
Problem Set # 8

M392C: Riemannian Geometry

1. You may use covariant derivatives or moving frames, whichever you find more convenient.

(a) Suppose (M, g) and (M ′, g′) are Riemannian manifolds. Define a Riemannian manifold (M ×
M ′, g × g′) and compute its curvature in terms of the curvatures of (M, g) and (M ′, g′).

(b) Continuing, let f : M → R be a positive smooth function. Define the warped product (M ×
M ′, g × f · g′) and compute its curvature. You have already seen such metrics when M and

M ′ are each 1-dimensional.

(c) Let (M, g) be a Riemannian manifold and φ : M → R any smooth function. Compute the

curvature of (M, e2φg). (The metric e2φg is conformally related to the metric g.)

2. Let G be any Lie group.

(a) Use left translation to trivialize TG. This defines a global parallelism on G, so by differentiation

a (left-invariant) covariant derivative on TG. What is the curvature and torsion of this covariant

derivative?

(b) Repeat with right translation replacing left translation.

(c) Recall that the Leibniz rule which defines a covariant derivative is an affine equation, so the

average of two connections is a connection. Compute the curvature and torsion of the average

of the connections in parts (a) and (b).

(d) You now have three connections on G. Are any of these Levi-Civita connections for a metric

on G?

3. Is it possible for a geodesic to intersect itself? Example or counter-proof.

4. Let X ⊂ E be a submanifold of a Euclidean space. The dimensions of X and E are not fixed.

(a) Use the global parallelism of E to induce a parallelism—a covariant derivative—on X. So

if ξ ∈ TxX is a tangent vector at some point x ∈ X and η a vector field on X defined

in a neighborhood of X, use the natural covariant derivative on E to define the covariant

derivative ∇ξη on X.

(b) Prove that ∇ preserves the induced Riemannian metric on X.

(c) Consider the example of a unit 2-sphere X in a 3-dimensional Euclidean space. Let C be the

circle obtained by intersecting X with a plane whose distance from the nearest parallel tangent

plane is d < 1. The holonomy of the parallel transport around C is rotation through some

angle θ. Compute θ as a function of d. Make clear your orientations.
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5. Let X be a smooth manifold and π : E → X a vector bundle equipped with a covariant derivative∇.

(a) Interpret ∇ as a linear map Ω0
X(E) → Ω1

X(E).

(b) Use the Leibniz rule to extend to a sequence of linear maps

0 −→ Ω0
X(E)

∇−→ Ω1
X(E)

d∇−−→ Ω2
X(E)

d∇−−→ Ω3
X(E) −→ · · ·

This should reduce to the de Rham complex in case E is the trivial line bundle with trivial

covariant derivative.

(c) Compute d2∇.

(d) Compute d3∇.

6. Let X be a smooth n-manifold equipped with a connection on its frame bundle B(X) → X. (Recall

that this is a principal GLnR-bundle.) Let ∂k, k = 1, . . . , n, be the canonical horizontal vector

fields on B(X). Set ∂ = ∂ke
k to be the horizontal (Rn)∗-valued vector field.

(a) A differential form on X lifts to a function

ω : B(X) −→
∧•

(Rn)∗

Compute R∗
gω, g ∈ GLnR.

(b) Compute (Rg)∗(∂).

(c) Let ϵ(α) :
∧•

(Rn)∗ →
∧•+1

(Rn)∗ be exterior multiplication by α ∈ (Rn)∗. Compute

ϵ(∂)ω = ϵ(ek)∂kω.

How does it transform under Rg? How does it compare to dω? In other words, compare the

operators ϵ(∂) and d. (You may want to consider functions and 1-forms first. A q-form is a

sum of products of these locally. For a 1-form, lift from X to a 1-form on B(X), which we want

to write as a function ωℓe
ℓ. How can you compute ωℓ from the lifted 1-form and the vector

field ∂ℓ?)

(d) Rewrite this exercise in terms of the covariant derivative

∇ : Ωq(X) −→ Γ(X;
∧q

T ∗X ⊗ T ∗X),

where the codomain is the vector space of smooth sections of the indicated vector bundle overX.

(e) Did this exercise shed light on why we might want a torsionfree connection?

2


