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I’ll give a few more details about the setup for proving the existence of plane curves with pre-

scribed curvature.

1. Lie groups and right torsors

(1.1) Definition and Lie algebra. A Lie group G is a smooth manifold which is simultaneously

a group such that the group operations of multiplication G ˆ G Ñ G and inversion G Ñ G are

smooth. Given an element g P G there is a diffeomorphism Lg : G Ñ G defined by Lgpxq “ gx: it

is left multiplication by g. Its differential maps vector fields on G to vector fields on G. A vector

field ξ is left-invariant if pLgq˚ξ “ ξ for all g P G. The left invariant vector fields form a finite

dimensional subspace g of all vector fields. (It is closed under Lie bracket and is a finite dimensional

Lie algebra, but we will not use that structure today.) We can evaluate a vector field at any point,

for example the identity e P G, and so obtain a linear isomorphism gÑ TeG.

(1.2) Maurer-Cartan 1-form. A Lie group has a tautological 1-form θ P Ω1
Gpgq defined as follows.

At every point x P G it is a linear map TxG Ñ g, and we define it to be the inverse of the

evaluation isomorphism gÑ TxG. In other words, it takes a tangent vector at x and extends it to

a left-invariant vector field.

We will come back to the important Maurer-Cartan equation, which encodes much about the

structure of the Lie group:

(1.3) dθ `
1

2
rθ ^ θs “ 0.
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The Lie bracket appears in this equation, which is an equation in Ω2
Gpgq. But we will not need it

today. (We may come back and talk about the analogous theorem for surfaces, in which case we’ll

use (1.3) as an integrability condition for a system of partial differential equations. For ordinary

differential equations there is no integrability condition.)

(1.4) Right G-torsors. A right G-torsor P is a smooth manifold with a simply transitive right

action P ˆGÑ P . If we pick a point p0 P P then we obtain an isomorphism

(1.5)
φp0 : G ÝÑ P

x ÞÝÑ p0 ¨ x

Think of this as a “coordinate system” on P . If p1 “ p0 ¨ g is another point of P , then you can

easily compute that the change of coordinates

(1.6) φ´1p0 ˝ φp1 “ Lg

is left translation by g. This means that any left-invariant concept on G transports to P . Thus

there is a linear map of g into vector fields on P , and there is a tautological 1-form θ P Ω1
P pgq. You

should think these through directly in terms of the right G-action on P .

2. Prescribing curvature of plane curves

Let E be a Euclidean plane, I Ă R an open interval, and k : I Ñ R a smooth function. We

seek to construct an immersion ι : I Ñ E and a co-orientation of the image so that the signed

curvature is k. Recall that the strategy is to lift ι to a map ι̃ : I Ñ BOpEq which we write as

ι̃ptq “
`

pptq; e1ptq, e2ptq
˘

. We ask that e1 be normal to the image and e2 tangent; we use e1 to

define the co-orientation. Since e2 is the tangent, we have 9pptq “ ˘e2ptq, and for convenience we

choose the ` sign. The time derivatives of e1 and e2 are given by the curvature, as derived in the

lecture, so altogether we have

(2.1)
d

dt

`

p e1 e2
˘

“
`

p e1 e2
˘

¨

˝

0 0 0
0 0 k
1 ´k 0

˛

‚

(2.2) Interpretation as equation for an integral curve. The 3ˆ 3 matrix Aptq depends on t P I (as

do the row vectors). Recall that BOpEq is a right G-torsor for G “ Euc2 the Euclidean group of

symmetries of the standard Euclidean plane E2. I claim that we can identify that 3ˆ 3 matrix as

lying in its Lie algebra g, and so A : I Ñ g. Then according to (1.4) we get a curve of vector fields

on BOpEq, that is a time-varying vector field. Equation (2.1) is the equation for an integral curve

of that vector field, and now the basic theorem on ODE applies.
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(2.3) Embedding the affine group in a linear group. The expression in terms of matrices applies to

affine space of any dimension, but for convenience we write it for A2 with coordinates x, y. Namely,

use the affine linear map

(2.4)

A2 ÝÑ R3

px, yq ÞÝÑ

¨

˝

1
x
y

˛

‚

Recall that there is a split group extension

(2.5) 1 ÝÑ R2 ÝÑ Aff2 ÝÑ GL2R ÝÑ 1

split by the origin p0, 0q P A2. Then we have an injection

(2.6) Aff2 ÝÑ GL3R

which fixes the image of (2.4): it takes ph, kq P R2 and
`

a b
c d

˘

Ă GL2R to the matrix

(2.7)

¨

˝

1 0 0
h a b
k c d

˛

‚

The Lie algebra is obtained by differentiating a curve of matrices (2.7) through the identity. For

the Euclidean group we restrict to the subgroup O2 Ă GL2R; the Lie algebra of O2 consists of

2 ˆ 2 skew-symmetric matrices. Putting this together, we see that the matrix in (2.1) lies in the

Lie algebra of Euc2, as claimed.

(2.8) Differential form version. I encourage you to think through the translation to the following

formulation. Define the g-valued 1-form

(2.9) α “

¨

˝

0 0 0
0 0 kptqdt
dt ´kptqdt 0

˛

‚ P Ω1
Ipgq

on I. The integral curve equation (2.1) is equivalent to the equation

(2.10) ι̃˚θ “ α

in Ω1
Ipgq. Here θ P Ω1

BOpEq
pgq is the Maurer-Cartan form, as in (1.4).
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