Problem Set \# 5

M392C: Riemannian Geometry

I have been posting notes and handouts on the website, so be sure to check often.

Problems

1. Let G be a smooth manifold whose underlying set is equipped with a group structure, and assume that multiplication $m: G \times G \rightarrow G$ is smooth. Prove that the inverse map $i: G \rightarrow G$ is also smooth, and hence G is a Lie group.
2. Let G be a Lie group. Recall that $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$ is defined by differentiating conjugation. Namely, if for $g \in G$ we define $A_{g}: G \rightarrow G$ by $A_{g}(x)=g x g^{-1}$, then $\operatorname{Ad}_{g}=d\left(A_{g}\right)_{e}$.
(a) Prove that Ad_{g} is an automorphism of the Lie algebra \mathfrak{g}, i.e., it preserves the Lie bracket:

$$
\operatorname{Ad}_{g}[\xi, \eta]=\left[\operatorname{Ad}_{g} \xi, \operatorname{Ad}_{g} \eta\right], \quad \xi, \eta \in \mathfrak{g} .
$$

(b) Compute $d\left(\operatorname{Ad}_{g}\right)_{e}$ in terms of the Lie bracket.
3. In the last problem set you learned that the set of bases of a vector space V is a right torsor for $G L_{n}(\mathbb{R})$. Here are other geometric examples of torsors-verify that they are indeed torsors.
(a) If M is an orientable manifold, then the set of orientations is a torsor for $H^{0}(M ; \mathbb{Z} / 2 \mathbb{Z})$, the group of locally constant functions $M \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.
(b) (This requires that you know about spin structures.) If M is a spinable manifold (with a fixed orientation), then the set of equivalence classes of spin structures compatible with the given orientation is a torsor for $H^{1}(M ; \mathbb{Z} / 2 \mathbb{Z})$.
(c) If $\bar{a} \in \mathbb{R} / \mathbb{Z}$, then $\{x \in \mathbb{R}: x \equiv \bar{a}(\bmod 1)\}$ is a \mathbb{Z}-torsor.
(d) The fiber of a regular covering space $\tilde{X} \rightarrow X$ is a torsor for the group of deck transformations.
(e) An affine space A is a torsor for its underlying vector space of translations V.
4. Let G be a Lie group and θ the (left-invariant) Maurer-Cartan form.
(a) Compute $m^{*} \theta$, where $m: G \times G \rightarrow G$ is the multiplication map.
(b) Compute $i^{*} \theta$, where $i: G \rightarrow T$ is inversion.
5. (a) What is the space of left-invariant metrics on a Lie group G ? What is the space of bi-invariant metrics?
(b) Let $S U_{2}$ be the group of all 2×2 hermitian matrices with determinant one. (The entries are complex numbers.) Show that $S U_{2}$ is a Lie group. What is its dimension? Is it compact? Find all bi-invariant metrics on SU_{2}.
(c) Let $S L_{2}(\mathbb{R})$ be the group of 2×2 real matrices with determinant one. Prove that $S L_{2}(\mathbb{R})$ is a Lie group. Find all bi-invariant metrics on SU_{2}.
6. Suppose N is a manifold and G a Lie group. Let $\theta^{i}, i=1, \ldots, n$ be a basis of left-invariant 1 -forms on G and suppose

$$
d \theta^{i}+\frac{1}{2} c_{j k}^{i} \theta^{j} \wedge \theta^{k}=0
$$

for constants $c_{j k}^{i}$. Let $\theta_{N}^{i}, i=1, \ldots, n$ be 1-forms on N. Consider the ideal of differential forms on $N \times G$ generated by $\pi_{2}^{*} \theta^{i}-\pi_{1}^{*} \theta_{N}^{i}$, where $\pi_{1}: N \times G \rightarrow N$ and $\pi_{2}: N \times G \rightarrow G$ are projections. Prove that this ideal is closed under d if and only if

$$
d \theta_{N}^{i}+\frac{1}{2} c_{j k}^{i} \theta_{N}^{j} \wedge \theta_{N}^{k}=0
$$

7. Let E be a 3 -dimensional Euclidean space and $\gamma:(a, b) \rightarrow E$ a smooth map such that $|\dot{\gamma}|=1$. In other words, γ is the unit speed parametrization of a curve. Assume further that the acceleration $\ddot{\gamma}$ is nowhere zero. Finally, assume the normal bundle to (the image of) γ is oriented.
(a) Construct a canonical lift $\tilde{\gamma}:(a, b) \rightarrow \mathcal{B}_{O}(E)$ to the orthonormal frame bundle of E. This is called the Frenet frame. In other words, construct a curve $\left(e_{1}(t), e_{2}(t), e_{3}(t)\right)$ of orthonormal frames of the vector space of translations of E. Make this construction so that e_{1} is tangent to the curve, and e_{2} is determined by the acceleration.
(b) Compute the pullbacks of the Maurer-Cartan forms $\theta^{i}, \Theta_{j}^{i}$ on $\mathcal{B}_{O}(E)$. You will meet two functions of t called curvature and torsion.
(c) Given curvature and torsion functions on an interval (a, b), prove that there exists a curve in E, unique up to a Euclidean motion, with the given curvature and torsion. Are there any restrictions on the curvature and torsion?
(d) Compute curvature and torsion for a plane curve. For a helix.
8. Let X be a Riemannian manifold and $\xi \in \mathcal{X}(X)$ a vector field on X. The goal is to define an operator

$$
\nabla_{\xi}: \mathcal{X}(X) \longrightarrow \mathcal{X}(X)
$$

which satisfies the following two properties for all $\eta, \zeta \in \mathcal{X}(X)$:

$$
\begin{aligned}
\xi\langle\eta, \zeta\rangle & =\left\langle\nabla_{\xi} \eta, \zeta\right\rangle+\left\langle\eta, \nabla_{\xi} \zeta\right\rangle \\
\nabla_{\xi} \eta-\nabla_{\eta} \xi & =[\xi, \eta] .
\end{aligned}
$$

(a) Use these properties to derive a formula for $\left\langle\nabla_{\xi} \eta, \zeta\right\rangle$.
(b) Prove that $\nabla_{\xi} \eta$ is linear over functions (tensorial) in ξ and satisfies a Leibniz rule in η.
(c) Let x^{1}, \ldots, x^{n} be local coordinates. Compute $\nabla_{\partial / \partial x^{j}} \partial / \partial x^{k}$. Have you seen that formula before?

