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I will post occasional notes to give supplemental material from a lecture, or to clarify some points

and provide more details. These are meant only to supplement your own notes, not to replace them.

I also post readings.

1. Smoothness of a Riemannian metric

I said a Riemannian metric on a smooth manifold X is a “smoothly varying” assignment of

inner products on the tangent spaces TxX. I gave a definition of ‘smoothly varying’ in terms of

local coordinates; here I explain how to define smoothness of the metric without coordinates. I

recommend you also read the handout on fiber bundles. This construction is an instance of the

general idea that it is powerful to use our known basic concepts (calculus on manifolds) on more

complicated spaces, rather than introduce new concepts.

Recall that an inner product on a real vector space V is a map

(1.1) gV : V ˆ V ÝÑ R

which satisfies some properties: it is bilinear, symmetric, and positive. So the data is the map (1.1).

On a manifold X the data is a collection of maps

(1.2) gx : TxX ˆ TxX ÝÑ R, x P X.

The issue is to formulate the condition that gx is smooth in x.
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(1.3) Fiber products. Here is a very useful general construction and exercise for you. Let

(1.4)

Z

g

��
Y

f // X

be a diagram of smooth maps of smooth manifolds. Then the fiber product is a smooth manifold W

and dotted maps which make the diagram

(1.5)

W //

��

Z

g

��
Y

f // X

commute. As a set we can define

(1.6) W “ tpy, zq P Y ˆ Z : fpyq “ gpzqu.

Proposition 1.7. If either f or g is a submersion, then W is a smooth manifold.

More generally, it suffices to assume that f is transverse to g.

(1.8) The construction. Now we construct a manifoldW which is the domain of a function g : W Ñ

R that encodes all of the gx simultaneously. Then we simply ask that g be a smooth map of

manifolds. Now we have the tangent bundle π : TX Ñ X whose fiber over x is TxX; we want a

new fiber bundle p : W Ñ X whose fiber p´1pxq is TxX ˆ TxX. Observe first that V ˆ V is the

fiber product of

(1.9)

V

��
V // pt

and then define W to be the fiber product

(1.10)

TX

π
��

TX
π // X

2. Orientation

Here is some material to remind you about orientations.
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(2.1) Orientation of a real vector space. Let V be a real vector space of dimension n ą 0. A

basis of V is a linear isomorphism b : Rn Ñ V . Let BpV q denote the set of all bases of V . The

group GLnpRq of linear isomorphisms of Rn acts simply transitively on the right of BpV q by compo-

sition: if b : Rn Ñ V and g : Rn Ñ Rn are isomorphisms, then so too is b ˝ g : Rn Ñ V . We say that

BpV q is a right GLnpRq-torsor. For any b P BpV q the map g ÞÑ b ˝ g is a bijection from GLnpRq
to BpV q, and we use it to topologize BpV q. Since GLnpRq has two components, so does BpV q.

Definition 2.2. An orientation of V is a choice of component of BpV q.

(2.3) Determinants and orientation. Recall that the components of GLnpRq are distinguished by

the determinant homomorphism

(2.4) det : GLnpRq ÝÑ R ­“0;

the identity component consists of g P GLnpRq with detpgq ą 0, and the other component consists

of g with detpgq ă 0. On the other hand, an isomorphism b : Rn Ñ V does not have a numerical

determinant. Rather, its determinant lives in the determinant line DetV of V . Namely, define

(2.5) DetV “ tε : BpV q Ñ R : εpb ˝ gq “ detpgq´1εpbq for all b P BpV q, g P GLnpRqu.

Exercise 2.6. Prove the following elementary facts about determinants and orientations.

(i) Construct a canonical isomorphism DetV
–
ÝÝÑ

ŹnV of the determinant line with the highest

exterior power. The latter is often taken as the definition.

(ii) Prove that an orientation is a choice of component of DetV zt0u. More precisely, construct

a map BpV q Ñ DetV zt0u which induces a bijection on components.

(iii) Construct the “determinant” of an arbitrary linear map b : Rn Ñ V as an element of DetV .

Show it is nonzero iff b is invertible.

(iv) More generally, construct the determinant of a linear map T : V Ñ W as a linear map

detT : DetV Ñ DetW , assuming dimV “ dimW .

(v) Part (ii) gives two descriptions of a canonical t˘1u-torsor1 (=set of two points) associated

to a finite dimensional real vector space. Show that it can also be defined as

(2.7) opV q “ tε : BpV q Ñ t˘1u : εpb ˝ gq “ sign detpgq´1εpbq for all b P BpV q, g P GLnpRqu.

Summary: An orientation of V is a point of opV q.

(2.8) Orienting the zero vector space. There is a unique zero-dimensional vector space 0 consisting

of a single element, the zero vector. There is a unique basis—the empty set—and so by (2.5) the

determinant line Det 0 is canonically isomorphic to R and opV q is canonically isomorphic to t˘1u.

Note that
Ź0
p0q “ R as

Ź0V “ R for any real vector space V . The real line R has a canonical

orientation: the component Rą0 Ă R ­“0. We denote this orientation as ‘`’. The opposite orientation

is denoted ‘´’.

1t˘1u is the multiplicative group of square roots of unity, sometimes denoted µ2.
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Exercise 2.9 (2-out-of-3). Suppose

(2.10) 0 ÝÑ V 1
i
ÝÑ V

j
ÝÑ V 2 ÝÑ 0

is a short exact sequence of finite dimensional real vector spaces. Construct a canonical isomorphism

(2.11) DetV 2 bDetV 1 ÝÑ DetV.

Notice the order: quotient before sub. If two out of three of V, V 1, V 2 are oriented, then there is a

unique orientation of the third compatible with (2.11). This lemma is quite important in oriented

intersection theory.

(2.12) Real vector bundles and orientation. Now let X be a smooth manifold and V Ñ X a finite

rank real vector bundle. For each x P X there is associated to the fiber Vx over x a canonical

t˘1u-torsor opV qx—a two-element set—which has the two descriptions given in Exercise 2.6(ii).

Exercise 2.13. Use local trivializations of V Ñ X to construct local trivializations of opV q Ñ X,

where opV q “
š

xPX opV qx.

The 2:1 map opV q Ñ X is called the orientation double cover associated to V Ñ X. In case

V “ TX is the tangent bundle, it is called the orientation double cover of X.

Definition 2.14.

(i) An orientation of a real vector bundle V Ñ X is a section of opV q Ñ X.

(ii) If o : X Ñ opV q is an orientation, then the opposite orientation is the section´o : X Ñ opV q.

(iii) An orientation of a manifold X is an orientation of its tangent bundle TX Ñ X.

Orientations may or may not exist, which is to say that a vector bundle V Ñ X may be orientable

or non-orientable. The notation ‘´o’ in (ii) uses the fact that opV q Ñ X is a principal t˘1u-bundle:

´o is the result of acting ´1 P t˘1u on the section o.

Exercise 2.15. Construct the determinant line bundle DetV Ñ X by carrying out the determinant

construction (2.5) (cf. Exercise 2.6) pointwise and proving local trivializations exist. Show that a

nonzero section of DetV Ñ X determines an orientation.

(2.16) Submanifolds. Let Y Ă X be a submanifold. Then over Y we have a short exact sequence

of vector bundles

(2.17) 0 ÝÑ TY ÝÑ TX
ˇ

ˇ

Y
ÝÑ νYĂX ÝÑ 0

where the normal bundle νYĂX is defined as the quotient vector bundle pTX
ˇ

ˇ

Y
q{TY Ñ Y .

Definition 2.18. A co-orientation of Y Ă X is an orientation of νYĂX Ñ Y .
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