Problem Set # 5

M392C: Riemannian Geometry

I have been posting notes and handouts on the website, so be sure to check often.

Problems

- 1. Let G be a smooth manifold whose underlying set is equipped with a group structure, and assume that multiplication $m: G \times G \to G$ is smooth. Prove that the inverse map $i: G \to G$ is also smooth, and hence G is a Lie group.
- 2. Let G be a Lie group. Recall that $\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g})$ is defined by differentiating conjugation. Namely, if for $g \in G$ we define $A_g: G \to G$ by $A_g(x) = gxg^{-1}$, then $\operatorname{Ad}_g = d(A_g)_e$.
 - (a) Prove that Ad_g is an automorphism of the Lie algebra \mathfrak{g} , i.e., it preserves the Lie bracket:

$$\operatorname{Ad}_{g}[\xi,\eta] = [\operatorname{Ad}_{g}\xi,\operatorname{Ad}_{g}\eta], \qquad \xi,\eta \in \mathfrak{g}.$$

- (b) Compute $d(\operatorname{Ad}_g)_e$ in terms of the Lie bracket.
- 3. In the last problem set you learned that the set of bases of a vector space V is a right torsor for $GL_n(\mathbb{R})$. Here are other geometric examples of torsors—verify that they are indeed torsors.
 - (a) If M is an orientable manifold, then the set of orientations is a torsor for $H^0(M; \mathbb{Z}/2\mathbb{Z})$, the group of locally constant functions $M \to \mathbb{Z}/2\mathbb{Z}$.
 - (b) (This requires that you know about spin structures.) If M is a spinable manifold (with a fixed orientation), then the set of equivalence classes of spin structures compatible with the given orientation is a torsor for $H^1(M; \mathbb{Z}/2\mathbb{Z})$.
 - (c) If $\bar{a} \in \mathbb{R}/\mathbb{Z}$, then $\{x \in \mathbb{R} : x \equiv \bar{a} \pmod{1}\}$ is a \mathbb{Z} -torsor.
 - (d) The fiber of a regular covering space $\tilde{X} \to X$ is a torsor for the group of deck transformations.
 - (e) An affine space A is a torsor for its underlying vector space of translations V.
- 4. Let G be a Lie group and θ the (left-invariant) Maurer-Cartan form.
 - (a) Compute $m^*\theta$, where $m: G \times G \to G$ is the multiplication map.
 - (b) Compute $i^*\theta$, where $i: G \to T$ is inversion.

- 5. (a) What is the space of left-invariant metrics on a Lie group G? What is the space of bi-invariant metrics?
 - (b) Let SU_2 be the group of all 2×2 hermitian matrices with determinant one. (The entries are complex numbers.) Show that SU_2 is a Lie group. What is its dimension? Is it compact? Find all bi-invariant metrics on SU_2 .
 - (c) Let $SL_2(\mathbb{R})$ be the group of 2×2 real matrices with determinant one. Prove that $SL_2(\mathbb{R})$ is a Lie group. Find all bi-invariant metrics on SU_2 .
- 6. Suppose N is a manifold and G a Lie group. Let θ^i , i = 1, ..., n be a basis of left-invariant 1-forms on G and suppose

$$d\theta^i + \frac{1}{2}c^i_{jk}\theta^j \wedge \theta^k = 0$$

for constants c_{jk}^i . Let θ_N^i , i = 1, ..., n be 1-forms on N. Consider the ideal of differential forms on $N \times G$ generated by $\pi_2^* \theta^i - \pi_1^* \theta_N^i$, where $\pi_1 \colon N \times G \to N$ and $\pi_2 \colon N \times G \to G$ are projections. Prove that this ideal is closed under d if and only if

$$d\theta_N^i + \frac{1}{2}c_{jk}^i\theta_N^j \wedge \theta_N^k = 0$$

- 7. Let *E* be a 3-dimensional Euclidean space and $\gamma: (a, b) \to E$ a smooth map such that $|\dot{\gamma}| = 1$. In other words, γ is the unit speed parametrization of a curve. Assume further that the acceleration $\ddot{\gamma}$ is nowhere zero. Finally, assume the normal bundle to (the image of) γ is oriented.
 - (a) Construct a canonical lift $\tilde{\gamma}: (a, b) \to \mathcal{B}_O(E)$ to the orthonormal frame bundle of E. This is called the *Frenet* frame. In other words, construct a curve $(e_1(t), e_2(t), e_3(t))$ of orthonormal frames of the vector space of translations of E. Make this construction so that e_1 is tangent to the curve, and e_2 is determined by the acceleration.
 - (b) Compute the pullbacks of the Maurer-Cartan forms θ^i, Θ^i_j on $\mathcal{B}_O(E)$. You will meet two functions of t called *curvature* and *torsion*.
 - (c) Given curvature and torsion functions on an interval (a, b), prove that there exists a curve in E, unique up to a Euclidean motion, with the given curvature and torsion. Are there any restrictions on the curvature and torsion?
 - (d) Compute curvature and torsion for a plane curve. For a helix.
- 8. Let X be a Riemannian manifold and $\xi \in \mathcal{X}(X)$ a vector field on X. The goal is to define an operator

$$\nabla_{\xi} \colon \mathcal{X}(X) \longrightarrow \mathcal{X}(X)$$

which satisfies the following two properties for all $\eta, \zeta \in \mathcal{X}(X)$:

$$\begin{split} \xi \langle \eta, \zeta \rangle &= \langle \nabla_{\xi} \eta, \zeta \rangle + \langle \eta, \nabla_{\xi} \zeta \rangle \\ \nabla_{\xi} \eta - \nabla_{\eta} \xi &= [\xi, \eta]. \end{split}$$

- (a) Use these properties to derive a formula for $\langle \nabla_\xi \eta, \zeta\rangle.$
- (b) Prove that $\nabla_{\xi} \eta$ is linear over functions (tensorial) in ξ and satisfies a Leibniz rule in η .
- (c) Let x^1, \ldots, x^n be local coordinates. Compute $\nabla_{\partial/\partial x^j} \partial/\partial x^k$. Have you seen that formula before?