Problem Set \# 2

M392C: Riemannian Geometry

I have been posting notes and handouts on the website, so be sure to check often.

Problems

1. Prove the following lemma used in lecture. Let V be a real inner product space, e_{1}, \ldots, e_{r} linearly independent vectors which span a subspace W, set $g_{i j}=\left\langle e_{i}, e_{j}\right\rangle$, and let $v \in V$ be an arbitrary vector. Let e^{1}, \ldots, e^{r} be the dual basis of W^{*}, and $g^{i j}=\left\langle e^{i}, e^{j}\right\rangle$. Then the orthogonal projection of v onto W is $g^{i \lambda}\left\langle v, e_{\lambda}\right\rangle e_{i}$.
2. Let A be an affine space with the associated vector space V of displacements. Suppose $f: U \rightarrow \mathbb{R}$ is a smooth function defined on an open set $U \subset A$. Fix $p \in U$.
(a) Recall that the differential $d f_{p}: V \rightarrow \mathbb{R}$ is a linear functional defined as follows. Each $\xi \in V$ determines a constant vector field on A, and $d f_{p}(\xi)$ is the directional derivative $(\xi f)(p)$.
(b) Define the second differential, or Hessian, as a bilinear form $d^{2} f_{p}: V \times V \rightarrow \mathbb{R}$ by setting its value on vectors $\xi_{1}, \xi_{2} \in V$ to be the iterated directional derivative $\left(\xi_{1}\left(\xi_{2} f\right)\right)(p)$. Prove that it is a symmetric bilinear form.
(c) Choose affine coordinates x^{1}, \ldots, x^{n} on A with corresponding bases $\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}$ of V and $d x^{1}, \ldots, d x^{n}$ for V^{*}. Express the second differential in this basis.
(d) What can you say about higher derivatives?
(e) Now suppose that ξ_{1}, ξ_{2} are arbitrary vector fields on A, not necessarily constant. Compute the difference $\xi_{1}\left(\xi_{2} f\right)-\xi_{2}\left(\xi_{1} f\right)$.
3. On the last problem set I asked you to compute the transformation law for the Riemann tensor $R_{j k \ell}^{i}$ under an arbitrary change of coordinates. You should first compute the transformation law for $\Gamma_{j k}^{i}$. As a reminder the formulas are

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i \lambda}\left\{\frac{\partial g_{\lambda j}}{\partial x^{k}}+\frac{\partial g_{\lambda k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{\lambda}}\right\}
$$

and

$$
R_{j k \ell}^{i}=\frac{\partial \Gamma_{j \ell}^{i}}{\partial x^{k}}-\frac{\partial \Gamma_{j k}^{i}}{\partial x^{\ell}}+\Gamma_{j \ell}^{\lambda} \Gamma_{\lambda k}^{i}-\Gamma_{j k}^{\lambda} \Gamma_{\lambda \ell}^{i},
$$

4. Suppose V is a real inner product space of dimension n.
(a) In the last homework set you were supposed to construct induced inner products on all tensor powers of V and V^{*}. Suppose e_{1}, \ldots, e_{n} is an orthonormal basis of V. Then the dual basis e^{1}, \ldots, e^{n} of V^{*} is orthonormal, as is the basis $\left\{e^{i_{1}} \wedge \cdots \wedge e^{i_{r}}: 1 \leq i_{1}<\cdots<i_{r} \leq n\right\}$ of $\bigwedge^{r} V^{*}$. This defines the induced metrics if you check that the statements hold independent of the original choice of orthonormal basis.
(b) Construct a notion of n-dimensional volume on V. That is, if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of n vectors, show you can compute the volume of the parallelopiped $\left\{t^{i} v_{i}: 0 \leq t^{i} \leq 1\right\}$ they span. Consider first the case $n=1$. Then reduce to that case by looking at $\operatorname{Det} V=\bigwedge^{n} V$. By considering the induced metric on subspaces, show that there is a notion of lower dimensional volume as well.
(c) Review my Notes on Lecture 2 (1/19). In particular, in (2.5) and (2.7) I define lines Det V and $\mathfrak{o}(V)$ associated to a finite dimensional real vector space V. Now define a third line

$$
|\operatorname{Det} V|=\left\{\mu: \mathcal{B}(V) \rightarrow \mathbb{R}: \mu(b \circ g)=|\operatorname{det}(g)|^{-1} \mu(b) \text { for all } b \in \mathcal{B}(V), g \in G L_{n}(\mathbb{R})\right\}
$$

and prove that there is a canonical isomorphism of it with the tensor product of the other two. Show that $|\operatorname{Det} V|$ has a canonical orientation. Interpret the volume constructed in (b) as a positive element $\mu \in\left|\operatorname{Det} V^{*}\right|$.
(d) Review the notion of orientation. Briefly, an orientation is a choice of component of $\operatorname{Det} V \backslash$ $\{0\}$. Show that an orientation of V determines a notion of signed n-dimensional volume. Equivalently, construct a distinguished nonzero element of $\operatorname{Det} V^{*}=\Lambda^{n} V^{*}$, the volume form.
(e) Now think through each part of this exercise on a Riemannian manifold X. In particular, a positive section of $\left|\operatorname{Det} T^{*} X\right| \rightarrow X$ is a smooth measure on X, and a Riemannian manifold has a canonical smooth measure.
5. (a) Let E be a 3-dimensional Euclidean space with Euclidean coordinates q^{1}, q^{2}, q^{3} and consider an embedding $q^{a}=q^{a}\left(x^{1}, x^{2}\right)$ of an open set in the $\left(x^{1}, x^{2}\right)$-plane. We consider x^{1}, x^{2} as local coordinates on the image surface in E. Compute the metric, $\Gamma_{j k}^{i}$, second fundamental form, and Gauss curvature in terms of the functions $q^{a}\left(x^{1}, x^{2}\right)$ and their derivatives.
(b) What is the formula for Gauss curvature in the special case that the parametrization is orthogonal, i.e., $g_{12}=0$? Simplify further by writing the formula in case $g_{11}=1$ and $g_{12}=0$.
(c) Compute the Gauss curvature and principal curvatures for a torus, obtained by revolving the circle $\left(q^{1}-R\right)^{2}+\left(q^{3}\right)^{2}=r^{2}$ about the q^{3}-axis, where $R>r>0$.
(d) Compute the Gauss curvature for a surface of revolution, obtained by revolving the graph of the positive function $q^{1}=q^{1}\left(q^{3}\right)$ about the q^{3}-axis.
6. The helicoid is the image of the function

$$
(u, v) \longmapsto(a \sinh v \cos u, a \sinh v \sin u, a u)
$$

from the (u, v)-plane to Euclidean 3-space. Compute the mean curvature of the helicoid.
7. Prove that a connected surface in Euclidean 3-space all of whose points are umbilic (the second fundamental form is a multiple of the first fundamental form) is a subset of a sphere or a plane.

