NOTES ON LECTURE 3 (RIEMANNIAN GEOMETRY)

DANIEL S. FREED

Contents

1.	Lie groups and right torsors		1
	(1.1)	Definition and Lie algebra	1
	(1.2)	Maurer-Cartan 1-form	1
	(1.4)	Right G-torsors	2
2.	. Prescribing curvature of plane curves		2
	(2.2)	Interpretation as equation for an integral curve	2
	(2.3)	Embedding the affine group in a linear group	3
	(2.8)	Differential form version	3

I'll give a few more details about the setup for proving the existence of plane curves with prescribed curvature.

1. Lie groups and right torsors

(1.1) Definition and Lie algebra. A Lie group G is a smooth manifold which is simultaneously a group such that the group operations of multiplication $G \times G \to G$ and inversion $G \to G$ are smooth. Given an element $g \in G$ there is a diffeomorphism $L_g: G \to G$ defined by $L_g(x) = gx$: it is left multiplication by g. Its differential maps vector fields on G to vector fields on G. A vector field ξ is *left-invariant* if $(L_g)_*\xi = \xi$ for all $g \in G$. The left invariant vector fields form a finite dimensional subspace \mathfrak{g} of all vector fields. (It is closed under Lie bracket and is a finite dimensional *Lie algebra*, but we will not use that structure today.) We can evaluate a vector field at any point, for example the identity $e \in G$, and so obtain a linear isomorphism $\mathfrak{g} \to T_e G$.

(1.2) Maurer-Cartan 1-form. A Lie group has a tautological 1-form $\theta \in \Omega^1_G(\mathfrak{g})$ defined as follows. At every point $x \in G$ it is a linear map $T_xG \to \mathfrak{g}$, and we define it to be the inverse of the evaluation isomorphism $\mathfrak{g} \to T_xG$. In other words, it takes a tangent vector at x and extends it to a left-invariant vector field.

We will come back to the important *Maurer-Cartan equation*, which encodes much about the structure of the Lie group:

(1.3)
$$d\theta + \frac{1}{2}[\theta \wedge \theta] = 0$$

Date: January 24, 2017.

D. S. FREED

The Lie bracket appears in this equation, which is an equation in $\Omega_G^2(\mathfrak{g})$. But we will not need it today. (We may come back and talk about the analogous theorem for surfaces, in which case we'll use (1.3) as an integrability condition for a system of partial differential equations. For ordinary differential equations there is no integrability condition.)

(1.4) Right G-torsors. A right G-torsor P is a smooth manifold with a simply transitive right action $P \times G \rightarrow P$. If we pick a point $p_0 \in P$ then we obtain an isomorphism

(1.5)
$$\begin{aligned} \phi_{p_0} \colon G \longrightarrow P \\ x \longmapsto p_0 \cdot x \end{aligned}$$

Think of this as a "coordinate system" on P. If $p_1 = p_0 \cdot g$ is another point of P, then you can easily compute that the change of coordinates

(1.6)
$$\phi_{p_0}^{-1} \circ \phi_{p_1} = L_g$$

is left translation by g. This means that any left-invariant concept on G transports to P. Thus there is a linear map of \mathfrak{g} into vector fields on P, and there is a tautological 1-form $\theta \in \Omega_P^1(\mathfrak{g})$. You should think these through directly in terms of the right G-action on P.

2. Prescribing curvature of plane curves

Let E be a Euclidean plane, $I \subset \mathbb{R}$ an open interval, and $k: I \to \mathbb{R}$ a smooth function. We seek to construct an immersion $\iota: I \to E$ and a co-orientation of the image so that the signed curvature is k. Recall that the strategy is to lift ι to a map $\tilde{\iota}: I \to \mathcal{B}_O(E)$ which we write as $\tilde{\iota}(t) = (p(t); e_1(t), e_2(t))$. We ask that e_1 be normal to the image and e_2 tangent; we use e_1 to define the co-orientation. Since e_2 is the tangent, we have $\dot{p}(t) = \pm e_2(t)$, and for convenience we choose the + sign. The time derivatives of e_1 and e_2 are given by the curvature, as derived in the lecture, so altogether we have

(2.1)
$$\frac{d}{dt} \begin{pmatrix} p & e_1 & e_2 \end{pmatrix} = \begin{pmatrix} p & e_1 & e_2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & k \\ 1 & -k & 0 \end{pmatrix}$$

(2.2) Interpretation as equation for an integral curve. The 3×3 matrix A(t) depends on $t \in I$ (as do the row vectors). Recall that $\mathcal{B}_O(E)$ is a right G-torsor for $G = \text{Euc}_2$ the Euclidean group of symmetries of the standard Euclidean plane \mathbb{E}^2 . I claim that we can identify that 3×3 matrix as lying in its Lie algebra \mathfrak{g} , and so $A: I \to \mathfrak{g}$. Then according to (1.4) we get a curve of vector fields on $\mathcal{B}_O(E)$, that is a time-varying vector field. Equation (2.1) is the equation for an integral curve of that vector field, and now the basic theorem on ODE applies.

LECTURE 3

(2.3) Embedding the affine group in a linear group. The expression in terms of matrices applies to affine space of any dimension, but for convenience we write it for \mathbb{A}^2 with coordinates x, y. Namely, use the affine linear map

(2.4)
$$\begin{aligned} \mathbb{A}^2 &\longrightarrow \mathbb{R}^3 \\ (x,y) &\longmapsto \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} \end{aligned}$$

Recall that there is a split group extension

$$(2.5) 1 \longrightarrow \mathbb{R}^2 \longrightarrow \operatorname{Aff}_2 \longrightarrow GL_2\mathbb{R} \longrightarrow 1$$

split by the origin $(0,0) \in \mathbb{A}^2$. Then we have an injection

which fixes the image of (2.4): it takes $(h, k) \in \mathbb{R}^2$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \subset GL_2\mathbb{R}$ to the matrix

(2.7)
$$\begin{pmatrix} 1 & 0 & 0 \\ h & a & b \\ k & c & d \end{pmatrix}$$

The Lie algebra is obtained by differentiating a curve of matrices (2.7) through the identity. For the Euclidean group we restrict to the subgroup $O_2 \subset GL_2\mathbb{R}$; the Lie algebra of O_2 consists of 2×2 skew-symmetric matrices. Putting this together, we see that the matrix in (2.1) lies in the Lie algebra of Euc₂, as claimed.

(2.8) Differential form version. I encourage you to think through the translation to the following formulation. Define the \mathfrak{g} -valued 1-form

(2.9)
$$\alpha = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & k(t)dt\\ dt & -k(t)dt & 0 \end{pmatrix} \in \Omega^1_I(\mathfrak{g})$$

on I. The integral curve equation (2.1) is equivalent to the equation

(2.10)
$$\tilde{\iota}^* \theta = \alpha$$

in $\Omega^1_I(\mathfrak{g})$. Here $\theta \in \Omega^1_{\mathcal{B}_O(E)}(\mathfrak{g})$ is the Maurer-Cartan form, as in (1.4).