Problem Set \# 12

M392C: Riemannian Geometry

1. In this exercise you will construct the Grassmann manifold and tautological vector bundles over it. Let V be a real vector space of dimension $n \in \mathbb{Z}^{\geq 0}$. Define the Grassmannian $G r_{k}(V), 0 \leq k \leq n$, to be the set of all k-dimensional subspaces of V.
(a) Introduce a locally Euclidean topology on $G r_{k}(V)$. Here is one way to do so: Suppose $W \in$ $G r_{k}(V)$ is a k-dimensional subspace and C an $(n-k)$-dimensional subspace such that $W \oplus C=$ V. (We say that C is a complement to W in V.) Then define a subset $\mathcal{O}_{W, C} \subset G r_{k}(V)$ by

$$
\mathcal{O}_{W, C}=\left\{W^{\prime} \subset V: W^{\prime} \text { is the graph of a linear map } W \rightarrow C\right\} .
$$

Show that $\mathcal{O}_{W, C}$ is a vector space, so has a natural topology. Prove that it is consistent to define a subset $U \subset G r_{k}(V)$ to be open if and only if $U \cap \mathcal{O}_{W, C}$ is open for all W, C. Note that $\left\{\mathcal{O}_{W, C}\right\}$ is a cover of $G r_{k}(V)$. (For example, show that $W \in \mathcal{O}_{W, C}$.)
(b) Use the open sets $\mathcal{O}_{W, C}$ to construct an atlas on $\operatorname{Gr}_{k}(V)$. That is, check that the transition functions are smooth. (Hint: You may first want to check it for two charts with the same W but different complements. Then it suffices to check for two different W which are transverse, using the same complement for both.)
(c) Now construct the complex Grassmannian: take V complex and use only complex subspaces.
(d) Prove that $G=G L(V)$ acts smoothly and transitively on $G r_{k}(V)$ in both the real and complex cases. What is the subgroup H which fixes $W \in G r_{k}(V)$?
(e) Is G / H a symmetric space? Can you express the Grassmannian as a symmetric space G^{\prime} / H^{\prime} for another Lie group G^{\prime} and closed Lie subgroup $H^{\prime} \subset G^{\prime}$? Explicitly identify the complement \mathfrak{m} in the Lie algebra.
(f) Construct a short exact sequence of vector bundles

$$
0 \longrightarrow S \longrightarrow \underline{V} \longrightarrow Q \longrightarrow 0
$$

over $G r_{k}(V)$ in which $\operatorname{rank} S=k, \operatorname{rank} Q=n-k$, and $\underline{V}=G r_{k}(V) \times V$ is the bundle with constant fiber V.
(g) Construct an isomorphism $T G r_{k}(V) \rightarrow \operatorname{Hom}(S, Q)$.
2. For each of the following pairs $H \subset G$ of Lie groups, explore the geometry of the symmetric space G / H. For example, identify $\mathfrak{m} \subset \mathfrak{g}$ such that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$. Identify the corresponding involutions on G and \mathfrak{g}. Construct the Riemannian metric. Identify the Riemann curvature tensor. Does G / H have constant curvature? Is it an Einstein manifold?
(a) $S U_{n} \subset S U_{n} \times S U_{n}(n \geq 2)$
(b) $S O_{n} \subset S O_{n+1}(n \geq 2)$
(c) $S O_{n} \subset S O_{1, n}^{0}$ ($n \geq 2$; the superscript denotes the identity component)
(d) $S p_{p} \times S p_{q} \subset S p_{p+q}(p, q \geq 1)$

