs ξ, η at some $x \in X$ we have $R(I\xi, I\eta) = R(\xi, \eta)$. Conclude that R is of type (1, 1).
 - (b) Prove that $R(\xi, \eta)$ commutes with *I*. Show that the resulting complex endomorphism of the (1,0) tangent space is skew-Hermitian.
 - (c) Choose a *complex* basis e_1, \ldots, e_m of the (1, 0) tangent space and let $\overline{e_1}, \ldots, \overline{e_m}$ be the complex conjugate basis of the (0, 1) tangent space. Write the curvature tensor $R^a_{b,c,d}$ in that basis, where the indices a, b, c, d each take on the 2m values $\mu, \bar{\mu} = 1, \ldots, m$. Which R^a_{bcd} are possibly nonzero? (For example, $R^a_{b\mu\nu} = 0$.)
- 2. Let $P \to X$ be a principal G-bundle with connection Θ and curvature Ω .
 - (a) Define the *adjoint bundle* $\mathfrak{g}_P \to X$ as the vector bundle associated to the adjoint representation Ad: $G \to \operatorname{Aut}(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of G. Show that $\mathfrak{g}_P \to X$ is a bundle of Lie algebras.
 - (b) Interpret Ω as a 2-form on X with values in the adjoint bundle, i.e., an element of $\Omega^2_X(\mathfrak{g}_P)$.
 - (c) The adjoint bundle has a covariant derivative ∇ induced from the connection Θ . Use it to construct an operator

$$d_{\nabla} \colon \Omega^q_X(\mathfrak{g}_P) \longrightarrow \Omega^{q+1}_X(\mathfrak{g}_P)$$

which agrees with ∇ for q = 0. (Hint: Write an element of $\Omega_X^q(\mathfrak{g}_P)$ as a sum of terms ωs , where $\omega \in \Omega_X^q$ and s is a section of $\mathfrak{g}_P \to X$.)

- (d) Prove the Bianchi identity $d_{\nabla}\Omega = 0$.
- (e) Now regard Ω as an element of $\Omega_P^2(\mathfrak{g})$. Compute $d\Omega$. How is the equation you get related to (d).
- (f) What does the Bianchi identity say if G is abelian? What is the adjoint bundle in that case? Try the specific cases $G = \mathbb{T}$ and $G = \mathbb{C}^{\times}$.
- (g) Prove that the Ricci form of a Kähler manifold (defined how?) is closed.
- 3. Let X be a complex and z^1, \ldots, z^m a local holomorphic coordinate system.
 - (a) $K: X \to \mathbb{R}$ a real-valued function. Define $\omega = 2i\partial\partial K$. Write it in the local coordinates as $\omega = g_{\mu\bar{\nu}}dz^{\mu}\overline{dz^{\nu}}$. Show that $(g_{\mu\bar{\nu}})$ defines a hermitian form. If it is positive definite, then show that it is a Kähler metric. In this case K is called a Kähler potential. It is a theorem that on any Kähler manifold there exist local Kähler potentials.

- (b) Show that the Ricci form is $\rho = -i\partial \bar{\partial} \log \det(g_{\mu\bar{\nu}})$. Deduce again $d\rho = 0$.
- (c) Another Kähler form in the same Kähler class has the form $\omega' = \omega + 2i\partial\bar{\partial}\phi$ for some (global) real function ϕ . Similarly, another possible Ricci form is $\rho' = \rho i\partial\bar{\partial}f$ for a real function f. Write

$$(\omega')^m = F\omega^m$$

for a positive function F. Deduce that ρ' is the Ricci form of ω' if and only if $A = F/e^f$ is constant (assuming X is connected.)

(d) Show that the displayed equation above is

$$\det\left(g_{\mu\bar{\nu}} + \frac{\partial^2 \phi}{\partial z^{\mu} \partial \overline{z^{\nu}}}\right) = Ae^f \det(g_{\mu\bar{\nu}}).$$

The Calabi conjecture involves solving this complex Monge-Ampère equation.

4. Does the homogeneous manifold $GL_{2m}\mathbb{R}/GL_m\mathbb{C}$ admit a $GL_{2m}\mathbb{R}$ -invariant Riemannian metric?