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Abstract

We emphasize the wavelet transform as a very promising tool for solving the in-
verse fractal problem. We show that a dynamical system which leaves invariant
a fractal object can be uncovered from the space-scale arrangement of its wavelet
transform modulus maxima. We illustrate our theoretical considerations on ped-
agogical examples including Bernoulli invariant measures of linear and nonlinear
expanding Markov maps as well as the invariant measure of period-doubling dy-
namical systems at the onset of chaos. We apply this wavelet based technique to
’ analyze the fractal properties of DLA azimuthal Cantor sets defined by intersecting
the inner frozen region of large mass off-lattice DLA clusters with a circle. This
study clearly reveals the existence of an underlying multiplicative process that is
likely to account for the Fibonacci structural ordering recently discovered in the
apparently disordered arborescent DLA morphology. The statistical relevance of
the golden mean arithmetic to the fractal hierarchy of the DLA azimuthal Cantor
sets is demonstrated.
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1. INTRODUCTION

The diffusion-limited aggregation (DLA) model introduced by Witten and Sander! about
a decade ago has become the paradigm model for diffusion-controlled pattern forming
phenomena.l‘3 This prototype model mimics two-dimensional Laplacian growth processes
according to the following algorithm: particles originating from far away are added, one
at a time, to a growing cluster via random walk trajectories in the plane. Extensive on-
lattice and off-lattice computer simulations have produced complex branched fractals that
bear a striking resemblance to the tenuous tree-like structures observed in viscous fingering,
electrodeposition, bacterial and neuronal growths.!~1! The appealing simplicity of the DLA
model and its relevance to various experimental situations have stimulated considerable
experimental, numerical and theoretical interest.)”!! But having regard to the efforts spent.
the progress in capturing the screening mechanisms that govern DLA growth has been very
limited. Actually, only a little is known about the ramified DLA morphology which is still
very mysterious to many extents. In particular, we do not know whether some structural
order is hidden in the apparently disordered geometry of DLA clusters. More generally, we
still appear to be quite far from a physical understanding of Laplacian growth phenomena.
This explains why, after more that ten years of extensive inquiry, the DLA model remains
one of the most exciting theoretical challenge in the physics of structure formation.

One of the main obstacles to theoretical progress lies in the lack of structural charac
terization of the growing clusters. Most of the previous studies have mainly focused o
the multifractal analysis of either the DLA geometry or the growth probability distribution
along its boundary.!">® While the later displays unambiguous multifractal properties® (the
harmonic measure of DLA clusters is extremely non-uniform), the statistical self-similarity
of the DLA morphology is still a very much debated question.}?”* Recent geometrical anal-
ysis of large mass off-lattice DLA clusters (of sizes up to 30 millions particles) suggests the
possibility that plane DLA clusters might be multifractal'®; according to B. B. Mandelbrot'®
they might even not be self-similar at all. However, the statistical homogeneity of the inr
“frozen” region (namely the perimeter sites that are unlikely to grow further) of rather large
size DLA clusters (up to 108 particles) is rather well admitted since, within the numerical
uncertainty, the generalized fractal dimensions are all equal'™: D, = 1.61£0.03. (Note that
the data do not exclude some weak multifractal departure from statistical homogeneity.ls)
This means that the mass locally behaves as a power-law of the length scale with a scal-
ing exponent a ~ 1.61, which is independent of the point chosen on the cluster. But the
generalized fractal dimensions D, and the f(a) singularity spectrum are thermodynamical
functions that provide only “macroscopic” statistical information about the self-simila:
properties of fractal objects. The incompleteness of the multifractal description mainly lies
in the fact that, to some extent, the information concerning the hierarchical architecture of
these objects has been filtered (averaged) out.

To achieve a more elaborate structural analysis, we have recently advocated!® the use of
the continuous wavelet transform2°-23 (WT). This technique has proved to be well adapted
to the large hierarchy of scales involved in fractal pantterns.z“"29 When using this mathemat-
ical microscope to explore the intricate DLA morphology, we have discovered the exister °®
of Fibonacci sequences in the internal fractal branchings (in the inner “extinct” region -
large mass off-lattice DLA clusters.17:3031 This analysis also reveals that this underlying
hierarchy is likely to be intimately related to a predominant structural five-fold symme-
try. Our aim here is to establish the statistical relevance of the golden mean arithmetic
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to the structural fractal ordering of DLA clusters. Our investigation mainly concerns one-
dimensional cuts of large-mass off-lattice aggregates. This is the prize we have to pay for our
demonstration to be quantitative. Then, one can use the 1D continuous wavelet transform
which has recently been shown to be a very promising tool for solving the inverse fractal
problem.??

The paper is organized as follows. In Sec. 2, we describe a new technique based on
the wavelet transform modulus maxima (WTMM) representation that allows us to extract,
directly from the data, a dynamical system which leaves invariant a given fractal object
embedded in a one-dimensional space. Several well-known examples of multifractal measures
in the context of dynamical system theory are used to illustrate our purpose. In Sec. 3,
we apply this wavelet based technique to the so-called “azimuthal Cantor set” defined by
intersecting a DLA cluster, in its inner frozen region, with a circle. Several azimuthal
Cantor sets, corresponding to a statistical sample of 50 off-lattice DLA clusters of mass
M = 108, are analyzed. Therefore we expect the structural information extracted from our
WT analysis to be pertinent to the statistical study of the DLA morphology. We conclude

in Sec. 4.

2. SOLVING THE INVERSE FRACTAL PROBLEM
WITH WAVELETS

Fractal and multifractal concepts>-#? have proved very fruitful in the context of a statistical
“thermodynamic” description of scale invariant objects. But there is a need to get deeper
insight into the complexity of such objects and eventually to extract some “microscopic”
information about their underlying hierarchical structure. In many cases, the self-similarity
properties of fractal objects can be expressed in terms of a dynamical system which leaves
the object invariant. The inverse problem consists in recovering this dynamical system (orits
main characteristics) from the data representing the fractal object. This problem has been
previously approached within the theory of Iterated Function Systems.4®~45 But the methods
developed in this context are based on the search for a “best-fit” within a prescribed class
of IFS attractors (mainly linear homogeneous attractors). In that sense, they approximate
the self-similarity properties more than they reveal them. Here, we show that, in many
situations, the space-scale representation of the wavelet transform of a fractal object can be
used to extract some one-dimensional (1D) map which accounts for its construction process.
These results have been announced in a previous short communication in Ref. 32.

The fractal objects we will use to carry out our demonstration are the invariant measures
of “cookie-cutters”. A cookie-cutter®® is a map of A = [0, 1] which is hyperbolic (|77 > 1)
and so that T—!(A) is a finite union of s disjoint subintervals (Ak)1<k<s of A. For each k,
T = T)a, is a one to one map on A. An invariant measure g associated to T is a measure
which satisfies po T = pu. We will suppose that p is multiplicatively distributed on A:

po Ty = pent, vk e {l,..., s} (1)

where 3" pr = 1. These self-similar measures are also referred to as Bernoulli invariant
measures of expanding Markov maps.3” These measures have been the subject of consid-
erable mathematical interest.3710:46 Practically. they have been widely used for modeling
a large variety of highl; “-regular physical Itomilneioos notable examples include strange
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repellers which characterize transient behavior of nonlinear dynamical systems?*® and the
spatial distribution of the dissipation field in fully developed turbulent flows.3847

The 1D continuous wavelet transform of a measure p according to the analyzing waveic.
9 is defined as?5:26:

ol o) = [ 6(557 ) du, BCY

a

where @ € RT* is the scale parameter and b € R is the space parameter. Usually 9 is
chosen to have some vanishing moments, up to a certain order, so that it is orthogonal to
possible regular (i.e., polynomial) behavior of y. In the particular case of invariant mea-
sures of cookie-cutters, there are no such behavior, so we will use a simple “smoothing
wavelet”394248; 4 = exp(—z2). By combining Eqs. (1) and (2), a straightforward calcula-
tion at the first order in a (a < 1) leads to the following “self-similarity” relation®*?:

W, ()b, a) = %Ww[u](Tgl(b), T7V(b)a), VEEL,...,s 3)

where Tk—ll is the first derivative of 77 !. This relation can be interpreted as describing the
self-similarity properties of the wavelet transform itself in the (b, a) half-plane.?*? Our
goal is to study the self-similarity properties of p through those of its wavelet transform
Wylu]. For that purpose, we are not going to deal with the whole wavelet transform b:

49,50 je., the local maxima o1

only with its restriction to the local maxima of its modulus,
|W,[u)(z, a)| considered as a function of z. In fact, one can easily prove that the self-
similarity relation [Eq. (3)] still holds when restricted to the set of modulus maxima of the
wavelet transform. For more details, we refer the reader to our previous work in Ref. 40
and to a recent preprint by W. L. Hwang and S. Mallat,®! where an alternative approach
to recover the affine self-similarity parameters through a voting procedure based on Eq. (3)

is reported.

2.1 Bernoulli Invariant Measures of Linear Expanding
Markov Maps '

In the case of linear cookie-cutters, the T,;'l’s are linear, i.e., Tk'l(x) = 71z + 1, where
rx < 1. Then the self-similarity relation (3) becomes:

1
Ww[‘u](b, a) = ;)-;Wd,[p]('r‘kb + i, rka) , Vkel,...,s. (

The meaning of this relation is illustrated on a particular example in Fig. 1. For the sake
of simplicity, we choose s = 2, p; = p; = 1/2 and the T}’s to be linear: 73(z) = 5z/3 and
T, = 5z — 4. The corresponding invariant measure is shown in Fig. 1(a). The position of
its WTMM in the space-scale (half-)plane is displayed in Fig. 1(b). One can see on this
figure that the WTMM skeleton in the entire rectangle [0, 1]x]0, ao] (ao is an appropriate
coarsest scale which actually depends on the shape of the analyzing wavelet 1), is similar to
its parts that are respectively contained in the two rectangles delimited by the dashed line
namely [0, 3/5]x]0, 3ao/5] and [4/5, 1)x]0, ao/5], up to a global rescaling of the wavel:
transform.

Let us describe on this particular example our technique for recovering from the WTMM
skeleton, the discrete (cookie-cutter) dynamical system T'. The local maxima are lying on
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(a)

In(a)

1

Fig. 1 (a) Invariant measure of the two branch cookie-cutter Ty(z) = 5z/3, T2(z) = 5z — 4, distributed
with equal weights py = p» = 0.5 on the interval [0, 1]. (b) Position in the (z, a) half-plane of the WTMM
of the measure shown in (a), using a gaussian analyzing function; large scales are at the top. According
to the self-similarity relation [Eq. (4}], the maxima line arrangement in the two dashed rectangles is the
same as in the original rectangle. The bifurcation points associated to each rectangle are represented by
the symbols (). Arrows indicate the matching of these bifurcation points according to the self-similarity
relation [Eq. (4)]. (¢) 1D map that represents the position z.—1 of an order n — 1 bifurcation point vs.
the position z, of the associated order n bifurcation point following the tree matching defined in (b).
The graph of this map corresponds exactly to the original cookie-cutter. (d) Histogram of scale ratios
r = anfan—1 between the scales of two associated bifurcation points. (e) Histogram of amplitude ratios
p = [Wylul(zn, an)|/IWy[s](zn-1, an—1)| computed from two associated bifurcation points.

connected curves usually referred to as “maxima lines”.**%° We call “bifurcation point” any
point on the space-scale plane located at a scale where a maxima line appears and which is
equidistant to this line and to the closest longer line. The bifurcation points lie on a binary
tree whose root is the bifurcation poirt at the coarsest scale. Each bifurcation point defines
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naturally a subtree which can be associated to a rectangle in the space-scale plane. This
root corresponds to the original rectangle {0, 1]x]0, ag), whereas its two sons correspond to
reduced copies delimited by the dashed lines. As illustrated in Fig. 1(b), the self-similarity
relation (4) amounts to matching the “root rectangle” with one of its “son rectangles”,
i.e., the whole tree with one of the subtrees. More generally, this relation associates any
bifurcation point (Zn, a,,) of an order n subtree to its hierarchical homologous (Zn—1, Gn-1)
of an order n — 1 subtree. It follows from Eq. (4) that z, = 7¢Zn-1 + 1, and an, = TGp—1.
Thus by plotting z,-1 vs. Z,, one can expect to recover the graph of the initial cookie-
cutter T. This reconstructed 1D map is displayed in Fig. 1(c). As one can see, the linear
branches T3 and T are remarkably well reproduced by the data. Let us point out that
the non-uniform repartition of the data points on the theoretical branches results from the
lacunarity of the measure induced by the “hole” between the branches Ty and T3 of the
piece-wise linear map. In Fig. 1(d), we show the histogram of the (contracting) scale ratio
values between the scales of two bifurcation points of successive generations: 7 = @y /@n-1,
computed during investigation, systematically, of the WTMM skeleton in Fig. 1(b). As
expected, it displays two peaks corresponding to the two slopes 1 = 3/5 and ro = 1/5 of
77! and T;! respectively. Let us note that the peak corresponding to the smallest value
of r is lower than the other one; this is a direct consequence of the finite cut-off used in
our WT calculation at small scales. On a finite range of scales, the construction process
involves fewer steps with the smallest scale ratio 72 than steps with the largest one r;. (The
so-computed histogram can be artificially corrected in order to account for these finite size
effects; its suffices to plot N(r) In(1/7) instead of N(r).) Figure 1(e) displays the histogram
of amplitude ratio value p = |Wy[u)(zn, ax)| /Wyl (Zn-1, an-1)|. Up to the numerical
uncertainty, this distribution appears to be a Dirac at p = 0.5 which indicates [Eq. (4)] that
the weights [defined in Eq. (1)] are py = p2 = 0.5 or, in other words, that the measure is
uniformly distributed on the cookie-cutter Cantor set.

Remark 1. Let us mention that the distribution N(r) of scale ratios [Fig. 1(d)] is in &
way redundant with the 1D map [Fig. 1(c)], since it is basically made up of two Diracs
located at the inverse of the slopes of the two branches of this piece-wise linear map. On
the contrary, the distribution N(p) of amplitude ratios [Fig. 1(e)] brings a very important
piece of information which is not present in the 1D map: the repartition of the weights at
each construction step. In the case where this repartition is not uniform, we get a histogram
N (p) which no longer reduces to a single point p = 1/2 and one can furthermore study the
joint law of p with r in order to find out the specific “rules” for associating a p with a
(see Fig. 10).

In the case where s is no longer equal to 2, one can easily adapt the technique by trying
to match not only the root bifurcation point on its sons but also on its grandsons and so
on .... For instance, in the case s = 3, we will match the root with one of its sons and with
each of the two sons of its other son. The general algorithm that we have developed uses
a “best matching” procedure that automatically “chooses” the matching which is the most
consistent, e.g. such that the different derivatives of W, [u] follow the same self-similari.
rule as Wy[u]. Thus the algorithm is not looking for a given number s of branches that th
user would have guessed a priori; it automatically comes up with the “best” values of s. In
Fig. 2 are shown the 1D map, the histogram of scale ratios and the histogram of amplitude

ratios obtained for the Bernoulli measure generated with the following model parameters:
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Fig. 2 (a) Invariant measure of the three branch cookie-cutter Ti(z) = 5z, Ta(z) = 10z/3 — 2/3,
Ts(z) = 2z — 1, distributed with equal weights p1 = p2 = p3 = 1/3 on the interval {0,1]. (b) WTMM
skeleton computed with a gaussian analyzing function. (c) 1D map obtained with our tree matching
algorithm (see text). (d) Histogram of scale ratios r = anfan-1. (e) Histogram of amplitude ratios

> = [Wylu)(zn, an)l/IWy[sl(zn-1, an-1)|-

s=3,pp=p=p3=1/3and ry =02, 72 =03, 73 =05 All these values are very
accurately recovered by our algorithm.

Remark 2. In this work, we only consider measures which do not involve any “mem-
ory effect” in their hierarchical structure, i.e., the successive (backward) iterations always
consist in applying the same dynamical system T, independently of the previous itera-
tions. However, in a certain way, a construction rule involving a finite memory can be ac-

counted by increasing the number s of branches of a “no-memory” map T. As illustrated in
Fig. 2, this class of dynamical systems is directly amenable to our WT algorithm procedure.
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Nevertheless, it is important to emphasize that because of finite size effects, it is meaning-
less to look for some dynamical systems with a rather high number of branches; generally,
there would not be enough scales in the data in order to ensure the theoretical validity of
the outcoming discrete map.

2.2 Bernoulli Invariant Measures of Nonlinear Expanding
Markov Maps

In the former examples, we have described our wavelet based technique to solve the inverse
fractal problem for piece-wise linear cookie-cutters. Since locally in the space-scale plane,
the self-similarity relation (3) looks like Eq. (4), we can apply exactly the same technique
for nonlinear expanding maps. Let us point out that the hyperbolicity condition is a prio-
required for the first derivative of T,;'l involved in the right-hand side of Eq. (3), to be
finite. Figure 3 displays the 1D map extracted from the WTMM skeleton of the uniform
Bernoulli measure associated to a nonlinear cookie-cutter made of two inverse hyperbolic
tangent branches. Once again, the numerical results match perfectly the theoretical curve.
In this case, the histogram of amplitude ratios N(p) is still concentrated at a single point
p = 1/2. But the histogram of scale ratios N(r) involves more than simply two scale ratios
as before [Fig. 1(d)], since the nonlinearity of the map implies that new scale ratios are
actually operating at each construction step. This explains the broadening of the two pea
observed in Fig. 3(d). A careful analysis of the fine structure of this histogram would require
the investigation of a large number of construction steps, but this is out of the scope of the
present study.

2.3 Invariant Measures of Period-Doubling Systems at the
Onset of Chaos

As a first application of our wavelet based technique to a physical problem, let us analyze . =
natural measure associated to the iteration of quadratic unimodal maps at the accumulation
point of period-doublings. It is well-known®? that the discrete time dynamical system:
zi41 = frR(zi)=1- Rz?, exhibits, as the parameter R is increased, an infinite sequence of
subharmonic bifurcations which accumulate at Ro, where the system possesses a 2% orbit.
Beyond this critical value, the dynamics becomes chaotic. As independently emphasized by
M. Feigenbaum® and by P. Coullet and C. Tresser,”® there exists a deep analogy between
this transition to chaos and second-order phase transitions in critical phenomena. At~ °
critical value R = Roo, the map fr, belongs to the stable manifold of the fixed point f* of

the renormalization operation®2-5%:

L
-~ fQ)

The asymptotic behavior of the dynamics generated by fr,, is “universal” and corresponds

R[f] [f o SUF(1)2) (5)

to the one of f* which is confined on a Cantor set. The natural invariant measure is defined .

on this Cantor set as the visiting probability of the orbit of z = 0. This measure is displa. '

in Fig. 4(a). Disregarding the fact that fr.(z) is not hyperbolic at z = 0 (fg_(0) = V):
we have carried out our WT analysis on the invariant interval [f*(1), 1]. The results of this
analysis are shown in Fig. 4. A well-defined 1D map with two distinct hyperbolic branches
is numerically reconstructed in Fig. 4(c). A finer resolution computation would reveal that
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Fig. 3 (a) Invariant measure of a nonlinear cookie-cutter made of two inverse hyperbolic tangent branches.
(b) WTMM skeleton computed with a gaussian analyzing function. (c) 1D map obtained with the same
- ~velet transform tree matching analysis as in Fig. 1; the original nonlinear dynamical system (solid lines)

recovered accurately. (d) Histogram of scale ratios r = @n/an-1. (e) Histogram of amplitude ratios

p = Wylul(zn, an)l/[Welsl(zn-1, 8n-1)l-

the left-hand branch is linear with a slope —1/r = 1/f*(1) = —2.5, whereas the right-hand
one is nonlinear. A close inspection of the scaling ratio histogram in Fig. 4(d) confirms
this observation. The amplitude ratio histogram computed in Fig. 4(e) displays a unique
, sak at p = 1/2, which suggests that the weights associated to the two branches of the 1D
map are equal (p = p2 = 1/2). The period-doubling natural measure can thus be seen
as the invariant measure of the cookie-cutter shown in Fig. 4(c) with uniform probability
distribution. This result was derived theoretically by F. Ledrappier and M. Misiurewicz in
.0 55; these au:lors proved that the invariant measure of f*(z) is the same as the one of
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Fig. 4 (a) Invariant measure associated to the critical period-doubling dynamical system f* (see text’
(b) WTMM skeleton computed with a gaussian analyzing function. (c) 1D map obtained with our tre.
matching algorithm; the solid lines represent the theoretical prediction [Eq. (6)]. (d) Histogram of scale
ratios T = an/an-1. () Histogram of amplitude ratios p = |[Wy[e)(2n, an)|/[Wu[p)(zn-1, an-1)]-

the cookie-cutter defined by:

. {x/f"(l) Tl A 6

F@IFQ) e[ =), 1,

This map is hyperbolic; it is represented by solid lines in Fig. 4(c). Our numerical data are
in remarkable agreement with the theoretical prediction.
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3. UNCOVERING A MULTIPLICATIVE PROCESS IN THE
DLA AZIMUTHAL CANTOR SETS USING WAVELETS

A characteristic feature of diffusion-limited aggregation is the fact that most of the growth
takes place in an “active” zone, near the outer radius of the cluster, which collects practi-
cally all the new particles. This active zone moves outward, leaving behind an “extinct”
region®6~°® that can be considered as asymptotic in the sense that it is extraordinarily un-
likely to be modified by further growth. This screening of the inner region by the tips is
the basic reason for the fractal branching in DLA growth. To proceed to a quantitative
fractal analysis of the DLA edifice, we thus need to investigate rather large DLA clusters so
that their inner inactive regions contains several generations of branching. In Fig. 5(a), we
how a 10° particle off-lattice aggregate generated using an efficient algorithm!73%31 which
combines the simplicity of the off-lattice algorithm designed in Ref. 59, to the rapidity of
on-lattice hierarchical algorithms.®® Figure 5(b) illustrates the inner frozen region of this
cluster as delimited by the circle drawn in Fig. 5(a); about 8 X 10* particles are contained
in this disk of radius R = 480 particle sizes. When one restricts the multifractal analysis
to this frozen region, the generalized fractal dimensions are found to be equal to the fractal

dimension!”303:

D, = DBL* =1.61+£003, Vg (7

Similar estimates are obtained when different clusters of the same size are analyzed. More-
over, consistently for each cluster, the numerical value for DRMA in the inner extinct
region is equal, up to the numerical uncertainty, to the fractal dimension of the entire
aggregate. 17203161 This is not such a surprising result since recent numerical simulations
have demonstrated that the subset of inaccessible sites of DLA clusters is a “fat fractal”
“at involves a finite proportion (~ 37%) of the total number of perimeter sites.5758

0w

(),

Fig. 5 (a) A 10° particle DLA cluster computed with an off-lattice random walker model. (b) The inner
frozen region delimited by the circle sketched in (a); about 8 % 10* particles are contained in a disk of radius
R = 430 particle sizes.
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With the specific purpose of applying the tree matching WTMM technique described in
Sec. 2, we will concentrate ourselves mainly on the analysis of the azimuthal Cantor set
obtained by intersecting a DLA cluster with a circle of radius R = 480 particle sizes that
somehow delimits its inner frozen region. (Note that this Cantor set is rigorously defined in
the unphysical double limit M — +o0o and R — +o00, when taken in this particular order.)
For this work, we have grown a total number of 50 off-lattice DLA clusters of mass M = 10°
similar to the one in Fig. 5(a). Our demonstration will thus rely on a statistical sample
made up of 50 DLA azimuthal Cantor sets. Further investigations for smaller and larger
circle radius are currently in progress.

As a first unavoidable step, we have carried out a statistical multifractal analysis of our
50 DLA azimuthal Cantor sets. We have used both the classical box-counting technique
and its recent generalization based on the WIMM method.!73%31 The fractal dimension i
found to be equal to:

D =0.63 £ 0.03, (8)

with a statistical uncertainty computed from the 50 different DLA realizations and not
exclusively from the linear regression fit procedure as in Eq. (7). According to the Man-
delbrot rule®? for one-dimensional cuts of fractal sets, the fact that, up to the numerical
uncertainty, D = D?LA — 1 is a strong indication that DLA clusters are homogeneous
fractal aggregates. A systematic analysis of the generalized fractal dimensions DqA of th:
azimuthal Cantor sets does not contradict this observation. To a good approximation, al
the dimensions Df are equal to the fractal dimension Df = DZ,4=0-
ever, that the data obtained and the associated statistical error bars do not exclude some
possible weak multifractal departure from homogeneity; they seem to be also compatible

with a slight decrease of D;‘ as a function of ¢. The results of a study specially devoted to

Let us mention, how-

the multifractal analysis of DLA azimuthal Cantor sets in both the inner frozen region and
the outer active region will be reported elsewhere.!®

The WTMM representation of the azimuthal Cantor set of a 108 particle off-lattice DLZ
cluster is shown in Fig. 6. Actually, we have magnified three regions of the WIMM skele-
ton corresponding to three well-separated regions of the azimuthal Cantor set issued from
three distinct main branches of the considered off-lattice cluster.!” As in Sec. 2, the analyz-
ing wavelet is simply the “smoothing” Gaussian function ¢ = e==/2. Unlike the WTMM
skeletons of the invariant repellers associated to discrete dynamical systems (Figs. 1-4),
one does not see, at first sight, any conspicuous recursive structure in the bare WTMM
unfolding of the DLA azimuthal Cantor sets in Fig. 6. One can, however, proceed tc
a systematic investigation of the value of the scale ratio between two successive bifurca
tions in the WTMM skeletons. The results of the statistical analysis of our 50 off-lattice
DLA clusters are shown in Fig. 7. The histogram N(r) of scale ratio values involves only
the bifurcation points in those skeletons that occur above some lower scale. We have
checked that this histogram is insensitive to the value of this lower cut-off, when varying
it from rather large scales to scales of the order of a few particle sizes. This scale in-
variance strongly suggests that there is no correlation between successive generations of
branching in the WTMM skeleton (no memory effects). Let us note that the scale ratic
histogram in Fig. 7 displays a (unique) maximum at the value r* = 1/A* = 0.44 £+ 0.0¢
(A* = 2.2+ 0.2). The generations of branching are thus expected to occur preferentially at
scales an, = aor™ = ag(2.2)™™, where ag is a macroscopic scale that is determined by the size
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Fig. 6 (a) Enlargements of the WTMM skeleton of a DLA azimuthal Cantor set. These enlargements
correspond to three distinct main branches of a 10° particle off-lattice DLA cluster. The horizontal lines
mark the scale e, = agr*™ with r*~! = 2.2. In (a) and (b), the number of WTMM at each generation
follows the Fibonacci series (10); moreover, a symbol A or B can be assigned to each of these maxima
according to the Fibonacci recursive process (9). (c) Ilustration of a local departure (defects) from the
Fibonacci structural ordering.

0+ — i

0 r 1

Fig. 7 Histogram of values of the scale ratio between two successive bifurcations in the WTMM skeletons
of 50 DLA azimuthal Cantor sets. A single maximum is observed for r* = 1/A* =~ 0.44+0.03 (A" ~2.240.2).

*the DLA branch under study. The horizontal lines in the (6, a) half-plane in Fig. 6 are
drawn as guide marks for those successive generations (in a statistical sense).

As seen in Fig. 6(a), the number of WITMM at each generation follows closely the
Fibonacci series.!” Let us recall that Fibonacci sequences are naturally generated by the
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63.

recursive process

A— AB, B—A. (9)

If one starts with the species B at the generation n = 0, one gets A at the generatior
n = 1, and successively AB, ABA, ABAAB, ABAABABA,.... The population F, at the
generation n can be deduced from the populations F,—1 and F,_z at the two preceding
generations, according to the iterative law:

Fn:Fn_1+F_2, Fo=r=1. (10)

Note that F,_1 and Fn_2 are also the respective populations of A and B at step n. A
remarkable property of the Fibonacci series {F.}=1{1,1,2,3,5, 8,13, 21, 34,.. .} is tha
the ratio of two consecutive Fibonacci numbers converges to the golden mean ¢:

Fuy1 1+5

nl{r-eoo F, =9¢= 2

=1.618--- (11)

Asillustrated in Figs. 6(a) and 6(b), by assigning a symbol A or B to each maxima line issued
from a bifurcation point, one obtains a coding of the WTMM skeleton that complies with
the Fibonacci recursive law [Eq. (9)]. As indicated in Fig. 6(b) purposely, some departure
from the Fibonacci ordering are usually observed at small scales, but this is not surprisir

since, at scales a of the order of a few particle sizes, the azimuthal Cantor sets are very
sensitive to small changes in the radius R of the intersecting circle. According to Eq. (11),
the branching ratio in the WTMM skeleton is likely to converge to the golden mean. Now if
one uses the general formula established for Cantor sets that involves only one scale-factor,
one gets the following estimate for the fractal dimension D4 of the DLA azimuthal Cantor

In¢ In1.62
A — ~ ~
Dy = T~ 29 = 0.61, (12)
In s

where we have identified the branching ratio and the scale ratio to the values that have been
recorded the most frequently in our statistical study, namely ¢ and 1/7* respectively. Let us
note that this numerical value for D# is in good agreement with our previous measurements
in Eq. (8) based on box-counting techniques.

One can observe that the histogram in Fig. 7 is rather widely spread around r* =~ 0.44;
this clearly indicates the existence of important fluctuations in the scale ratio value. ‘s
illustrated in Fig. 6(c), these fluctuations can produce some local departure from the - -
bonacci structural ordering. A close examination of the WTMM skeletons of our set of
DLA azimuthal Cantor sets reveals the presence of many of these structural defects and
thus raises the question of the statistical pertinence of this Fibonaccian architecture.!”

The WTMM based technique described in Sec. 2 provides a very attractive method®
to look for some “mean 1D map” which could explain (and quantify) the presence of a
predominant statistical Fibonaccian structural hierarchy in the DLA azimuthal Cantor sets.
In order to carry out this analysis in a very efficient way, let us first proceed to a systematic
investigation of the symbolic coding of the WTMM skeletons of our 50 DLA azimuti -
Cantor sets. A close inspection of this coding reveals some randomness in the relative
position of the symbols A and B at each bifurcation A — AB. Apparently, B is likely
to be found on the right or on the left of A: among the 1586 bifurcation points for which
the codine has heen achieved (note that the coding of the maxima lines issued from a
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bifurcation point requires the knowledge of the next bifurcation point for each of these two
lines and thus cannot be processed at too small scales), we have recorded N(AL) = 747
(47%) bifurcations from which A emerges on the left of B; and N(Ag) = 839 (53%) from
which A emerges on the right. Moreover, the computation of the correlation matrix between
two successive bifurcation points does not indicate any memory effect that would condition
the relative position A and B from one bifurcation to the next: among the 1080 pairs of
successive coded bifurcations, we have recorded N(Ayr, Ar) = 242 (22.4%) pairs with both
A on the left; N(Ap, Ar) = 284 (26.2%) pairs with an A on the right following an A on the
left; N(Ag, Ap) = 245 (22.7%) pairs with an A on the left following an A on the right; and
N(Ag, AR) = 309 (28.6%) pairs with both A on the right. Therefore, within the statistical
uncertainty, one cannot distinguish between the random occurrence of the symbols A and
B at each bifurcation point in the WTMM skeleton of the DLA Cantor sets and a fair
tossing coin.

This observation is of fundamental interest in order to adapt the tree matching WTMM
technique described in the previous section to the presence of this statistical left-right sym-
metry at each bifurcation point of the WTMM skeleton of the DLA Cantor sets. We have
thus modified the algorithm illustrated in Fig. 1 in such a way that its does not distinguish
between a measure which is invariant under the map T'(z) on [0,1] and a measure which is
invariant under the map T(z) = 1—T(1 —z) which is the symmetric of T when one flips the
interval [0,1] into [1,0]. More explicitly, when one proceeds to the tree matching described
in Fig. 1(b), everytime A is found on the right of B, the algorithm automatically flips the
whole subtree issued from this bifurcation point in such a way that the skeleton actually
processed, is made up only of bifurcation points with an A emerging on the left. Then
our tree-matching algorithm can be run to extract the map T(z). The 1D map T(z) can
equally be computed from our tree matching algorithm when implementing the opposite
(arbitrary) choice of flipping whenever A is found on the left of B.

The 1D map T(z) reconstructed from the analysis of as many as 50 off-lattice DLA
clusters is shown in Fig. 8. In practice, we have identified 240 main branches overall in
these 50 aggregates. The angular width of each of these branches has been normalized to
1 before computing the WTMM skeleton of the azimuthal Cantor sets. The data points
obtained when scanning these skeletons with our (binary s = 2) tree matching algorithm
obviously do not fall on a well-defined 1D map. But neither are they a scatter of rather
uncorrelated points. The set of data points clearly separates into two distinct “noisy”
branches. The solid lines in Fig. 8 correspond to the piece-wise linear 1D map:

A efo, r;
T(z)={ A7 for 2 €07 (13)
Mgz —1)+1 rell-rg 1]

where A% ~ r;‘{'l ~ 2.2 and A ~ r}'l ~ /\"A2 ~ 4.8. This linear map does not come out
from a best regression fit of the data (such a procedure would probably favor a fit with two
slightly nonlinear branches). It is simply a 1D map made up of two linear branches whose
slopes correspond to the inverse of the preferential scale ratios respectively found when the
histogram shown in Fig. 7 is split into the two histograms represented in Figs. 9(a) and 9(c)
respectively. These two histograms account for the scale ratio fluctuations observed in the
WTMM skeletons when, at each bifurcation point, one computes separately the scale ratio
obtained when following either the maxima line with symbol A or the one with symbol B.
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Fig. 8 1D map extracted from the WTM
matching algorithm described in the text.

M skeletons of 50 DLA azimuthal Cantor sets using the tree
The solid lines correspond to the two branches of the linear

cookie-cutter (13) with the respective slopes A% =2.2and A5 =AY =438,

N(ry)

(o]
-

(a)

Fig. 9 Histograms of scale ratio values (a)
of the WTMM skeletons when following eit

ratio values N(pa) and N(ps)

I'g

N(r4), and (c) N(rB), as computed from each bifurcation point
her the maxima line with symbol A or the one with symbol B

towards the next bifurcation point at smaller scale {see Fig. 6). The corresponding histograms of amplitude
are shown in (b) and (d), respectively. Our statistical sample of 50 DLA

azimuthal Cantor sets is the same as in Fig. 7.
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These histograms are individually scale invariant. They both display a maximum for r}; =
0.44 £ 0.03 and 75 = 0.21 £ 0.03, respectively.

The fact that A\ =~ ¢ has a remarkable consequence on the piece-wise linear map
[Eq. (13)], since it implies that the slope of one of its branches is likely to be the square
of the slope of its other branch. A straightforward computation shows that if one assumes
the equality A} = A’f, then the number of n-cylinders®”#¢ (subintervals) of a given size
Ak generated by iterating backward T, is exactly the Fibonacci number Fi. A 1D map
model as simple as the piece-wise linear map [Eq. (13)] therefore provides a rather natural
understanding of the origin of the Fibonacci structural hierarchy discovered on individual
realizations in Figs. 6(a) and 6(b). The concentration of data points around the solid lines
in Fig. 8 can thus be regarded as a quantitative indication of the existence of a statistically
predominant multiplicative process hidden in the fractal complexity of the DLA azimuthal
Cantor sets. (One can even recognize, on each branch of this noisy 1D map, a rather non-
uniform repartition of the data points that might be the clue for some lacunarity.) There
is, however, some randomness in this multiplicative process since at each bifurcation point
in the WIMM skeletons, one has to toss a coin in order to decide whether one iterates
the map T~} or its symmetric -1 Moreover, the amount of spreading of the data points
around this 1D map model, or in other words, how noisy is the reconstructed 1D map, can
be seen conversely as the signature of the statistical importance of the structural defects to
the Fibonacci fractal ordering.

Now, as far as the statistical homogeneity of the DLA azimuthal Cantor sets is concerned,
one can easily convince oneselves that for the Bernoulli invariant measures of the piece-wise
linear cookie-cutter model [Eq. (13)] to be homogeneous, the respective weights p4 and
pg, distributed multiplicatively at each iteration, have to satisfy the requirement p% = PE.
Since p% + pp = 1, one gets exactly ph = ¢~ ! and p = #~2, i.e., the ratio p4/pp is equal
to the golden mean. This requirement is automatically satisfied if one considers that the
measure of an interval, at a given resolution r:f, is proportional to the number of n-cylinders
of length r:‘f that it contains. Thus, at the first stage of construction, the measures p4 and
pp of the left and right 1-cylinder are respectively proportional to the successive Fibonacci
numbers Fi_; and Fe_. In the limit k — oo, the ratio ps/pp converges to the golden
mean, while individually p} and py converge to py = ¢! ~0.618 and pp = $~% ~ 0.382.
In Figs. 9(b) and 9(d) are respectively reported the histograms of amplitude ratios N(pa)
and N(pg), extracted from our WTMM tree matching algorithm. Both histograms display
a unique rather well-defined maximum in very good agreement with those expected values
for p3 and pp. This is a strong indication that DLA azimuthal Cantor sets are likely to be
homogeneous fractals. The fact that the ratio of the integrals of the two histograms N(pa)
and N(pg) (i-e., the ratio of the total numbers of data points in the left and in the right
noisy branches of the reconstructed 1D map in Fig. 8), is also found close to the golden
mean, provides additional evidence that the defects to the Fibonacci structural ordering
do not seem to induce any significantly noticeable multifractal departure from statistical
homogeneity.

But this might be a premature conclusion since the stochastic nature of the WTMM
skeletons of the DLA azimuthal Cantor sets is far from being completely characterized by
the histograms of scaling ratios and amplitude ratios shown in Figs. 7 and 9. The knowl-
edge of various joint probability disributions is of fundamental interest for that purpose.
We have investigated in Fig. 10 the correlations between the variables In r and In p at
each bifurcation point of the WTMM skeletons. These two random variables appear fo
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Fig. 10 Inp vs. Inr, where 1 = an/@n-1 is the ratio between the scales of two bifurcation points
of the WTMM skeletons that are associated by our tree matching algorithm (see text), while p =
Wele)(zn, a)|/IWelpl(zn-1, an-1)] is the corresponding amplitude ratio. A linear regression fit of =
data provides a slope a = D$ =0.61£0.03, in good agreement with previous estimates of both the frac.
dimension D# [Eqgs. (8) and (12)] and the local scaling exponent a of the 50 DLA azimuthal Cantor sets.

be strongly correlated since most of the data points are distributed around a line of slope
a ~ 0.61. Similar results have been obtained by H. L. Hwang and S. Mallat in Ref. 51.
This means that the amplitude ratio p and the scale ratio r are statistically related ac-
cording to the law p = Cr%8!, This result is in remarkable agreement with previous Vo
measurements!”?! of the local scaling exponent a = D4 = 0.61 £ 0.03 of the DLA az-
imuthal Cantor sets. The scatter of points around the solid line in Fig. 10 is an indication
that this scaling exponent might well not be unique. The computation of other (higher
order) joint probability distributions is likely to provide a more refined analysis of the pos-
sible fluctuations of this scaling exponent. These fluctuations might quantitatively explain
some weak multifractal departure from statistical homogeneity as previously noticed in our
box-counting calculation of the generalized fractal dimensions Dy of the DLA azimuth>!

Cantor sets.!®

4. DISCUSSION

In Ref. 3, H. E. Stanley et al. have clearly stated one of the main challenges raised by
the puzzling DLA morphology: “... eventhough no two DLA’s are identical ... nonetheless
every DLA that we are likely to ever see has a generic form that even a child can recognize
_.”. We believe that the results reported in this work are a very attractive breakthrov”
in this spirit, since they provide statistical evidence for the existence of a multiplicati =
process hidden in the structural organization of DLA clusters. Actually, when exploring
the WTMM skeletons of 50 DLA azimuthal Cantor sets with a tree matching algorithm
specially devoted to solving the inverse fractal problem, we have revealed the pertinence
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of the piece-wise linear cookie-cutter T defined in Eq. (13), to account for the presence of
a statistically predominant Fibonacci structural ordering. We have shown that there exist
mainly two sources of randomness superimposed to this structural ordering. The first one
‘s in the Fibonacci multiplicative process itself since at each construction step of the Cantor
set, one has to toss a coin in order to decide whether one iterates 77! or its symmetric T-1,
The second one appears as intrinsic noise in the reconstructed 1D map and is likely to be
the signature of structural defects to the Fibonacci fractal hierarchy.

This very promising step towards a comprehensive understanding of the DLA morphology
perhaps raises more questions than it answers. Where does the preferential scale ratio
#* ~ 0.44 come from? In a forthcoming publication, we will argue that this scale ratio
can be derived from the linear stability theory of Saffman-Taylor viscous fingers grown in
actor shape cells.85 Is the noise observed in the reconstructed 1D map in Fig. 8 (or in

:her words the presence of structural defects) characteristic of Laplacian morphologies or
is it simply the consequence of the noise which is intrinsic to the discrete DLA algorithm?
To answer this question we have recently adapted the method of noise reduction®® to our
off-lattice DLA algorithm; we are currently running this rather time consuming algorithm.
Is this Fibonacci structural ordering only present in the inner frozen region of the DLA
aggregates or does it extend to the external active region? Does the branching process of
the DLA cluster itself display this Fibonacci multiplicative structure, as suggested in our

-avious study in Refs. 17, 30 and 317 Is there any deep connection between this Fibonacci
..erarchy and the statistical five-fold symmetry? Do the structural defects in the Fibonacci
architecture correspond to some local five-fold symmetry breakings in the DLA fractal
branching? To bring some answers to these interrogations we thus need to bridge the gap
between the 1D WTMM analysis of the DLA azimuthal Cantor sets and the 2D WT analysis
of the DLA clusters. The implementation of a tree matching algorithm that generalizes our
wavelet based method described in Sec. 2, from 1D to 2D, is currently in progress. Further
aoplications of this method to turbulent velocity signals, surface roughening and DNA

-alks” nucleotide sequences, look very promising.
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