NOTES ON LECTURE 3 (RIEMANNIAN GEOMETRY)

DANIEL S. FREED

Contents

1. Lie groups and right torsors 1
(1.1) Definition and Lie algebra 1
(1.2) Maurer-Cartan 1-form 1
(1.4) Right G-torsors 2
2. Prescribing curvature of plane curves 2
(2.2) Interpretation as equation for an integral curve 2
(2.3) Embedding the affine group in a linear group 3
(2.8) Differential form version 3

I'll give a few more details about the setup for proving the existence of plane curves with prescribed curvature.

1. Lie groups and right torsors

(1.1) Definition and Lie algebra. A Lie group G is a smooth manifold which is simultaneously a group such that the group operations of multiplication $G \times G \rightarrow G$ and inversion $G \rightarrow G$ are smooth. Given an element $g \in G$ there is a diffeomorphism $L_{g}: G \rightarrow G$ defined by $L_{g}(x)=g x$: it is left multiplication by g. Its differential maps vector fields on G to vector fields on G. A vector field ξ is left-invariant if $\left(L_{g}\right)_{*} \xi=\xi$ for all $g \in G$. The left invariant vector fields form a finite dimensional subspace \mathfrak{g} of all vector fields. (It is closed under Lie bracket and is a finite dimensional Lie algebra, but we will not use that structure today.) We can evaluate a vector field at any point, for example the identity $e \in G$, and so obtain a linear isomorphism $\mathfrak{g} \rightarrow T_{e} G$.
(1.2) Maurer-Cartan 1-form. A Lie group has a tautological 1-form $\theta \in \Omega_{G}^{1}(\mathfrak{g})$ defined as follows. At every point $x \in G$ it is a linear map $T_{x} G \rightarrow \mathfrak{g}$, and we define it to be the inverse of the evaluation isomorphism $\mathfrak{g} \rightarrow T_{x} G$. In other words, it takes a tangent vector at x and extends it to a left-invariant vector field.

We will come back to the important Maurer-Cartan equation, which encodes much about the structure of the Lie group:

$$
\begin{equation*}
d \theta+\frac{1}{2}[\theta \wedge \theta]=0 \tag{1.3}
\end{equation*}
$$

Date: January 24, 2017.
D. S. FREED

The Lie bracket appears in this equation, which is an equation in $\Omega_{G}^{2}(\mathfrak{g})$. But we will not need it today. (We may come back and talk about the analogous theorem for surfaces, in which case we'll use (1.3) as an integrability condition for a system of partial differential equations. For ordinary differential equations there is no integrability condition.)
(1.4) Right G-torsors. A right G-torsor P is a smooth manifold with a simply transitive right action $P \times G \rightarrow P$. If we pick a point $p_{0} \in P$ then we obtain an isomorphism

$$
\begin{align*}
\phi_{p_{0}}: G & \longrightarrow P \\
x & \longmapsto p_{0} \cdot x \tag{1.5}
\end{align*}
$$

Think of this as a "coordinate system" on P. If $p_{1}=p_{0} \cdot g$ is another point of P, then you can easily compute that the change of coordinates

$$
\begin{equation*}
\phi_{p_{0}}^{-1} \circ \phi_{p_{1}}=L_{g} \tag{1.6}
\end{equation*}
$$

is left translation by g. This means that any left-invariant concept on G transports to P. Thus there is a linear map of \mathfrak{g} into vector fields on P, and there is a tautological 1-form $\theta \in \Omega_{P}^{1}(\mathfrak{g})$. You should think these through directly in terms of the right G-action on P.

2. Prescribing curvature of plane curves

Let E be a Euclidean plane, $I \subset \mathbb{R}$ an open interval, and $k: I \rightarrow \mathbb{R}$ a smooth function. We seek to construct an immersion $\iota: I \rightarrow E$ and a co-orientation of the image so that the signed curvature is k. Recall that the strategy is to lift ι to a map $\tilde{\iota}: I \rightarrow \mathcal{B}_{O}(E)$ which we write as $\tilde{\iota}(t)=\left(p(t) ; e_{1}(t), e_{2}(t)\right)$. We ask that e_{1} be normal to the image and e_{2} tangent; we use e_{1} to define the co-orientation. Since e_{2} is the tangent, we have $\dot{p}(t)= \pm e_{2}(t)$, and for convenience we choose the $+\operatorname{sign}$. The time derivatives of e_{1} and e_{2} are given by the curvature, as derived in the lecture, so altogether we have

$$
\frac{d}{d t}\left(\begin{array}{lll}
p & e_{1} & e_{2}
\end{array}\right)=\left(\begin{array}{lll}
p & e_{1} & e_{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.1}\\
0 & 0 & k \\
1 & -k & 0
\end{array}\right)
$$

(2.2) Interpretation as equation for an integral curve. The 3×3 matrix $A(t)$ depends on $t \in I$ (as do the row vectors). Recall that $\mathcal{B}_{O}(E)$ is a right G-torsor for $G=\mathrm{Euc}_{2}$ the Euclidean group of symmetries of the standard Euclidean plane \mathbb{E}^{2}. I claim that we can identify that 3×3 matrix as lying in its Lie algebra \mathfrak{g}, and so $A: I \rightarrow \mathfrak{g}$. Then according to (1.4) we get a curve of vector fields on $\mathcal{B}_{O}(E)$, that is a time-varying vector field. Equation (2.1) is the equation for an integral curve of that vector field, and now the basic theorem on ODE applies.
(2.3) Embedding the affine group in a linear group. The expression in terms of matrices applies to affine space of any dimension, but for convenience we write it for \mathbb{A}^{2} with coordinates x, y. Namely, use the affine linear map

$$
\begin{align*}
\mathbb{A}^{2} & \longrightarrow \mathbb{R}^{3} \\
(x, y) & \longmapsto\left(\begin{array}{l}
1 \\
x \\
y
\end{array}\right) \tag{2.4}
\end{align*}
$$

Recall that there is a split group extension

$$
\begin{equation*}
1 \longrightarrow \mathbb{R}^{2} \longrightarrow \mathrm{Aff}_{2} \longrightarrow G L_{2} \mathbb{R} \longrightarrow 1 \tag{2.5}
\end{equation*}
$$

split by the origin $(0,0) \in \mathbb{A}^{2}$. Then we have an injection

$$
\begin{equation*}
\mathrm{Aff}_{2} \longrightarrow G L_{3} \mathbb{R} \tag{2.6}
\end{equation*}
$$

which fixes the image of (2.4): it takes $(h, k) \in \mathbb{R}^{2}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \subset G L_{2} \mathbb{R}$ to the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \tag{2.7}\\
h & a & b \\
k & c & d
\end{array}\right)
$$

The Lie algebra is obtained by differentiating a curve of matrices (2.7) through the identity. For the Euclidean group we restrict to the subgroup $O_{2} \subset G L_{2} \mathbb{R}$; the Lie algebra of O_{2} consists of 2×2 skew-symmetric matrices. Putting this together, we see that the matrix in (2.1) lies in the Lie algebra of Euc_{2}, as claimed.
(2.8) Differential form version. I encourage you to think through the translation to the following formulation. Define the \mathfrak{g}-valued 1 -form

$$
\alpha=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.9}\\
0 & 0 & k(t) d t \\
d t & -k(t) d t & 0
\end{array}\right) \quad \in \Omega_{I}^{1}(\mathfrak{g})
$$

on I. The integral curve equation (2.1) is equivalent to the equation

$$
\begin{equation*}
\tilde{\iota}^{*} \theta=\alpha \tag{2.10}
\end{equation*}
$$

in $\Omega_{I}^{1}(\mathfrak{g})$. Here $\theta \in \Omega_{\mathfrak{B}_{O}(E)}^{1}(\mathfrak{g})$ is the Maurer-Cartan form, as in (1.4).

