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I thought I should write down, at least in telegraphic form, some of the basic definitions and
results about principal bundles, etc., so that you have a text to refer to. These are in part adapted
from old notes. . .

1. Principal bundles

Connections on principal bundles and their associated fiber bundles are a basic structure in
differential geometry. Geometric structures on a manifold are encoded in a reduction of the frame
bundle, and basic features of the structure are computed in terms of a connection, though these
notes stop short of defining connections: see your notes from the class lectures.

(1.1) Torsors and associated spaces. Let G be a Lie group. Recall that a right G-torsor T is
a manifold with a simply transitive right action of G on T. Thus for any ty € T we have a
diffeomorphism ¢, : G — T defined by ¢, (g9) = tog. If t1 = toh € T is any other point, then we
have the diagram of trivializations

(1.2) T
‘/’V wl
oo a

and the change of trivialization map (pg)l o, + G — G is the left translation Lp. In other words,
a right G-torsor T is identified with G (as a right G-torsor) up to a left translation. Thus any
left-invariant “notions” on G are defined on a right G-torsor. For example, a left invariant vector
field on G determines a vector field on T": it is the infinitesimal G-action. So every tangent space
to T is canonically identified with the Lie algebra g. Dually, there is a canonical 1-form 6 € QX.(t)
induced from the Maurer-Cartan form, and it satisfies the equation df + 5[0 A 6] = 0.

Now let F' be a manifold with a left G-action. Then we can form the mizing construction or
associated space

(1.3) FPr=Tx,F=(TxF)/G,
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where the G-action is the equivalence relation

(1.4) [tg, f1=1[t, 9f], teT, feF, geG.

Each tq € T gives a diffeomorphism ¢, : F' — Fr which is defined by ¢, (f) = [to, f]. If t1 = toh €
T, then ¢;01 o1y, : F'— F is the action of h. Thus we have identifications of Fr with F" up to the
action of G.

Example 1.5. Let V be a real n-dimensional vector space and B(V) = {b: R" — V'} the right
G L, (R)-torsor of bases. Then GL,(R) acts on R™ and the associated space is canonically V' by the
map [b,&] — b(&) for £ € R™. Similarly, GL,(R) acts on the Grassmannian Gri(R"™) of subspaces
of dimension k in R™ with associated space the Grassmannian G (V). It also acts on the space of
metrics on R™ with fixed signature, and the associated space is the corresponding space of metrics
on V; it acts on all tensor spaces built from R™ with associated spaces of tensors on V, etc.

A positive definite metric on V' may be specified by a sub O,-torsor Bo (V') < B(V) of orthonor-
mal frames. The space associated to the action of O, on the unit sphere S"~1(R") is the unit
sphere in V.

Heuristically, a G-torsor may be regarded as a space of abstract bases, or “internal states”.
Working with torsors in this way is democratic: we make no choice of distinguished basis unless it
is part of the geometry.

Notice in this example that R™ is a vector space and the GL,(R)-action is by vector space
automorphisms. Therefore, the associated space is a vector space. Quite generally, if F' has
some structure (vector space, algebra, Lie algebra, group, etc.) preserved by the G-action, then
Fr inherits that structure.

Suppose p: G — G’ is a homomorphism of Lie groups and T a right G-torsor. Then p defines a
left action of G on G’ by multiplication. This preserves the structure of G’ as a right G’-torsor, so
the associated space T x G’ is a right G'-torsor. This motivates the following definition.

Definition 1.6.

(i) Let p: G — G’ be a homomorphism of Lie groups and 7" a G'-torsor. Then a reduction
of T" to G is a pair (T, ) consisting of a G-torsor T' and an isomorphism 6: T' x, G’ — T’
of G'-torsors.

(ii) If V is a real vector space of dimension n and p: G — GL,(R) a homomorphism, then a
G-structure on V is a reduction of B(V) to G.

Equivalently, 6 is a map which intertwines p. The notion of a G-structure on a vector space
formalizes Felix Klein’s Erlangen program.

(1.7) Principal bundles and associated fiber bundles. A principal G-bundle over a space is a locally
trivial family of G-torsors. Any left G-space F' then induces, by the mixing construction, a fiber
bundle with structure group G in the sense of Steenrod. We spell this out in the smooth context.

Definition 1.8. Let M be a smooth manifold and G a Lie group. A principal G-bundle over M
is a smooth map 7: P — M, where the manifold P is equipped with a free right G-action, 7 is a
quotient map for the G-action, and 7 admits local sections: about each point m € M is an open
neighborhood U < M and a smooth section s: U — P of 7.
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The freeness of the action means the fibers of 7 are right G-torsors. Part of the definition is that
the set of equivalence classes of the G-action on P is the smooth manifold M. (For noncompact G
this set need not be a manifold in general, e.g. for the irrational action of R on the 2-torus.) A
local section s induces a local trivialization analogous to (?7):

(1.9) UxG

Here 71 is projection onto the first factor and the diagram commutes: g is an isomorphism of
G-torsors point by point on M.

Definition 1.10. Let m: P — M be a principal G-bundle and F' a smooth manifold with a left
G-action. Then the associated fiber bundle w: Fp — M is the quotient Fp = P xgF = (P x F)/G
defined in (?7).

A local section of m: P — M induces a local trivialization ts: U x F — Fp | by the formula

v
Ys(m, f) = [s(m), f]. We make the important observation that a section f of w: Fp — M is

equivalently a G-equivariant map f : P — F; the equivariance is

(1.11) fpg) =g 'f(p), peP geG.

The most important first example of a principal bundle is the bundle of frames 7: B(M) — M,
which is a parametrized version of Example ?77. It encodes the intrinsic geometry of a manifold M.
The tangent bundle and all tensor bundles are associated to linear representations of GL,(R),
assuming that M has a fixed dimension n. For example, a vector field on M is a smooth map
¢: B(M) — R" such that for all g € GL,(R) we have £(bg) = g~1£(b). That is, we can specify a
vector field as a vector-valued function on the collection of all bases.

Definition ?? has a straightforward parametrized generalization to the notion of reduction of
structure group for principal bundles. In particular, we have the notion of a G-structure on a
manifold as a reduction of the frame bundle. Any geometry associated to a G-structure may be
considered intrinsic.

Example 1.12. Let G be a Lie group and H < G a closed subgroup. Then 7: G — G/H is a
principal H-bundle over the homogeneous space G/H. The tangent bundle T(G/H) is associated
to the linear representation of H on the quotient g/h of the Lie algebras. More precisely, a frame
RN — g/b at the basepoint induces an H-structure on G/H. Typically H is much “smaller” than
GLy(R), where N = dim G/H. For example, the sphere S** can be presented as a homogeneous
space in at least three different ways: S ~ O4,11/O4n =~ Uspi1/Usp =~ Sppi1/Spn. For n =1
the frame bundle of S* has 16-dimensional structure group G'L4(R), and the reductions to Oy, Us,
and Sp; have dimensions 6, 4, 3, respectively.
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Example 1.13. Let V be a real vector space, possibly infinite dimensional. (We can take V' complex
by changing R — C in what follows.) For k < dim V' define the Stiefel manifold

(1.14) Sti(V) = {b: R¥ — V : b is injective}.

It has a free right action of GLi(R) whose quotient Grg (V') is a manifold, the Grassmannian of
k-dimensional subspaces of V. For k = 1 we obtain the projective space P(V) of lines in V. The
tautological vector bundle of rank k is associated to the standard representation of GLj(R) on R¥;
the fiber of the associated bundle at a k-plane W € Gri (V) is canonically identified with W. The
tangent bundle to Gri (V) is not associated to the Stiefel bundle St (V) — Gri(V).



