Problem Set #9

M392C: Riemannian Geometry

- 1. Let X be a Riemannian manifold of dimension ≥ 2 , $x \in X$, and $\pi \subset X$ a 2-dimensional subspace. Choose $\epsilon > 0$ so that the geodesic $\gamma \colon (-\epsilon, \epsilon) \to X$ with initial position x and initial velocity a unit vector $\xi \in T_x X$ exists for all ξ . Show that the union of those geodesics is a smooth 2-dimensional submanifold $\Sigma_{\pi} \subset X$. It inherits a Riemannian metric from X. Prove that the Gauss curvature of Σ_{π} at x is the sectional curvature $K_X(\pi)$ of X at x evaluated on the 2-plane π .
- 2. Fix a positive integer m and let $S \subset \mathbb{C}^{m+1}$ be the unit sphere with respect to the standard Hermitian metric. It inherits a Riemannian metric.
 - (a) Verify that the group U_{m+1} of unitary transformations of \mathbb{C}^{m+1} acts by isometries on S. In particular, the diagonal subgroup \mathbb{T} acts freely by isometries. Verify that the quotient is the complex projective space \mathbb{CP}^n and the quotient map $\pi: S \to \mathbb{CP}^n$ is a principal \mathbb{T} -bundle.
 - (b) Let $H \subset TS$ be the orthogonal complement to the tangents to the orbits of the \mathbb{T} -action. Verify that H is a connection on π .
 - (c) Compute the curvature of π .
 - (d) The vector bundle $H \to S$ inherits an inner product from the Riemannian metric on S. Verify that it is \mathbb{T} -invariant. Induce a Riemannian metric on \mathbb{CP}^n .
 - (e) The tangent bundle $T\mathbb{CP}^n \to \mathbb{CP}^n$ has a complex structure $I \in \operatorname{End}(T\mathbb{CP}^n)$, i.e., and endomorphism with $I^2 = -\operatorname{id}_{T\mathbb{CP}^n}$. What is the compatibility between the Riemannian metric and I?
 - (f) Compute the curvature of the Riemannian metric on \mathbb{CP}^n . What compatibilities can you detect with I?
 - (g) Specialize to n = 1. Identify \mathbb{CP}^1 with the 2-sphere S^2 . What Riemannian metric is obtained? What is the integral of the curvature over \mathbb{CP}^1 ?
- 3. Let X be a smooth manifold, ξ, η vector fields on X, and $x \in X$. For sufficiently small $\epsilon > 0$ define $\gamma \colon (-\epsilon, \epsilon) \to X$ as follows. To compute $\gamma(t)$, start at x; follow the integral curve of ξ for time \sqrt{t} ; then follow the integral curve of $-\xi$ for time \sqrt{t} ; then follow the integral curve of $-\xi$ for time \sqrt{t} ; then follow the integral curve of $-\eta$ for time \sqrt{t} . Prove that $\gamma'(0)$ is the Lie bracket $[\xi, \eta]$ at x.
- 4. (a) We saw in lecture that the canonical vector fields on the orthonormal frame bundle $\mathcal{B}_O(X)$ of a constant curvature K Riemannian n-manifold form a n(n+1)/2-dimensional Lie algebra under Lie bracket. Identify that Lie algebra explicitly in terms of K.

(b) Let x^0, x^1, \ldots, x^n be standard coordinates in affine space \mathbb{A}^{n+1} , and define X_K , $K \neq 0$, to be the component of the space of solutions to

$$\sum_{i=1}^{n} (x^{i})^{2} = \operatorname{sign} K \left[\left(\frac{1}{K} \right)^{2} - \left(x^{0} - \frac{1}{K} \right)^{2} \right].$$

which contains the origin. Show that $\lim_{K\to 0} X_K$ of these quadrics is the affine subspace $X_0 = \{x^0 = 0\}$. Be sure to picture this family of hypersurfaces, perhaps on the computer, for n = 2. Let \mathbb{A}^{n+1} have the translationally invariant indefinite possibly degenerate metric

$$(\operatorname{sign} K)(dx^0)^2 + (dx^1)^2 + \dots + (dx^n)^2.$$

Prove that the metric inherited by X_K has constant sectional curvature K.

- 5. Let $\pi: P \to X$ be a principal G-bundle with connection Θ and curvature Ω .
 - (a) Differentiate the structure equation $\Omega = d\Theta + \frac{1}{2}[\Theta \wedge \Theta]$. Interpret the result as an equation for the covariant derivative of Ω .
 - (b) Specialize to the orthonormal frame bundle of a Riemannian manifold and its Levi-Civita connection. What do you learn about the Riemann curvature tensor?
 - (c) Write the result relative to a local orthonormal framing about $x \in X$ assuming that the covariant derivative of the frame vanishes at x. Equivalently, this is a section $s: U \to \mathcal{B}_O(X)|_U$ over an open neighborhood U of x such that $s_*(T_xX)$ is the horizontal subspace at s(x).
- 6. In class I mentioned a theorem of Yamabe et al that a pathwise connected subgroup of a Lie group is a Lie subgroup. Construct a connected but not pathwise connected subgroup $H \subset (\mathbb{R}/\mathbb{Z})^{\times 2}$. Show that H is not a Lie subgroup.
- 7. Let G be a Lie group and $H \subset G$ a closed Lie subgroup. Suppose $\pi: P \to X$ is a principal G-bundle.
 - (a) Prove that reductions of π to H are in 1:1 correspondence with sections of $P/H \to X$.
 - (b) Suppose that Θ is a connection on π . Prove that reductions of π to H such that Θ is induced from a connection on the reduction are in 1:1 correspondence with flat sections of $P/H \to X$.