Problem Set # 12

M392C: Riemannian Geometry

- 1. In this exercise you will construct the Grassmann manifold and tautological vector bundles over it. Let V be a real vector space of dimension $n \in \mathbb{Z}^{\geq 0}$. Define the Grassmannian $Gr_k(V)$, $0 \leq k \leq n$, to be the set of all k-dimensional subspaces of V.
 - (a) Introduce a locally Euclidean topology on $Gr_k(V)$. Here is one way to do so: Suppose $W \in Gr_k(V)$ is a k-dimensional subspace and C an (n-k)-dimensional subspace such that $W \oplus C = V$. (We say that C is a complement to W in V.) Then define a subset $\mathcal{O}_{W,C} \subset Gr_k(V)$ by

 $\mathcal{O}_{W,C} = \{ W' \subset V : W' \text{ is the graph of a linear map } W \to C \}.$

Show that $\mathcal{O}_{W,C}$ is a vector space, so has a natural topology. Prove that it is consistent to define a subset $U \subset Gr_k(V)$ to be open if and only if $U \cap \mathcal{O}_{W,C}$ is open for all W, C. Note that $\{\mathcal{O}_{W,C}\}$ is a cover of $Gr_k(V)$. (For example, show that $W \in \mathcal{O}_{W,C}$.)

- (b) Use the open sets $\mathcal{O}_{W,C}$ to construct an atlas on $Gr_k(V)$. That is, check that the transition functions are smooth. (Hint: You may first want to check it for two charts with the same W but different complements. Then it suffices to check for two different W which are transverse, using the same complement for both.)
- (c) Now construct the complex Grassmannian: take V complex and use only complex subspaces.
- (d) Prove that G = GL(V) acts smoothly and transitively on $Gr_k(V)$ in both the real and complex cases. What is the subgroup H which fixes $W \in Gr_k(V)$?
- (e) Is G/H a symmetric space? Can you express the Grassmannian as a symmetric space G'/H' for another Lie group G' and closed Lie subgroup $H' \subset G'$? Explicitly identify the complement \mathfrak{m} in the Lie algebra.
- (f) Construct a short exact sequence of vector bundles

$$0 \longrightarrow S \longrightarrow \underline{V} \longrightarrow Q \longrightarrow 0$$

over $Gr_k(V)$ in which rank S = k, rank Q = n - k, and $\underline{V} = Gr_k(V) \times V$ is the bundle with constant fiber V.

(g) Construct an isomorphism $TGr_k(V) \to Hom(S,Q)$.

- 2. For each of the following pairs $H \subset G$ of Lie groups, explore the geometry of the symmetric space G/H. For example, identify $\mathfrak{m} \subset \mathfrak{g}$ such that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$. Identify the corresponding involutions on G and \mathfrak{g} . Construct the Riemannian metric. Identify the Riemann curvature tensor. Does G/H have constant curvature? Is it an Einstein manifold?
 - (a) $SU_n \subset SU_n \times SU_n \ (n \ge 2)$
 - (b) $SO_n \subset SO_{n+1} \ (n \ge 2)$
 - (c) $SO_n \subset SO_{1,n}^0$ $(n \ge 2;$ the superscript denotes the identity component)
 - (d) $Sp_p \times Sp_q \subset Sp_{p+q} \ (p,q \ge 1)$