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ABSTRACT. We present a numerical study of the local stability of mean curvature flow of rotation-
ally symmetric, complete noncompact hypersurfaces with Type-II curvature blowup. Our numerical
analysis employs a novel overlap method that constructs “numerically global” (i.e., with spatial
domain arbitrarily large but finite) flow solutions with initial data covering analytically distinct re-
gions. Our numerical results show that for certain prescribed families of perturbations, there are two
classes of initial data that lead to distinct behaviors under mean curvature flow. Firstly, there is a
“near” class of initial data which lead to the same singular behaviour as an unperturbed solution;
in particular, the curvature at the tip of the hypersurface blows up at a Type-II rate no slower than
(T —t)~'. Secondly, there is a “far” class of initial data which lead to solutions developing a lo-
cal Type-I nondegenerate neckpinch under mean curvature flow. These numerical findings further
suggest the existence of a “critical” class of initial data which conjecturally lead to mean curvature
flow of noncompact hypersurfaces forming local Type-II degenerate neckpinches with the highest
curvature blowup rate strictly slower than (7 —¢)~!.

1. INTRODUCTION

The nature of finite time singularities in geometric flows such as Ricci flow and mean curvature
flow (MCF) has long been a focus of interest in the study of these flows. In both flows, the
formation of Type-I singularities, which are characterized by the supremum of the product of the
finite time to the singularity and the curvature norm being finite, predominate. Much less prevalent
are Type-II singularities, in which case the supremum of the product of the time to the singularity
and the curvature norm is necessarily infinite.

For immersed one-dimensional MCF (i.e., curve shortening flow), Type-II behavior can occur
for solutions originating from open sets of initial data [EW&7]. Nonetheless, it is a folklore con-
jecture that Type-I behavior is generic for compact (embedded) solutions. For MCEF, there is in fact
strong evidence in important work of Colding and Minicozzi [[CM12]] that only a restricted subclass
of Type-I tangent flows (self-shrinkers) is generic. For example, they prove that if X is a smooth,
complete, embedded self-shrinking surface without boundary and with polynomial volume growth
that is not a generalized cylinder, then there is a graph £ over ¥ of a compactly supported function
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with arbitrarily small C""-norm (for any fixed m) such that ¥ cannot occur as the tangent flow of
MCF originating from .

In the noncompact setting, Type-II singularities can form in solutions originating from an open
set within the class of rotationally symmetric initial data for embedded MCEF, as is shown by
two of the authors of this paper and their collaborator [IW19,IWZ20] (similar behavior in Ricci
flow has been verified in [Wul4]]). They prove that MCF of embedded noncompact hypersurfaces
satisfying certain condition necessarily develop a Type-II singularity. Furthermore, the maximum
of the curvature measured in terms of ||, where & denotes the second fundamental form, of such
a solution occurs at the tip, with the Type-II blowup of the flow approaching a translating solution

known as the bowl soliton — the unique (up to rigid motion) translating solution that is rotationally
symmetric and strictly convex [Has15]] — in the region surrounding the tip (i.e., the left most point
on the hypersurface in Figure[I). At spatial infinity (i.e., on the far right of Figure[I)), the solution
remains asymptotic to a shrinking cylinder and hence forms a Type-I singularity. In particular,
such a solution is an example of a degenerate neckpinch in MCF forming at spatial infinity.

FIGURE 1. Diagram of a MCF solution forming a degenerate neckpinch at spatial
infinity with the curvature at the tip (on the left) blowing up at a Type-II rate, as
constructed in [IW19,IWZ20].

What is the stability of the noncompact mean curvature flow behavior illustrated in Figure [I]
and discussed in [IW19] and [IWZ20]? In this work, we carry out a numerical stability analysis
by simulating mean curvature flows of embedded noncompact hypersurfaces that are perturba-
tions of the embeddings considered in [IW19,IWZ20]]. Retaining the rotational symmetry in these
perturbations, we find that there is one class of such perturbations for which the simulated mean
curvature flows develop Type-II singularities modelled by the bowl soliton, and there is another set
of these perturbations for which the numerical simulations develop Type-I singularities. For this
second class, the Type-I singularities that occur are all of the “neckpinch” type. The perturbations
that lead to mean curvature flows with Type-II singularities generally involve distortions of the
initial embeddings very close to the tip (which we call the “near class” in this paper), while those
perturbations that lead to Type-I singularities generally involve distortions that are not close to the

1Precisely, the hypersurface is a complete, rotationally symmetric, strictly convex graph over a shrinking ball that
is asymptotically enveloped within a shrinking cylinder near spatial infinity; see Figure
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tip (called the “far class” in this work). Interestingly, as noted below in Figure [5] there are per-
turbations of the initial data which are not especially close to the tip, yet the numerical simulation
of the MCF starting from that perturbed initial data set approaches the bowl soliton with Type-II
behavior at the tip and with no neckpinch singularity forming away from the tip. We define the
“near” and “far” classes (in Section [#.1)and 4.2] resp.) based on the MCF behavior rather than on
the location of the perturbation.

One expected consequence of the aforementioned numerical results is that if one were to con-
sider a one-parameter family (with parameter s) of rotationally symmetric perturbed initial em-
beddings that proceeds from the near class to the far class, then the MCF solutions evolving from
all the embeddings up to a certain value s¢ develop Type-II singularities, while the flows evolving
from the embeddings up to a certain value s; > so develop Type-I neckpinch singularities. The
question then arises regarding what happens for the MCF solution that evolves from an embedding
corresponding to an intermediate parameter value s € [sg, 51]-

For analogous numerical simulation studies of Ricci flow on a compact manifold carried out by
two of the authors [GI05,/GIO8], one set of parameters lead to nondegenerate neckpinches while
another set of parameters lead to round singularities, and a very distinctive behavior — a degenerate
neckpinch, corresponding to some intermediate, critical parameter value so — is observed. The
same phenomenon is seen in the remarkable numerical studies of gravitational collapse carried out
by Choptuik. Notably, in certain of his numerical simulations of the gravitational collapse governed
by solutions of Einstein’s gravitational field equations, very distinctive critical behavior is found
to occur for a unique choice of the initial data along a one-parameter family of such gravitational
data [[Cho93|. Interestingly, for an alternative collection of Choptuik’s numerical simulations of
gravitational collapse, critical behavior is not found [GMGO7].

One challenge in carrying out these numerical simulations is the need to ensure compatibility
of the evolutions that we carry out in two different regions with two different coordinate systems.
Using the coordinate z for the direction parallel to the enveloping cylinder, and the coordinate r
for the radial direction orthogonal to z, we are led to evolve the function z(r,7) in the region near
the tip, and to evolve the function r(z,7) in the region away from the tip and along the cylindrical
region. Coordinate transformations of this sort are of course familiar in differential geometry, but
they do present a challenge in these numerical simulations. Since the near class of initial data
generally involves perturbations in the region where we work with z(r,#) while the far class of
initial data generally involves perturbations in the region where we work with r(z,), we note that
these coordinate transformations make it somewhat difficult to very closely investigate whether
distinctive critical behavior occurs for perturbations located at the transition region.

While we have looked very carefully at numerical simulations of the mean curvature flows for
initial embeddings very close to the transition from the near class to the far class, we have not
found any distinctive critical behavior there. This may mean that the potential critical behavior
does not exist, or that it does exist but is too unstable to be readily found by numerical experiments.
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Inferring from our numerical results, we conjecture that a critical behavior exists (see Conjecture
[5.1), and further investigations are needed.

The perturbations of the initial embeddings we consider in this work are all rotationally sym-
metric. In future work, we plan to consider perturbations that do not retain this symmetry. We
conjecture that if these perturbed initial embeddings remain small and confined to a region near
the tip, the resulting MCF solutions are likely to still produce Type-II singularities modeled by a
bowl soliton in the neighborhood of the tip.

This paper is organized as follows. In Section 2, we briefly review from [IW19,[IWZ20] the
construction of noncompact, rotationally symmetric MCF solutions with Type-II curvature blowup
at the tip. In Section 3| we discuss the computational techniques used to carry out the numerical
simulations done here. Numerical results for the near classes and the far classes are presented in
Section 4, These results lead to conjectures on the asymptotic behavior of mean curvature flows
originating from initial data similar to the near class, and the existence of a critical class as one
interpolates between the near classes and the far classes. Concluding remarks and discussions of
future directions appear in Section 5]
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2. SET UP

Following the set up in [IW19,IWZ20], we consider the mean curvature flow of rotationally
symmetric hypersurfaces embedded in Euclidean space. For any point (xq,x,...,X,) € R for

n =2, we write
7 = Xo, r=/xi4 - +x2

We consider a noncompact hypersurface I" which is obtained by rotating the graph of r(z), a <

7 < 00, around the z-axis. We assume that r(z) is strictly concave so that I is strictly convex, and

that r is strictly increasing with r(a) = 0 and with li/m r(z) = ro, where ry is the radius of the
z /o0

enveloping cylinder. The function r is assumed to be smooth except at z = a. We note that this
particular non-smoothness of r is a consequence of the choice of the (cylindrical-type) coordinates;
if the time-dependent flow function r(z,¢) is inverted in a particular way, then this irregularity is
removed. The point where r = 0 is called the tip of the hypersurface.
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We focus our attention on the class ¢ of complete hypersurfaces that are rotationally symmetric,
(strictly) conve smooth graphs over a ball and asymptotic to a cylinder. One readily verifies that
embeddings with these properties are preserved by MCF (see for example [SS14]]). By the general
existence result in [SS14], a MCF solution starting from any hypersurface in this class moves
towards its open end (e.g., to the right in Figure[I)) and remains asymptotic to a shrinking cylinder;
moreover, the hypersurface disappears at spatial infinity at the same time as the cylinder collapses.
We call this finite time the “vanishing time” of the hypersurface and denote it by 7. The results of
[TW19] and [TWZ20] exhibit, for each real number y > 1/2, MCF solutions in the class ¢ with the
Type-1II curvature blowup rate (7 — t)*(”l/ 2) at the tip, and also determine the precise geometry
of the solution both near the tip and near spatial infinity.

Let I'; denote a MCF solution constructed in [[W19,IWZ20]]. Representing I'; by the profile of
rotation, i.e., the graph of r(z,7), one finds that the function r satisfies the PDE
T2z n—1

_ _ ; 2.1
1—|—rz2 r 2D

Tt

A multi-scale blowup analysis of equation (2.1) is carried out in [IW19] for the case y > 1/2, and
in [IWZ20] for the “limiting” case y = 1/2. We recall the relevant details for each case below.
2.1. The case ¥ > 1/2. In the rescaled time and space parameters

T=—log(T—1), y=2T—-0)"""2 (7)) =r(c)(T—1)""?
equation (2.1)) becomes

-2yt
ey _
o —2YT 42

1+e 7¢y

(n—1)
¢

where the notation 8T]y means taking the partial derivative in T while keeping y fixed. We readily

note that equation (2.2) admits the constant solution ¢ = /2(n— 1), which corresponds to the
collapsing cylinder (which is a self-shrinking solution of MCF).

0,0 (1/2-ppg- "2 4 2, @2

We now introduce two more coordinate transformations. Firstly, because the hypersurface under
consideration is a convex graph over a ball, it is useful to invert the coordinates and work with

y(9,7) =y (¢ 1),7).
In terms of y(¢, 7), the MCF equation, which is equivalent to equations (2.2)) and (2.1]), becomes

Y90 (n—-1) ¢
2, = — = 1/2—7)y. 23
Secondly, it is further useful to work with the quantity A := —1/y, since by using A, the asymptoti-

cally cylindrical end of the embedded hypersurface corresponding to large values of y is effectively

2Throughout this paper, “convex” means “strictly convex”.
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compactified. The evolution equation for A (¢, 7) is

Moo =2A5/A  (n—1 ¢ 1

Delg A = 4 -2 — =) 2.4
T|¢ 1_'_627/115/14_{_( ¢ 2) ¢+<7 2) (2.4)
By rotational symmetry, we can let ¢ € (—/2n—2,v/2n—2) for n > 2, and 7 € [19,00) for
some large 1) = —log(T —tp) for the initial time 7y. The boundary conditions for (2.4) are

A(—=v2n—2,7) = A(v/2n—2,7) =0 for all T > 1.

Using the method of matched asymptotics, formal solutions to equation (2.4) can be derived in
two regions: the interior region where § := ¢e?® = O(1), and the exterior region, which is the
complement of the interior region (see details in [IW19] Section 2]). Global initial data for (2.4
are then defined by joining the formal functions in the exterior and the interior regions. Precisely,
taking any real number ¢ > 0 (e.g., ¢ = 1) and letting A := ¢(2n—2)"~'/2, we define

—A4e 2VOF (L) — e 2YOF(Ry)

—yp2\7-1/2] 0< |8 <Ry,
Ao(9) = +[A_C(2"_2_(Rle ) } 2.5)
—c(2n—2— 9?1712, Rie™7 < [9] < /2(n—1),

where R is some large constant, and F is the unique solution to the ODE initial value problem

F,
HF;g/A“ +(n—1)F /= (y—1/2)A,  F(0)=F,(0) =0.

In fact, F({) is defined for all { > 0 and gives the profile function for a scaled copy of the bowl
soliton. For any R; > 1 we choose, we can always find a sufficiently large 7y so that ¢ = {e V™
is close enough to 0 for definition (2.5)) to make sense and yield piecewise-smooth continuous
initial data for the PDE (2.4). The unperturbed initial data sets are specified by the constants
(n,c,R1,Tp). In the end of Section we discuss how to specify the perturbed initial data sets used
in our simulations.

Remark 2.1. For the numerical study in this paper, which is carried out using standard finite dif-
ferencing methods, piecewise-smooth continuous initial data for (2.4)) are sufficient. An extra step
to smooth the initial data is needed in [IW19].

2.2. The case y=1/2. Fora > 0to be chosen, we consider the rescaled time and space parameters
T:—lOg(T—t), y:Z+a10g(T_t)7 (P(yaT):r(x?t)(T_t)il/z‘
Then equation (2.1]) becomes

e "Pyy

9 (n-1)
3f|y¢: l—l—e*T(])yz .

2 ¢

+ad,+ (2.6)

Letting
y(0,7)=y(0»1),7),  A(¢,7):=—1/y(9,7).
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as in the case that y > 1/2, we find that A (¢, 7) evolves according to the PDE

7L¢¢—21$/A n—1 q) )
Jelg A = 1+61/,L$//14+( ; —E)M,—al. 2.7)

By rotational symmetry, we consider ¢ € (—v/2n—2,+/2n—2) forn > 2, and 7 € |1, c0) for some
large 7p. The boundary conditions are A (—v/2n—2,7) = A(v/2n—2,7) =0 for all T > 1.

As in the case that ¥ > 1/2, the formal solutions to equation (2.7) are derived in two regions: the
interior region where { := ¢e/2 = O(1), and the exterior region, which is the complement of the
interior region (see details in [IWZ20, Section 2]). Global initial data for (2.4) are then defined by

joining the formal functions in the exterior and the interior regions. Precisely, we take any a > 0,
fix any ¢ > alog(2n—2),let A :=1/(c —alog(2n—2)), and define

—A+eNF (L) — e M (R)) 1

Ro(9) = +A — (c—alog(2n—2—R}e™ ™)) 0<|¢| <Ry,

(2.8)
—1/(c—alog(2n—2—¢?)), Rie ™2 || < /2(n—1),

where R; is a large constant, and F' is the unique solution to the ODE initial value problem

R oo R0y =F(0)=o0.

14 FZ/A% ¢ ’ ¢
As remarked above, F({) is the profile function for a scaled copy of the bowl soliton. For any
R; > 1 we choose, we can find 7y large enough so that ¢ = § e~ ™/2 is close enough to O for
definition to make sense and yield piecewise-smooth continuous initial data for the PDE (2.7).
The unperturbed initial data sets are specified by the constants (n,c,R;,To). In the end of Section
[l we discuss how to specify the perturbed initial data sets used in our simulations.

Remark 2.2. As noted above, since the numerical study in this paper is carried out using finite
differencing methods, the use of piecewise-smooth continuous initial data for (2.7)) is sufficient.

3. NUMERICAL METHOD

Our numerical method essentially consists of writing the mean curvature flow PDE in a standard
parabolic form and then using a standard finite-difference method for parabolic equations. How-
ever, for reasons to be explained below, we find it convenient to write the equation in two different
ways and to use both of them.

We recall that equation tells us that, under mean curvature flow, the profile function r(z,t)
of a rotationally symmetric n-dimensional hypersurface embedded in R"*! satisfies the following
evolution equation:

Iz n—1
C1+r2 r

o |.(r) 3.1
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If r(z,t) is invertible, we can write z(r,¢) = z(r(z,t),t) and then z(r,t) satisfies the PDE

Zrr
A, (@)= 2+ (= 1)

Zr
.

(3.2)

In the rest of this paper, we consider the mean curvature flow of noncompact, rotationally sym-
metric surfaces in R®. (We briefly consider higher dimensions in Section |4.3and verify that those
solutions display the same qualitative behaviors as we observe for the MCF for surfaces.) Since
all of our simulations involve (hyper-)surfaces with rotational symmetry, the evolution equations
(3.1) and for higher dimensions differ from those for surfaces only in terms of a coefficient
appearing on the right hand side; consequently the same numerical analysis applies. Consider a
rotationally symmetric map from the two-sphere with coordinates (8, ¢) to R* with cylindrical
coordinates (r,z,@); that is, r and z are functions of 0. This is the setup for mean curvature flow
of a compact surface. For the noncompact surfaces that are the main focus of this paper, we can
consider maps from an open portion of the two-sphere. In terms of Cartesian coordinates, we have

(x,¥,2) = (rcos @,rsin@,z)

Under mean curvature flow, the profile r(z,7) evolves by (cf. (2.1))

r 1
AN =177~ (3.3)
Z

Correspondingly, if we invert the coordinates and work with

z(nt) = z(r(z,1),1),

then under MCF, z(r,t) satisfies the PDE

at|r(Z)

_ Zrr Zr
1+ 72 r

Thus it appears that we have a choice of evolving either equation (3.3)) or equation (3.4).

(3.4)

Let us consider first what is involved in numerically evolving (3.3). We approximate the function
r(t,z) by the values r{-‘ that the function takes at points z; equally spaced with spacing Az and with
times #; equally spaced with spacing A¢. We use standard centered finite differences, so that r, and
r,, are approximated by

k k
Fig1 — T
= 3.5
rz A7 (3.5)
and
_”f’(+1+”f‘11_2”{'c 3.6
Fzz = 3 3 (3.6)
(Az)
respectively.

Time evolution is carried out using the Euler method, so that

=k Ao, (3.7)



NUMERICAL STABILITY ANALYSIS OF NONCOMPACT TYPE-II MCF SOLUTIONS 9

where d;r is the finite difference version of the right hand side of equation (3.3) with the spatial
derivatives evaluated using equations (3.5)) and (3.6). The standard von Neumann stability analysis
of equation (3.7)) reveals that the time step must satisfy the Courant condition

A< Y(a)?. (3.8)

Equation (3.8) is already a severe constraint on the type of numerical simulations that we can
do. We need a small spatial step Az to accurately model the small spatial scales involved in the
approach to the singularity. However, the Courant condition then requires a very small time step.
The advantage of the rotational symmetry means that even with small Az, only a moderate amount
of computer memory is needed to store the values of r at the spatial grid points, and only a moderate
amount of computer time is needed to take the enormous number of time steps required by the tiny
time step Ar.

A more serious difficulty comes from the nature of the finite difference approximations in equa-
tions (3.5) and (3.6). These approximations are good for functions that vary very little on the scale
of Az. However, for our surfaces, r, and r,, are singular at the tip, which means that no matter how
small we make Az, the finite difference approximations fail at the tip.

Alternatively, we can evolve equation (3.4) which is regular at the tip. Here, the function z(z,r)
is represented by the values zf that it takes on a spatial grid with spacing Ar and at times with
spacing Az. In this setup, the finite difference approximations used are

k k
Zipl L
L= , 39
¢ 2Ar G9)
k k k
Zitai —2zg
Zpy = 0 (3.10)
(Ar)
Time evolution is again carried out using the Euler method, so that
2 =K+ Arayz, (3.11)

where d,z is the finite difference version of the right hand side of equation (3.4) with the spa-
tial derivatives evaluated using equations (3.9) and (3.10). The standard von Neumann stability
analysis of equation (3.11)) reveals that the time step must satisfy the Courant condition

Ar < L (Ar)? (3.12)

The approximations in equations and are good at the tip. However, far from the tip the
surface asymptotically approaches a cylinder, which means that z, — 00; consequently, equations
(3.9) and fail to be accurate in this region. Thus, we have one equation which does not
work near the tip, and another which does not work in the asymptotic region.

Our solution is to use both equations, with equation (3.3)) used in a region that does not include
the tip, and equation (3.4) used in a region that does not include the asymptotic region. Often
in numerical methods with two different grids, one makes the grids meet at a fixed boundary
point. Instead, in keeping with the spirit of differential geometry, we make our grids overlap, like
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two coordinate patches in an atlas. In a numerical simulation, the last point in a grid cannot be
evolved using the same method as the interior points and must be specified in some other way,
typically some sort of boundary condition. However, in our overlap method the final point of one
grid corresponds to an interior point of the other grid. Thus, we determine the evolution of the
finite difference function values at the end points of each grid using the function values at the
corresponding interior points of the alternate grid.

Specifically, consider the grid values z; representing the function z(r). Let N be the maximum
value of i; we must specify the value of zy corresponding to the value that z takes if r = (N — 1)Ar
(since the grid points have spacing Ar and the first grid point is at r = 0). We also have the
grid values r; corresponding to the function r(z) represented by the values on the other grid. If
r = (N — 1)Ar is contained between some r; and r;;1, then we interpolate linearly between the
values of z on that grid to obtain an interpolated value zy. If r = (N — 1)Ar is not contained
between any r; on the other grid (as is sometimes the case as the surface moves under MCF), then
we simply remove this last point from the grid, and subsequently the next to last grid point becomes
the last one. Correspondingly, this method is used to specify the value of r at the endpoint of the
other grid, and to remove that endpoint if necessary. Endpoints can also be removed from the grid
if derivatives become so large at those points that they cannot be accurately computed using finite
differences.

To avoid any significant round-off error, we perform all computations in double precision. Thus,
the main source of error in our simulations is truncation error, that is, the effect of the finite size
time step At and space step Ar (or Az). The finite difference operators that we use give rise to errors
that are first order in the time step and second order in the space step. However, since the Courant
condition requires that the time step is of order the space step squared, this means that each source
of truncation error is of the same order.

We end this section by explaining how we choose the perturbed initial data sets for the numerical
simulations. We first recall that for an unperturbed solution constructed in [IW19] (or [IWZ20],
resp.), its initial data set is obtained by joining a scaled bowl soliton to a cylinder at spatial infinity,
and is defined precisely in the rescaled coordinates by equation (2.3) (or (2.8), resp.). Expressed
in terms of the unscaled (z, r)-coordinates, the ODE for the bowl soliton takes the form

= (1+20) (B=). (3.13)

For each choice of v, we fix ¢ = 1 and choose 7 large (in all the numerical simulations we let
Tp = 4) so that the matched asymptotics explained in Section [2| make sense. We then choose 8
according to B = ¢! (y—1/2)2~(*=1/2)¢=(r+1/2)% and numerically integrate equation (3.13) out-
ward from r = 0 to value ry, which is obtained by writing R (chosen to be ¢Y®/2 in our numerical
simulations) in the unscaled r-coordinate. For all » > rj, we use the following analytic formula
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which follows from rewriting the second equation in (2.3) in the (r,z)-coordinates:

—_

1 1_ 1
2r)=z(r)+ = (270 =) — (2670 - 2)2 7T (3.14)
c
In the patch where we write z as a function of r, we use formula (3.14)). In the patch where r is
written as a function of z, we use the formula obtained by inverting the expression (3.14)).

To implement the perturbations of the initial data sets that we consider in this work, we distort
the above initial data set by putting a “dimple” near the tip (for the near class, cf. Figures 2H5|in
Section [4.1)) or putting a dimple in the region far away from the tip (for the far class, cf. Figures
[6H8]in Section 4.2)). Precisely, for a perturbed initial data set expected to be in the near class, we
choose an amplitude ap and a maximum r value r,,. We leave the surface undistorted for r > r,,
while for r < r,,, we change z as follows,

7‘2 2
= z+ag <1——2) .
I

m

For a perturbed initial data set expected to be in the far class, we choose an amplitude ag, and two
values of z: z, and z;,. We distort the surface only on the interval (z,,z5) by letting

(z—aq)*(z— Zb)z.

(25 —za)*

r—r—ao

4. NUMERICAL RESULTS

LetI';, wheret € [ty, T), be a MCF solution of a noncompact hypersurface constructed in [IW 19,
IWZ20]]. In particular, I'; is asymptotic to a shrinking cylinder Cyl, near spatial infinity for all
t € [to,T), where T is the time precisely when Cyl, collapses to a line [SS14] (see also Figure |1)).
At the tip of Ty, the curvature blows up at a Type-II rate (T —¢)~(¥*1/2) for y > 1/2; at spatial
infinity, I'; is asymptotic to Cyl,, which is a self-shrinking solution to MCF. We regard I'; as MCF
with a degenerate neckpinch forming at spatial infinity.

Let f‘to be a perturbation of I';; such that I 7, 15 still an embedding of a noncompact hypersurface
and asymptotic to Cyl, . Let r(z) be the profile of rotation for I';, and #(z) the profile of rotation
for f",o. In particular, by construction in [TW19,TWZ20], r(z) is always positive.

We now present the results from numerical simulations by solving MCF with initial data fto
using the overlapping method explained in Section 3

4.1. The near class. We define an initial data set Iy to be contained in the near class if the
MCEF solution starting from I'y develops a Type-II singularity (modelled by the bowl soliton) at
t =T < T. Our numerical simulations show that if the perturbation of r(z) is placed sufficiently
close to the tip so that T} 1, 1 still locally a graph over the cross-sectional ball of Cyl, , then the
evolution of I'; starting from I, generated by 7(z) resembles that of T;.

10°
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We now present some numerical simulations of MCF originating in the near classes. See Figure
for a simulation with ¥ = 1/2, and Figures [3| and 4] for simulations with two different values of
Yy > 1/2. The perturbation of the initial data set in each of Figures involves a dimple placed
very close to the tip. The near class also includes initial data sets with the dimple placed relatively
far from the tip, as shown in Figure [5] In each figure, the unscaled (signed) curvature at the tip is
denoted by Hy, whereas HSy := Hy(T — t)7’+1/ 2 denotes the rescaled curvature at the tip according
to the Type-II rate of the unperturbed solution I';.

0.3 T
=0 ——
t=0.002 ——
t=0.004
0.25 |+ t=0.01 -
t=0.015
t=0.018 ——
0.2 i
- 0.15 i
0.1 |
0.05 i
0 | |
20 25 30
4000 T T T T T T T T 2
3000 | 15
2000 4L
1000 - 0.5
£ 0 g o
-1000 | -0.5
-2000 | -1
-3000 | -15 -
-4000 ; ; ; ; ; ; ; ; 2 ; ; ; ; ; ; ; ;
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
t t
(B) Unscaled curvature at the tip (C) Rescaled curvature at the tip

FIGURE 2. Numerical simulation of a MCF solution in the near class, for y = 1/2.
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Figure shows the numerical simulation of a MCF solution in the near class, for y = 1/2. Graph
(A) shows the embeddings as time progresses. Note that the perturbation in the initial data near
the tip quickly disappears. Graph (B) shows the time development of the mean curvature at the tip.
Note that it becomes arbitrarily large near the singularity. Graph (C) shows the time development
of the rescaled mean curvature at the tip. Note that it approaches a constant, consistent with a
Type-II singularity forming at the tip.

0.3 ‘
t=0 ——
t=0.002 ——
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0.25 | t=0.01 |
t=0.015
t=0.018 ——
02| |
- 015 | |
0.1 —\\ |
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0 K’f \ | | \ |
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(A) MCF evolutions
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0 0.002 0.004 0.006 0.008 0.01 0012 0.014 0.016 0.018
t t

(B) Unscaled curvature at the tip (C) Rescaled curvature at the tip

FIGURE 3. Numerical simulation of a MCF solution in the near class, for y = 3/4.
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Figure shows the numerical simulation of a MCF solution in the near class, for y =3 /4. Graph
(A) again shows the time progression of the embeddings; in this case the perturbation in the initial
data disappears a bit more slowly. Graph (B) shows the time development of the mean curvature
at the tip again becoming arbitrarily large, while Graph (C) shows the rescaled mean curvature at
the tip approaching a constant, consistent with a Type-II singularity.

0.3 T
t=0 ——
t=0.002 ——
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0.25 - t=0.01 R
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

t t

(B) Unscaled curvature at the tip (C) Rescaled curvature at the tip

FIGURE 4. Numerical simulation of a MCF solution in the near class, with the
initial perturbation away from the tip, for y = 3/2.
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Figure |4| shows the numerical simulation of a MCF solution in the near class, for y = 3/2.
Graphs (A)—(C) indicate behavior very similar to that seen in the examples illustrated in Figure [2]
and Figure 3]

0.3 T

t=0 ——
t=0.002 ——
t=0.01
0.25 t=0.014 -
t=0.016
t=0.018 ——
0.2 i
- 015 i
0.1 i
0.05 | i
0 K’ | | | |
0 5 10 15 20 25 30
z
(A) MCF evolutions
0 T T T T T T T T 0
-200 ~
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-1200 1 06
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-1600 1 08 r
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-2000 . . . . : . ; ; 1 ; ; ; ; ; ; ; ;
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
(B) Unscaled curvature at the tip (C) Rescaled curvature at the tip

FIGURE 5. Numerical simulation of a MCF solution in the near class, for y = 3/4.

Figure [5] shows the numerical simulation of a MCF solution in the near class with the pertur-
bation of the initial data set located away from the tip, for y = 3/4. The bahaviors indicated in
Graphs (A)—(C) resemble those observed in the examples illustrated in Figures
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According to these numerical simulations, the mean curvature flow I'; developing from initial
data in the near class develops a Type-II singularity at the tip for a wide range of choices of 7.
Moreover, the above figures of the rescaled curvature at the tip suggest that the Type-II singularity
of T'; blows up at the same Type-II rate. Thus, we are led to the following conjecture:

Conjecture 4.1. Mean curvature flow solutions starting from initial data sets in the near class
have the same singular behavior as the unperturbed solution, their maximum curvatures blow up
at the same Type-II rate, and they always converge to a corresponding unperturbed solution.

Remark 4.2. In [[CSSO7], Clutterbuck, Schniirer and Schulze prove the stability of the bowl soliton
by showing that the MCF of an entire graph that is asymptotic to the bowl soliton converges
uniformly to the bowl soliton as r — co. In comparison, since I, is close to the bowl soliton in
the interior region, and so is the perturbed initial data f‘,o, our numerical results suggest a localized
stability result for the bowl soliton.

Remark 4.3. We recall the “vertical line test” which is a consequence of the Sturmian theorem
[AAGY5, Section 4] and says that the number of intersections of the graph of r(z,¢) and a vertical
line z = zg 1s nonincreasing in time. Our numerical simulation shows that a solution I; in the
near class converges to a solution I'; from [IW19,[IWZ20]. In particular, this is consistent with
the vertical line test as any intersection at the initial time disappears as the graph shrinks and
moves toward spatial infinity under mean curvature flow. The vertical line test does not imply any
convergence of the solution. In comparison, our numerical simulation indicates the convergence
of I'; and the local stability of I'; from [IW19,TWZ20).

4.2. The far class. We define an initial data set fto to be contained in the far class if the MCF
solution starting from f}o develops a local Type-I neckpinch singularity (which is modelled by
the cylinder S"~! x R) at t = T < T. Our numerical simulations show that if the perturbed initial
profile 7(z) contains a local minimum — no matter the size of its depth — sufficiently far from the
tip region of I';, (equivalently, in the region where |r/(z)] is sufficiently small), then MCF starting
from f,o generated by 7(z) develops a Type-I nondegenerate neckpinch.

In the literature, Type-I singularities are often called rapidly forming, because one has a bound
on the time remaining until the singularity form of the type /T —t < C/(supr, |h|); by contrast,
Type-II singularities are called slowly forming because no such bound holds. Our results for pertur-
bations in the far class illustrate this heuristically: a Type-II singularity is forming slowly at the tip.
However, the solution does not have time to become singular there, because a Type-I singularity is
rapidly forming away from the tip.

Below we display a few numerical simulations of MCF originating in the far classes. See Figure
[6]for a simulation with y = 1/2, and Figures|7]and[§]for simulations with two different values of y >
1/2. In each figure, the unscaled curvature at the tip is denoted by Hy, and HS := Ho(T —1)Y*+1/2
denotes the rescaled curvature at the tip according to the Type-II rate of the unperturbed solution
I.
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FIGURE 6. Numerical simulation of a MCF solution in the far class, for y=1/2.

Figure |§| shows the numerical simulation of a MCF solution in the far class, for y = 1/2. Note
that as time progresses, the perturbation far from the tip increases with time, indicating that a
nondegenerate neckpinch necessarily forms far away, albeit at a finite distance, from the tip. This
singular behavior is different from that of a degenerate neckpinch forming at spatial infinity in the
unperturbed solution.
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FIGURE 7. Numerical simulation of a MCF solution in the far class, for y = 3/4.
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Figure shows the numerical simulation of a MCF solution in the far class, for y = 3 /4. Again,
we see that the perturbation far from the tip grows with time. The evolution indicates the likely
formation of a nondegenerate neckpinch singularity far away, but still at a finite distance, from the
tip. This shows a singular behavior distinct from that of the unperturbed solution.

0.3 T
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t=0.0135
t=0.0145 ——
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- 015 b
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0.05
0
0 100 200 300 400 500

z

FIGURE 8. Numerical simulation of a MCF solution in the far class, for y=3/2.

Figure |8 shows the numerical simulation of a MCF solution in the far class, for y = 3/2. The
perturbation far from the tip — even though it is initially quite small — increases with time and
should result in a nondegenerate neckpinch singularity at a finite distance away from the tip, con-
trasting with the degenerate neckpinch at infinity in the unperturbed solution.

Remark 4.4. Under MCEF, a solution in the far class always has one intersection with a vertical line.
This is consistent with the vertical line test.

4.3. Near and far classes in higher dimensions. As explained in Section [3] the numerical results
in higher dimensions should be the same since the lower order term in the evolution equation just
has a different constant coefficient. Our simulations agree with this expectation, as illustrated by
the following sample figures for n = 3.
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FIGURE 9. Numerical simulation of a MCF solution in the near class, for n = 3
and y = 3/4.
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FIGURE 10. Numerical simulation of a MCF solution in the far class, for n = 3 and

y=13/4.

4.4. The critical class. The numerical results for the near class solutions (cf. Section 4.1)) and
those for the far class solutions (cf. Section display distinct singular behaviors. If we interpo-
late between the perturbations that lead to the near class and those that lead to the far class, then
we expect to encounter critical behavior, corresponding to a closed interval of intermediate pa-
rameter values [sg, s1] for so < s1. The existence of such critical behavior is already observed and
confirmed for the degenerate neckpinch in MCF of closed rotationally symmetric hypersurfaces
[AAGI5, AVI7]. Indeed, if we cinch a round sphere at the equator, then we find that loose cinch-
ing leads to a global Type-I round singularity modelled by the sphere, whereas tight cinching leads
to a local Type-I nondegenerate neckpinch modelled by the cylinder. Interpolating between these
two classes of Type-I singular behaviors leads to a degenerate neckpinch exhibiting both Type-I
and Type-II singular behaviors. However, to the best of the authors’ knowledge, whether or not
degenerate neckpinches in compact MCF occur for a closed interval of parameters or just a single
threshold value is still unknown. We note that a similar phenomenon appears in the rotationally
symmetric Ricci flows on spheres [[GI05, GIO8, GZ08, AIK11,|AIK15].

We conjecture the following behavior for a noncompact MCF solution in the critical class; see
Figure [T1] for a schematic drawing. If we perturb an initial hypersurface to have a mildly pinched
neck at some critical distance from the tip, then we expect that the MCF of the region containing the
tip and the neck should shrink to a cusp in the same fashion that MCF of an asymmetrical dumb-
bell develops a degenerate neckpinch (cf. [AV97]). The curvature near the neck is conjectured to
blow up at the Type-I rate (7 — t)_l/ 2 and the singularity is expected to be modelled by a cylinder.
We conjecture that the curvature at the tip blows up at a Type-Il rate (7 —1¢) —(=1/m) where m > 3 is
an integer. We note in particular that the Type-II blowup rates (7 — t)’(l’l/ ™) interpolate between
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the Type-I rate (T —t)~'/2 and the Type-II rates (T — )~ ("*+1/2) where y > 1/2, for the solutions
in the near class and those constructed in [IW19,IWZ20].

FIGURE 11. The conjectured behavior for a MCF solution in the critical class.

5. CONCLUSIONS AND DISCUSSIONS

Using a geometrically natural and analytically novel overlap method, we have carried out a nu-
merical investigation of the local stability of rotationally symmetric, complete noncompact MCF
solutions with Type-II curvature blowup as constructed in [[W19,IWZ20]. Our numerical results
indicate two distinct singular behaviors for two distinct families of local perturbations: local sta-
bility of the Type-II curvature blowup (at the tip) for solutions in the near class solutions, and local
instability that leads to Type-I nondegenerate neckpinch for solutions in the far class.

Our numerical results strongly suggest the existence of a critical class as one interpolates be-
tween the near class and the far class. Detection of such a critical class by direct numerical testing
can be very difficult, in part because it is more difficult to resolve a singularity developing in the
overlapping region for our overlap method (cf. Section[3]). Nevertheless, by drawing an analogy
from the setting of MCF of topological spheres, in which a degenerate neckpinch occurs as a criti-
cal class in interpolating through Type-I singular solutions [AAG95,/AV97|], we pose the following
conjecture about the geometric and analytical nature of a class of critical solutions.

Conjecture 5.1. A solution in the critical class develops a local Type-1I degenerate neckpinch
whose precise asymptotics are obtained in [AV9T].

Assuming the above conjecture is true, it is then intriguing to ask whether this mean curvature
flow might be able to continue through the degenerate neckpinch singularity. We note that simi-
lar questions for Ricci flow have been studied. Angenent, Caputo and Knopf [ACK12] construct
smooth forward Ricci flow solutions of singular initial metrics resulting from rotationally symmet-
ric nondegenerate neckpinches on $"*! (occurring at the singular time T'). In particular, the norm
of the Riemann curvature tensor | Rm | of these solutions decreases at a rate (precisely, logt‘_t}” for
t > T), which is slightly faster than the Type-I rate before the singularity. In comparison, Carson
has constructed smooth Ricci flows emerging from rotationally symmetric degenerate neckpinches
on §"T1 and the curvature of these solutions decreases at the same rate at which it blows up [Car16]

(see also [Carl8)).




22 DAVID GARFINKLE, JAMES ISENBERG, DAN KNOPF, AND HAOTIAN WU

So far we have only considered perturbations, and hence the perturbed MCF solutions, which
are all rotationally symmetric. A natural next step for these numerical studies is to consider per-
turbations with a less restrictive assumption placed on the symmetry of these perturbations. In
particular, we will be interested in non-rotationally symmetric perturbations near the tip where the
curvature blow-up is Type-1. Then the numerical simulations will allow us to explore whether or
not MCF of non-rotationally symmetric geometries evolve toward rotationally symmetric ones.
We remark that for MCF of noncompact surfaces, the stability of a rotationally symmetric Type-I
nondegenerate neckpinch under arbitrary C? perturbation is proved in a series of papers by one of
the authors of this paper and his collaborators [GK15,|GKS18|]. More generally, the stability of
generalized cylinders in the class of self-shrinkers is proved by Colding and Minicozzi [CM12].

In this paper, we have investigated numerically the stability of rotationally symmetric, asymp-
totically cylindrical MCF solutions with Type-II curvature blowup in finite time. Generalizing
to other asymptotic geometries, two of the authors of this paper and their collaborator have con-
structed MCF of entire graphs with super-linear growths at spatial infinity and a Type-II curvature
blowup occurring in infinite time [[WZ]. A numerical stability analysis for these solutions can be
pursued in the future.
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