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A few remarks left over from the lecture. Please also look at the readings on the web from

Warner and Spivak about Lie derivatives and the Frobenius theorem as we talk about those topics

in the next lecture.

1. Tensors and linearity over functions

I said a bit in lecture, so will say more here. First, let me emphasize that in any theorem stated

globally for a manifold X you can apply the theorem on an open subset U Ă X, since U is itself a

manifold.

(1.1) The theorem. Let X be a smooth manifold and XpXq the (typically infinite dimensional)

vector space of smooth vector fields on X. Let

(1.2) T : XpXq ÝÑ Ω0
X

be a linear functional from vector fields to functions. We say T is linear over functions if

(1.3) T pfξq “ fT pξq, f P Ω0
X , ξ P XpXq.

Theorem 1.4. If T is linear over functions, then there exists a unique 1-form τ P Ω1
X such that

(1.5) T pξqppq “ τppξpq, p P X.

Here ξp P TpX is the value of the vector field ξ at p.
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Proof. We use (1.5) to define the functional τp and must prove that if ξ, ξ1 P XpXq satisfy ξp “ ξ1
p,

then

(1.6) T pξqppq “ T pξ1qppq.

First, if ξ “ ξ1 on some open set U containing p, then let f P Ω0
X be a smooth function supported

on U with fppq “ 1. Then

(1.7) fT pξq “ T pfξq “ T pfξ1q “ fT pξ1q,

and evaluating at p we conclude (1.6). Now suppose that ξp “ ξ1
p and we take U to be the domain

of a chart about p with local coordinates x1, . . . , xn. Write

(1.8) ξ “ ξi
B

Bxi
, ξ1 “ pξ1qi

B

Bxi

and let f be a cutoff function as above. Then fB{Bxi is a global vector field and we have

(1.9) T pξqppq “ fppqT pξqppq “ T pξif
B

Bxi
qppq “ ξippqT pf

B

Bxi
qppq

“ pξ1qippqT pf
B

Bxi
qppq “ T

`

pξ1qif
B

Bxi
˘

ppq “ fppqT pξ1qppq “ T pξ1qppq.

�

(1.10) d of a 1-form as a function on vector fields. Here’s an application which uses the Lie

bracket (which we discuss in the next lecture, so you may want to revisit this). Suppose α P Ω1
X .

Define

(1.11) T pξ, ηq “ ξαpηq ´ ηαpξq ´ α
`

rξ, ηs
˘

, ξ, η P XpXq.

Check that T is linear over functions in both variables and is skew-symmetric. Therefore T defines

an element in Ω2
X . You should check that it is in fact dα. Equation (1.11) is a very useful formula.

2. Symmetries of the curvature tensor

Again something we will return to, but you can verify now from the formula in local coordinates.

Recall that the Riemann tensor is

(2.1) R “ Ri
jk`

B

Bxi
b dxj b dxk b dx`.
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Lower an index by setting

(2.2) Rijk` “ gimR
m
jk`.

Then we have

(2.3)

Rjik` “ ´Rijk`

Rij`k “ ´Rijk`

Rk`ij “ Rijk`.

If we work at a point p and let V be the tangent space at that point, then these symmetries mean

that

(2.4)
1

4
Rijk`pdx

i ^ dxjq b pdxk b dx`q

is a symmetric bilinear form

(2.5) Kp :
Ź2V ˆ

Ź2V ÝÑ R.

A 2-plane Π Ă V determines an element in
Ź2V up to scale by associating ξ1 ^ ξ2 for any ordered

basis ξ1, ξ2 of V . Using the metric we can restrict to orthonormal bases e1, e2, in which case

e1 ^ e2 P
Ź2V is independent of the basis up to sign. Therefore,

(2.6) Kppe1 ^ e2 , e1 ^ e2q

is independent of the basis and just depends on Π Ă V . It is called the sectional curvature at p

of the plane Π. On a Riemannian 2-manifold Σ it gives a function K : Σ Ñ R, and the Gauss

Theorema Egregium states that this function is the Gauss curvature if Σ Ă E is a submanifold of

a Euclidean 3-space.
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