Problem Set # 8

M392C: Riemannian Geometry

1. You may use covariant derivatives or moving frames, whichever you find more convenient.

(a) Suppose (M, g) and (M’', g’) are Riemannian manifolds. Define a Riemannian manifold (M x

M’ g x ¢’') and compute its curvature in terms of the curvatures of (M, g) and (M’, g’).

(b) Continuing, let f: M — R be a positive smooth function. Define the warped product (M x
M' g x f-g') and compute its curvature. You have already seen such metrics when M and

M’ are each 1-dimensional.

(c) Let (M,g) be a Riemannian manifold and ¢: M — R any smooth function. Compute the

curvature of (M, e??g). (The metric e2?g is conformally related to the metric g.)

2. Let G be any Lie group.

(a) Use left translation to trivialize T'G. This defines a global parallelism on G, so by differentiation
a (left-invariant) covariant derivative on T'G. What is the curvature and torsion of this covariant

derivative?
(b) Repeat with right translation replacing left translation.

(c) Recall that the Leibniz rule which defines a covariant derivative is an affine equation, so the
average of two connections is a connection. Compute the curvature and torsion of the average

of the connections in parts (a) and (b).

(d) You now have three connections on G. Are any of these Levi-Civita connections for a metric
on G?

3. Is it possible for a geodesic to intersect itself? Example or counter-proof.

4. Let X C F be a submanifold of a Euclidean space. The dimensions of X and E are not fixed.

(a) Use the global parallelism of E to induce a parallelism—a covariant derivative—on X. So
if £ € T, X is a tangent vector at some point x € X and n a vector field on X defined
in a neighborhood of X, use the natural covariant derivative on E to define the covariant

derivative V¢n on X.
(b) Prove that V preserves the induced Riemannian metric on X.

(c) Consider the example of a unit 2-sphere X in a 3-dimensional Euclidean space. Let C' be the
circle obtained by intersecting X with a plane whose distance from the nearest parallel tangent
plane is d < 1. The holonomy of the parallel transport around C is rotation through some

angle #. Compute 6 as a function of d. Make clear your orientations.
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5. Let X be a smooth manifold and 7: £ — X a vector bundle equipped with a covariant derivative V.
(a) Interpret V as a linear map Q% (E) — QL% (E).

(b) Use the Leibniz rule to extend to a sequence of linear maps

0— Q% (E) % QL (E) 2% 02(B) &% Q3 (B) — - --

This should reduce to the de Rham complex in case E is the trivial line bundle with trivial

covariant derivative.
(c) Compute d%.
(d) Compute d3,.
6. Let X be a smooth n-manifold equipped with a connection on its frame bundle B(X) — X. (Recall

that this is a principal GL,R-bundle.) Let Ok, k = 1,...,n, be the canonical horizontal vector
fields on B(X). Set 9 = Ore” to be the horizontal (R"™)*-valued vector field.

(a) A differential form on X lifts to a function
w: B(X) — A*(R™)*

Compute Rjw, g € GL,R.
(b) Compute (R,).(0).

(c) Let e(a): A®(R™)* — A*T'(R™)* be exterior multiplication by a € (R™)*. Compute
€(0)w = e(e")Opw.

How does it transform under R,? How does it compare to dw? In other words, compare the
operators €(0) and d. (You may want to consider functions and 1-forms first. A ¢-form is a

sum of products of these locally. For a 1-form, lift from X to a 1-form on B(X), which we want

L

to write as a function wpe®. How can you compute wy from the lifted 1-form and the vector

field 9,7)

(d) Rewrite this exercise in terms of the covariant derivative
V: QX)) —T(XGAN T X @ T X),

where the codomain is the vector space of smooth sections of the indicated vector bundle over X.

(e) Did this exercise shed light on why we might want a torsionfree connection?
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