Problem Set \# 7

M392C: Riemannian Geometry

Throughout G is a Lie group with Lie algebra \mathfrak{g}.

Problems

1. You've already seen this, but just in case ...
(a) Let V be an n-dimensional real vector space and $\mathcal{B}(V)$ the right $G L_{n}(\mathbb{R})$-torsor of bases. Let Θ_{j}^{i} be the Maurer-Cartan forms in the standard basis of the Lie algebra of $G L_{n}(\mathbb{R})$. Suppose $b(t)$ is a smooth curve in $\mathcal{B}(V)$. Write the basis $b(t)$ as $\left\{e_{1}(t), \ldots, e_{n}(t)\right\}$ and the dual basis as $\left\{e^{1}(t), \ldots, e^{n}(t)\right\}$. Prove that

$$
\Theta_{j}^{i}(\dot{b})=\left\langle e^{i}(0), \dot{e}_{j}(0)\right\rangle
$$

The pairing is duality $\langle-,-\rangle: V^{*} \times V \rightarrow \mathbb{R}$.
(b) Let A be an n-dimensional real affine space and $\mathcal{B}(A)$ the right $\operatorname{Aff}_{n}(\mathbb{R})$-torsor of bases of the underlying vector space at all points of A. Let $\theta^{i}, \Theta_{j}^{i}$ be the Maurer-Cartan forms in the standard basis of the Lie algebra of $\operatorname{Aff}_{n}(\mathbb{R})$. (Define this!) Suppose $b(t)$ is a smooth curve in $\mathcal{B}(A)$ which projects to the curve $x(t)$ in A, and write the underlying basis of V as in (a). Prove that

$$
\theta^{i}(\dot{b})=\left\langle e^{i}(0), \dot{x}(0)\right\rangle .
$$

2. Let G be a Lie group.
(a) Show that the automorphism group $\operatorname{Aut}(T)$ of a G-torsor is the Lie group associated to T (mixing construction) by the conjugation action of G on itself. Why is that associated space a Lie group?
(b) Show that the Lie algebra of the group in (a) is the Lie algebra associated to T by the adjoint action $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$. Why is that associated space a Lie algebra?
(c) Suppose $\pi: P \rightarrow M$ is a principal G-bundle. Construct associated bundles $G_{P} \rightarrow M, \mathfrak{g}_{P} \rightarrow M$ of Lie groups and Lie algebras. The latter is the adjoint bundle. Show that the group $\mathrm{Aut}_{0} P$ of gauge transformations - automorphisms of $P \rightarrow M$ which cover id_{M}-is the group of sections of $G_{P} \rightarrow M$ and its Lie algebra is $\Omega_{M}^{0}\left(\mathfrak{g}_{P}\right)$, the group of sections of the adjoint bundle.
3. Let $\pi: P \rightarrow M$ be a principal G-bundle and $\Theta_{0}, \Theta_{1} \in \Omega_{P}^{1}(\mathfrak{g})$ connections. The difference $\Theta_{1}-\Theta_{0}$ lives in a vector subspace of $\Theta_{P}^{1}(\mathfrak{g})$. Which subspace? Identify the space of connection forms as an affine subspace of $\Theta_{P}^{1}(\mathfrak{g})$ over that vector space. Write the affine space of connections as the space of sections of a fiber bundle of affine spaces over X ? Use that to prove the existence of connections.
4. Let $\pi: P \rightarrow M$ be a principal G-bundle and $\rho: G^{\prime} \rightarrow G$ a homomorphism of Lie groups. A reduction of P to G^{\prime} is a pair consisting of a principal G^{\prime}-bundle $Q \rightarrow M$ and a map $\varphi: Q \rightarrow P$ which covers id_{M} and intertwines $\rho: \varphi\left(q g^{\prime}\right)=\varphi(q) \rho\left(g^{\prime}\right)$ for all $q \in Q, g^{\prime} \in G^{\prime}$.
(a) Prove that if ρ is injective, then a reduction is equivalent to a section of the associated bundle with fiber G / G^{\prime}. (First define this associated bundle.) What does this say if $G^{\prime}=\{e\}$?
(b) Use covering space theory to analyze the reduction problem when G^{\prime}, G are discrete groups. When is a lift defined? Can you determine an obstruction which measures whether a lift exist? What are the equivalence classes of lifts? You may want to try the case when ρ is injective with abelian cokernel, or the case when ρ is surjective with abelian kernel.
5. (a) If G is a Lie group and $H \subset G$ a closed subgroup, verify that $\pi: G \rightarrow G / H$ is a principal H-bundle. (You can consult Warner's book for some details.) Prove that the tangent bundle of G / H is the associated bundle via the adjoint representation $\operatorname{Ad}: H \rightarrow \operatorname{Aut}(\mathfrak{g} / \mathfrak{h})$ on the quotient of Lie algebras.
(b) Show that there is a left G-action by automorphisms on the principal bundle in (a). This is called a homogeneous bundle.
(c) Write the Hopf bundle, which is a principal \mathbb{T}-bundle over S^{2}, as a homogeneous bundle. What is the total space?
(d) Construct a homogeneous $S U_{2}$-bundle over S^{4}. Construct a homogeneous $S O_{4}$-bundle over S^{4}. What is the total space of each? Can you find a 3 -sphere bundle over S^{4} whose total space is the 7 -sphere?
6. Let $\pi: P \rightarrow M$ be a principal G-bundle.
(a) Suppose $\alpha \in \Omega_{M}^{1}$. Show that $\beta=\pi^{*} \alpha$ satisfies $\iota_{\eta} \beta=0$ for all vertical vectors β and $R_{g}^{*} \beta=\beta$ for all $g \in G$. Conversely, show that if a 1-form $\beta \in \Omega_{P}^{1}$ satisfies these two properties, then $\beta=\pi^{*} \alpha$ for a unique $\alpha \in \Omega_{M}^{1}$.
(b) Repeat the exercise for a q-form for arbitrary $q \geq 0$. Is the same assertion true?
7. Fix $n \in \mathbb{Z}^{\geq 1}$. Let $\mathbb{R}^{n, 1}$ be the vector space \mathbb{R}^{n+1} with inner product

$$
\left\langle\left(\xi^{0}, \ldots, \xi^{n}\right),\left\langle\eta^{0}, \ldots, \eta^{n}\right\rangle\right\rangle=-\xi^{0} \eta^{0}+\xi^{1} \eta^{1}+\cdots+\xi^{n} \eta^{n} .
$$

Consider the quadric $Q \subset \mathbb{R}^{n, 1}$ of vectors of square norm 1. Prove that Q has two components. Let Q^{+}be the component where $\xi^{0}>0$. Show that the inner product induces a positive definite metric on Q^{+}. Show that the subgroup of $O_{n, 1}$ which preserves sign ξ^{0} has two components and contains the identity component. Show that the orthonormal frame bundle $\mathcal{B}_{O}\left(Q^{+}\right)$is a right torsor over that subgroup. Compute that Q^{+}has constant curvature -1 . (Hint: Think about the structure equations of $O_{n, 1}$.)
8. Let X be a smooth manifold and $E \subset T X$ a distribution of rank k. Let $\mathcal{B}_{E}(X) \subset \mathcal{B}(X)$ be the subbundle of frames for which the first k vectors form a basis of E. Prove that $\mathcal{B}(X) \rightarrow X$ admits a torsionfree connection if and only if E is involutive.

