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ABSTRACT
ELLIPTIC INVOLUTIVE STRUCTURES AND GENERALIZED HIGGS

ALGEBROIDS

Eric O. Korman
Jonathan Block

We study the module theory of two types of Lie algebroids: elliptic involutive
structures (EIS) (which are equivalent to transversely holomorphic foliations) and
what we call twisted generalized Higgs algebroids (TGHA). Generalizing the well-
known results in the extremal cases of flat vector bundles and holomorphic vector
bundles, we prove that there is an equivalence between modules over an EIS and
locally free sheaves of modules over the sheaf of functions that are constant along
the EIS. We define Atiyah like characteristic classes for such modules. Modules
over a TGHA give a simultaneous generalization of Higgs bundles and generalized
holomorphic vector bundles. For general Lie algebroids, we define a higher direct
image construction of modules along a submersion. We also specialize to Higgs
bundles, where we define Dolbeault cohomology valued secondary characteristic
classes. We prove that these classes are compatible with the non-abelian Hodge
theorem and the characteristic classes of flat vector bundles. We use these secondary
classes to state and prove a refined Grothendieck-Riemann-Roch theorem for the
pushforward of a Higgs bundle along a projection whose fiber is Kähler.
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Chapter 1

Introduction

The language of Lie algebroids, their corresponding differential graded algebras
(dga), and their modules (i.e. representations) serve as a natural and unifying
framework for many geometric structures. The tangent bundle of a smooth manifold
is a prototypical geometric example of a Lie algebroid. Its dga is the de Rham
algebra and its modules are flat vector bundles. Similarly, the anti-holomorphic
tangent bundle of a complex manifold is a Lie algebroid whose dga is the Dolbeault
algebra and whose modules are holomorphic vector bundles. Foliations, Poisson
manifolds, Higgs bundles, and generalized complex structures are also naturally
described by Lie algebroids.

This work consists of three main parts. Part I is about Lie algebroids in general,
with chapters 2 and 3 serving as a quick review of the basic notions that we will use
throughout this work. In chapter 4 we introduce a higher direct image construc-
tion for Lie algebroid modules along a submersion. The last two parts deal with
two specific types of Lie algebroids: elliptic involutive structures and what we call
(twisted) generalized Higgs algebroids.

1.1 Higher direct image of Lie algebroid modules

In [BL95], Bismut and Lott give a geometric construction of the flat connection
on the higher direct image of a flat vector bundle E → M along a submersion
M → B. This is done by considering the infinite rank bundle E•M/B over B formed
by sections of the vertical de Rham complex twisted by E. The vertical exterior
derivative turns this vector bundle into a complex and the underlying vector bundle
of the higher direct image is the cohomology of this complex. From the point of
view of B, the connection on E determines a flat superconnection on E•M/B, whose
degree 0 piece is the vertical exterior derivative. The degree 1 part induces the
desired flat connection on the higher direct image.

In chapter 4 we generalize this construction to modules over general Lie alge-
broids. Specifically, given a smooth submersion M → B that lifts to a map of
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Lie algebroids AM → AB we define a higher direct image of an AM -module, which
is a Z-graded AB-module, by taking cohomology along the vertical Lie algebroid
kerAM → AB. We prove that this construction is natural with respect to the action
of AB-modules via tensor product. We also prove a twisted Leray-Hirsch theorem,
which we will make repeated use of in later sections.

1.2 Elliptic involutive structures

An elliptic involutive structure (EIS) [Trè92, BCH08] on a smooth manifold M
is an involutive complex distribution V ⊂ TCM satisfying V + V = TCM . A
module over V (viewed as a Lie algebroid) is then a vector bundle with a flat
partial connection along V . At one extreme, we have V = V = TCM , which has
flat vector bundles as its modules. At the other extreme we have V ∩ V = 0,
which, along with the involutivity requirement, shows that V can be taken to be
the bundle of anti-holomorphic vectors for some integrable complex structure on M .
Modules in this case are holomorphic vector bundles. Between these two extremes
we have a foliation V ∩V ∩TM with a transversely holomorphic structure [GM80].
Modules are then vector bundles that are flat along the leaves of the foliation and
holomorphic in the transverse directions.

Elliptic involutive structures and their modules appear in many places through-
out mathematics and theoretical physics, such as the algebraic K-theory of complex
varieties [BMS87], generalized complex geometry [Gua11], the theory of coisotropic
A-branes [KO03], and supersymmetric field theories [CDFK14]. We will see that a
choice of a Borel subgroup of a semi-simple Lie group G gives an elliptic involutive
structure on G as well as some of its homogeneous spaces.

We focus primarily on the module theory of EISs. Recall the well-know result
that, over a manifold, there is an equivalence between flat vector bundles and locally
constant sheaves of vector spaces. Similarly, over a complex manifold X there is
an equivalence between vector bundles with a ∂̄ operator and locally free sheaves
of OX-modules. We prove that these results generalize to modules over an EIS: if
OV denotes the sheaf of smooth functions that are constant along V , then we have

Theorem 7. Let E → M be a rank r vector bundle. The following data are
equivalent:

1. A flat V -connection on E.

2. A locally free sheaf O(E) of OV -modules such that E = C∞M ⊗OV O(E).

3. A trivializing cover {Uj} for E such that the transition functions Ui ∩ Uj →
GL(r,C) take values in OV (Ui ∩ Uj).

In section 7.3 we define two types of characteristic classes for V -modules. One
generalizes the Dolbeault cohomology valued Atiyah classes [Ati57] of holomorphic
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vector bundles. We define these using the general notion of Atiyah class for Lie
algebroid pairs defined by Chen, Stińeon, and Xu [CSX12]. The second type of
class generalizes the Hodd(M ;R) valued characteristic classes of flat vector bundles
[BL95, KT75].

Chapter 8 is devoted to explicit examples. The 2n+1 sphere S2n+1 can be viewed
as a unitary frame bundle for the tautological line bundle over CP n. In this way
it inherits an EIS, V . We will see that the space of all rank 1 V -modules is C and
that the first Atiyah class of section 7.3 is a complete invariant. We then move on
to the example of a compact semisimple Lie group G, which has an EIS, V , coming
from the fibration over its flag variety. Here we show that the space of rank 1 V -
modules is isomorphic to t∗, the dual of the Lie algebra of a maximal torus. We then
give a description of certain subgroups H such that G/H inherits an EIS. For such
subgroups we use this structure to define an induction map from representations of
H to representations of G. We discuss the examples of SU(n) ⊂ SU(n + 1) and
SU(n) ⊂ Spin(2n). The last example we discuss is the EIS on the projectivized
bundle of a V -module.

1.3 Generalized Higgs algebroids

The second type of Lie algebroid, which we call a (twisted) generalized Higgs
algebroid ((T)GHA) has motivations coming from generalized complex geometry
[Gua11] and the theory of Higgs bundles. A generalized complex structure is a
simultaneous generalization of a complex structure and symplectic structure on
a manifold and is determined by a certain Lie algebroid. Higgs bundles, de-
fined as a holomorphic vector bundle E → X together with a holomorphic form
θ ∈ Ω0,1(X; EndE) with θ ∧ θ = 0 can, alternatively, be defined as modules over a
Lie algebroid, called the Higgs algebroid [Blo05], which is determined by the com-
plex structure on X. Both of these Lie algebroids are special cases of a TGHA,
which we define to be an elliptic complex Lie algebroid such that the kernel of the
anchor map is abelian. We show that the constructions of Hitchin on co-Higgs
bundles [Hit10] carryover to twisted generalized Higgs algebroids. In particular, we
utilize the spectral variety construction and the notion of a transversely holomor-
phic gerbe (which is represented by a class in H2(O×V ), where V is an EIS). Using
these we can, following Hitchin, state a vanishing result on the cohomology of a
module over a TGHA.

1.3.1 Higgs bundles

Finally, in chapter 11 we specialize to the case of Higgs bundles. This section is fairly
self-contained and we think it will be of interest to those interested in Higgs bundles
proper. Here we define secondary characteristic classes a2j+1(E, θ) ∈ Hj+1,j(X) of
a Higgs bundle (E, θ) over a complex manifold X. In the case of compact Kähler
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manifolds, we show that these are compatible with the non-abelian Hodge theorem
of Simpson [Sim92]. Along the way we give a quick proof, using the non-abelian
Hodge theorem, of Reznikov’s theorem/Bloch’s conjecture that the Hodd(X;R)-
valued characteristic classes of flat vector bundles vanish when X is compact Kähler.
We then examine what the pushforward construction of chapter 4 looks like in this
case (the direct image of Higgs bundles has previously been described by Simpson
[Sim93]) when the submersion is a Kähler fibration (a notion due to [BGS88]).
We then prove a secondary Grothendieck-Riemann-Roch theorem for the secondary
classes in the case of a projection B × Y → B with Y Kähler:

Theorem 14. Suppose B is a complex manifold, Y is Kähler and (E, θ) is a Higgs
bundle over B × Y . Then

ak(ind(∂̄Y ;E + θY )) =

∫
Y

e(TY )ak(E, θ), k ≥ 0.
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Part I

Lie algebroids
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Chapter 2

Lie algebroid basics

We first review some of the basic theory of Lie algebroids. A good reference is
[Mac05], although there only real Lie algebroids are discussed. Throughout, M is a
smooth manifold, TCM = TM ⊗ C the complexified tangent bundle, and C∞(M)
is the space of smooth complex valued functions on M .

Definition 1. A (complex) Lie algebroid over M is a complex vector bundle A→M
with a Lie bracket [·, ·] on the space of sections Γ(M ;A) and a bundle map ρ : A→
TCM , called the anchor, such that

1. The map that ρ induces on sections is a Lie algebra homomorphism (with
respect to the Lie bracket of vector fields).

2. For all f ∈ C∞(M) and v, w ∈ Γ(M ;A), we have

[v, fw] = (ρ(v) · f)w + f [v, w],

where ρ(v) · f denotes differentiation of f along the vector field ρ(v).

Associated to any Lie algebroid is the dga (Ω•A(M), dA), where

Ωk
A(M) = Γ(M ; ΛkA∗),

dα(v0, v1, . . . , vk) =
k∑
j=0

(−1)jρ(vj) · α(v0, . . . , v̂j, . . . , vk)

+
∑
j<l

(−1)j+lα([vj, vl], v0, . . . , v̂j, . . . , v̂l, . . . , vk).

Definition 2. We call a Lie algebroid A elliptic if the corresponding dga is an
elliptic complex. This is equivalent to having ρ(A) + ρ(A) = TCM .

Remark. For real Lie algebroids, being elliptic is equivalent to being transitive (i.e.
having surjective anchor map).
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Using the dga, we can give a clean definition of a morphism between Lie alge-
broids over different base spaces:

Definition 3. Let ρ : A → TM, ρ′ : A′ → TM ′ be two Lie algebroids. Then a
morphism between them is a vector bundle morphism

A
ϕ //

��

A′

��
M

f //M ′

that induces a chain map

(Ω•A′(M
′), dA′)→ (Ω•A(M), dA).

Examples of Lie algebroids:

1. The trivial Lie algebroid A = TCM . This is elliptic with the de Rham algebra
as the corresponding dga.

2. If X is a complex manifold then A = T 0,1X is an elliptic Lie algebroid with
dga the Dolbeault algebra Ω0,•(X).

3. Let P → X be a principal G bundle. Quotienting the sequence 0→ P × g→
P → TM by the G action gives the Atiyah sequence

0→ P ×Ad g→ TP/G→ TM → 0.

Then TP/G is an elliptic (indeed, transitive) Lie algebroid, called the Atiyah
algebroid. In contrast to the previous examples, ker ρ is non-trivial.
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Chapter 3

Lie algebroid modules

Definition 4. A module over a Lie algebroid A is a vector bundle E together with
flat A-connection ∇A;E. That is, ∇A;E is an operator

Γ(M ;E)→ Γ(M ;A∗ ⊗ E)

such that
∇A;E(fψ) = dAf ⊗ ψ + f∇A;Eψ

and
[∇A;E

v ,∇A;E
w ] = ∇A;E

[v,w].

This determines a complex (Ω•A(M ;E), dA;E) by

dA;E(µ⊗ ψ) = dAµ⊗ ψ + (−1)degµµ ∧∇Aψ, µ ∈ Ω•A(M), ψ ∈ Γ(M ;E),

where Ω•A(M ;E) = Γ(M ; Λ•A∗ ⊗ E).

We will often omit some of the superscripts on ∇ when it is clear from context
which Lie algebroid or module we are considering.

It is a straightforward computation to verify that dA;E is given by an analogous
equation as the definition of dA:

Proposition 1. For α ∈ Ωk
A(M ;E), we have

dA;Eα(v0, v1, . . . , vk) =
k∑
j=0

(−1)j∇vjα(v0, . . . , v̂j, . . . , vk)

+
∑
j<l

(−1)j+lα([vj, vl], v0, . . . , v̂j, . . . , v̂l, . . . , vk),

where v0, . . . , vk ∈ Γ(M ;A).
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3.1 Cartan calculus

We also can define a Lie derivative operator on twisted forms:

Definition 5. For v ∈ Γ(M ;A), we define the Lie derivative Lv, which is a degree
0 operator on Ω•V (M ;E), by

(Lvα)(w1, . . . , wk) = ∇v(α(w1, . . . , wk))

+
k∑
j=1

(−1)jα([v, wj], w1, · · · , ŵj, · · ·wk),

where
α ∈ Ωk

A(M ;E), w1, . . . , wk ∈ Γ(M ;A).

A straightforward computation then shows that the familiar Cartan homotopy
formula holds in this setting.

Proposition 2 (Cartan homotopy formula). We have

Lv = dA;E ◦ iv + iv ◦ dA;E.

3.2 Operations with modules

The dual, direct sum, and tensor product of modules are defined in the natural way:

Definition 6. If E is an A-module then the dual vector bundle is naturally an
A-module with connection

(∇A;E∗

v F )(ψ) = ρ(v) · F (ψ)− F (∇A;E
v ψ),

where F ∈ Γ(M ;E∗), ψ ∈ Γ(M ;E), v ∈ A.

Definition 7. If E1, E2 are two modules over a Lie algebroid A, then E1 ⊕E2 and
E1 ⊗ E2 are modules over A with connections

∇A;E1⊕E2 =

(
∇A;E1 0

0 ∇A;E2

)
and

∇A;E1⊗E2
v (ψ1 ⊗ ψ2) = ∇A;E1

v ψ1 ⊗ ψ2 + ψ1 ⊗∇A;E2
v ψ2, ψj ∈ Γ(M ;Ej), v ∈ A.

Definition 8. Suppose we have a map of Lie algebroids

A
ϕ //

��

A′

��
M

f //M ′

.

If E is an A′ module, then we denote by ϕ∗E the A-module whose underlying vector
bundle is f ∗E and whose A-connection is determined by

∇A;ϕ∗E
v f ∗ψ = f ∗∇A′;E

v ψ, v ∈ A,ψ ∈ Γ(M ′;E).
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3.3 Principal Lie algebroid connections

It will also be useful to have a notion of an A-connection on a principal G-bundle
P

π→ M . This will then induce A-connections on any associated vector bundles
that are compatible with the G-structure.

Definition 9 ([Fer02]). An A-connection on P is given by a bundle map h : π∗A→
TP such that the diagram

π∗A
h //

��

TCP

��
A // TCM

commutes and h is G-invariant: h(pg, v) = h(p, v)g, where the right action of G on
TP is given by the differential of the right action of G on P .

The connection is called flat if h(π∗A) ⊂ TCP is closed under Lie brackets.

It is straightforward to verify the following

Proposition 3. Let E0 be a representation of G and E = P ×G E0 the associated
vector bundle over M . A section σ ∈ Γ(M ;E) is equivalent to a G-equivariant map
f : P → E0. Then an A-connection h on P determines an A-connection ∇ on E
by

∇vσ = df(h(π∗v)),

where v ∈ Γ(M ;A).

3.4 Duality

We now introduce the dualizing module associated to a Lie algebroid, which will
give us a pairing between certain Lie algebroid cohomology groups. This notion is
originally due to [ELW99] and was further discussed in [Blo05].

For a rank r complex Lie algebroid A→Mn, define

QA = ΛrA⊗ ΛnT ∗CM.

For v ∈ V , we extend the Lie derivative Lv to ΛrA by the Leibniz rule:

Lv(v1 ∧ · · · ∧ vr) := [v, v1] ∧ v2 ∧ · · · ∧ vr + v1 ∧ [v, v2] ∧ v3 · · · ∧ vr + · · · .

Then we have

Theorem 1 ([ELW99]). QA is naturally an A-module with connection

∇A;QA
v (W ⊗ µ) = LvW ⊗ µ+W ⊗ Lρ(v)µ, W ∈ ΛrA,α ∈ Ωn(M),

where Lρ(v)µ denotes the usual Lie derivative of differential forms.
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Theorem 2 ([ELW99, Blo05]). Let E be an A-module. The natural map

Ωk
A(M ;E)⊗ Ωr−k

A (M ;E∗ ⊗QA)→ Ωn(M)
∫
→ C

given by the pairing of E ⊗ ΛrA∗⊗ with E∗ ⊗ ΛrA, descends to a map

Hk
A(M ;E)⊗Hr−k

A (M ;E∗ ⊗QA)→ C.

If A is further assumed to be elliptic then this is a perfect pairing.
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Chapter 4

Higher direct images and the
Leray spectral sequence

We now describe a higher direct image construction that will allow us to push-
forward Lie algebroid modules along compatible submersions compatible. This
construction is generalized from the special case of the direct image of flat vector
bundles used in [BL95]. The special case of our construction for Higgs bundles
appears in [Sim93].

Suppose M
π→ B is a fiber bundle and over M and B are Lie algebroids AM , AB

compatible with the fibration, i.e. we have the following diagram of vector bundles
over M ,

0 // AM/B
//

��

AM
πA //

��

π∗AB

��

// 0

0 // T (M/B) // TM
π∗ // π∗TB // 0,

(4.0.1)

where T (M/B) is by definition the vertical vectors of the fibration and AM/B =
kerπA, which forms a Lie algebroid over M . We also assume that AM/B is an
elliptic Lie algebroid when restricted to any fiber. Let (E,∇AM ) be an AM -module,
which becomes an AM/B-module by restriction. We will construct a Z-graded AB-
module, denoted H•AM/B(M/B;E), by taking the vertical cohomology. A nice way

to view this construction is via the superconnection formalism. Thus we form the
infinite rank complex of vector bundles over B, denoted by E•M/B, whose fiber over
x ∈ B is

(E•M/B)x = Γ(Mx; Λ•A∗M/B ⊗ E|Mx),

where Mx = π−1(x). The differential is given by dAM/B ;E = dAM ;E|AM/B . Note that
this is an endomorphism of the bundle E•M/B since the differentiation is happening
in the vertical directions.

Choose a (vector bundle) splitting H : π∗AB → AM and for v ∈ Γ(B;AB) we
write vH ∈ Γ(M ;AM) for its lift. Similarly, write αH ∈ Ω•AM (M ;E) for the element
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corresponding to α ∈ Ω•AM/B(M ;E). Then H gives an isomorphism

π∗Λ•A∗B ⊗ Λ•A∗M/B ' Λ•A∗M ,

and so we get the identification

Ω•AB(B;E•M/B) ' Ω•AM (M ;E).

Under this isomorphism, let A denote the operator on Ω•AB(B;E•M/B) that corre-
sponds to the connection dAM ;E. Then A is a flat superconnection of total degree
1 (also called a Z-connection) and, in the language of [Blo05], gives the bundle
E•M/B → B the structure of a quasi-cohesive AB-module. Decompose A as

A = A[0] + A[1] + · · ·

where
A[j] : Γ(B;E•M/B)→ Ωj

AB
(B;E•−j+1

M/B ).

Note that A[0] = dAM/B ;E and A[1] is an AB connection on each Ej
M/B in the usual

sense but may not be flat. Indeed, from A2 = 0 we see that

[dAM/B ;E,A[1]] = 0,

A2
[1] + [dAM/B ;E,A[2]] = 0,

where all of the brackets are supercommutators. The first equation says that A[1]

descends to give a connection on the cohomology

H•AM/B(M/B;E) := H•(E0
M/B

dAM/B ;E

−→ E1
M/B

dAM/B ;E

−→ · · · )

and the second equation says that this connection is flat. By the ellipticity condition
on AM/B, each Hj

AM/B
(M/B;E) is finite dimensional and so is an AB-module. Actu-

ally, Hj
AM/B

(M/B;E) will only form a vector bundle if the spaces Hj
AM/B

(Mb;E|Mb
)

have constant rank over b ∈ B. This happens automatically if AB = TCM since we
can use parallel transport to show that the vertical complexes over any two points
in B are isomorphic.

While the cohomology groups H•AM/B(M/B;E) are independent of the choice of

splitting π∗AB → AM , the superconnection A is not. However, we have

Theorem 3. The induced AB-connection A[1] on H•AM/B(M/B;E) is independent

of the choice of splitting H.

To prove this, we first need the following two lemmas.

Lemma 1. If vH ∈ Γ(M ;AM) is a lift of v ∈ Γ(B;AB) then [vH , w] ∈ AM/B for
w ∈ Γ(M ;AM/B).

13



Proof. For all α ∈ Γ(B;A∗B) we have

απ(x)(πA([vH , w]x)) = (π∗Aα)x([v
H , w]).

But

0 = (π∗Adα)(vH , w) = dπ∗Aα(vH , w)

= ρM(vH) · π∗Aα(w)− ρM(w)π∗α(v)− π∗Aα[vH , w] = −π∗Aα[vH , w]

so that [vH , w] ∈ Ann(π∗ΩA(B)) = AM/B.

The next lemma shows a compatibility between the Lie derivatives on the Lie
algebroids AM/B and AM .

Lemma 2. Let µ ∈ Γ(M ; ΛkA∗M/B) and let H̃ : π∗AB → AM be another lift. Then

LAM/B
vH−vH̃

µ = (LAM
vH
µH − LAM

vH̃
µH̃)|AM/B .

Proof. For w1, . . . , wk ∈ AM/B, we have

LvH−vH̃µ(w1, . . . , wk) =∇AM
vH−vH̃

(µ(w1, . . . , wk))

+
k∑
j=1

(−1)jµ([vH − vH̃ , wj], w1, . . . , ŵj, . . . , wk)

and

LAM
vH
µH(w1, . . . , wk) = ∇AM

vH
(µH(w1, . . . , wk))

+
k∑
j=1

(−1)jµH([vH , wj], w1, . . . , ŵj, . . . wk)

= ∇AM
vH

(µ(w1, . . . , wk))

+
k∑
j=1

(−1)jµ([vH , wj], w1, . . . , ŵj, . . . wk),

since by the previous lemma [vH , wj] ∈ AM/B. The same equation holds for H̃ and
the lemma now easily follows.

Proof of Theorem 3. A choice of splitting H gives the following commutative dia-
gram, where we are conflating a vector bundle with its space of sections and where
we write AH

[1] for what we called A[1] before to stress the dependence on H,

E0
M/B

∇AM/B //

AH
[1]

��

E1
M/B

dAM/B ;E
//

AH
[1]

��

E2
M/B

//

AH
[1]

��

· · ·

E0
M/B ⊗ A∗B

∇AM/B// E1
M/B ⊗ A∗B

dAM/B ;E
// E2

M/B ⊗ A∗B // · · ·

14



To show that the maps AH
[1] and AH̃

[1] induce the same map on cohomology, we will
show that we have a homotopy operator

H : E•M/B → E•−1
M/B ⊗ A

∗
B,

which is defined by

ivH (µ) = ivH−ṽHµ, v ∈ AB, µ ∈ E•M/B.

Explicitly, H (µ) = i
aHj −aH̃j

µ⊗aj where {aj} is a local frame for AB with dual frame

{aj}. We have

dAM/B ;EH µ+ H dAM/B ;Eµ = (dAM/B ;EiaHj −aH̃j
µ+ i

aHj −aH̃j
dAM/B ;Eµ)⊗ aj

= LAM/B
aHj −aH̃j

µ⊗ aj,

by Proposition 2. Now using the above lemma, we have

LAM/B
aHj −aH̃j

µ =

(
LAM
aHj
µH − LAM

aH̃j
µH̃
)
|AM/B

=
(
dAM ;E ◦ iaHj µ

H + iaHj ◦ dAM ;Eµ
H

− dAM ;E ◦ iaH̃j µ
H̃ − i

aH̃j
◦ dAM ;Eµ

H̃
)
|AM/B

=
(
iaHj ◦ dAM ;Eµ

H − i
aH̃j
◦ dAM ;Eµ

H̃
)
|AM/B

= iaHj ◦ A
H
[1]µ

H − i
aH̃j
◦ AH̃

[1]µ
H̃ .

Thus

dAM/B ;EH µ+ H dAM/B ;Eµ = (iaHj ◦ A
H
[1]µ

H − i
aH̃j
◦ AH̃

[1]µ
H̃)⊗ aj

= AH
[1]µ− AH̃

[1]µ,

as desired.

We note that this construction has some content even in the case of the trivial
fibration {pt} →M →M . We have an exact sequence of Lie algebroids given by

0 // ker ρ //

��

A
πA //

��

A/ ker ρ //

��

0

0 // 0 // TM
π // TM // 0.

Then ker ρ is a bundle of Lie algebras and any A-module E, upon restriction, be-
comes a bundle of representations of ker ρ. The vertical complex is the fiberwise
Chevalley-Eilenberg complex with coefficients in the module E|ker ρ. Taking coho-
mology gives a Z-graded A/ ker ρ module.

15



4.1 Projection formula

If we are in the situation of diagram (4.0.1), then any AB-module E gives an AM -
module π∗E. Via tensor product, the space of AM -modules is a module over the
space of AB-modules. The next proposition shows that our direct image construc-
tion respects this structure.

Proposition 4 (Projection formula). For any AB-module E and AM -module F ,
we have an isomorphism of AB-modules

H•AM/B(M/B; π∗E ⊗ F ) ' E ⊗H•AM/B(M/B;F ).

Proof. Since AM/B = ker πA, we have ∇AM/Bπ∗ψ = 0 for all ψ ∈ Γ(B;E). From
this it follows that

Γ(B;E ⊗H•AM/B(M/B;F ))→ Γ(H•AM/B(M/B; π∗E ⊗ F ))

ψ ⊗ [α] 7→ [π∗ψ ⊗ α]

is the desired isomorphism as vector bundles. That this respects the AB-module
structure follows from the fact that∇AMπ∗ψ = π∗∇ABψ so that A[1]π

∗ψ = π∗∇ABψ.

4.2 Leray spectral sequence

We still assume we are in the situation of diagram (4.0.1). Since πA is a surjective
map of Lie algebroids, we have a dga embedding π∗AΩ•AB(B) ⊂ Ω•AM (M). Using this
we can define the Leray-Cartan filtration on Ω•AM (M):

F pΩ•AM (M) = Ωp
AB

(B) · Ω•AM (M).

In other words,

α ∈ F pΩk
AM

(M)

⇔
iv1iv2 · · · ivk−p+1

α = 0, for all v1, . . . , vk−p+1 ∈ AM/B.

Then associated to this filtration is a first quadrant spectral sequence Ep,q
2 converg-

ing to H•A(M). The first two pages are given by

Ep,q
1 ' Ωp

AB
(B;Hq

AM/B
(M/B))

Ep,q
2 ' Hp

AB
(B;Hq

AM/B
(M/B)).

Now suppose we have classes α1, . . . , αd ∈ H•AM (M) that restrict to a basis of
H•AM/B(Mx) for every x ∈ B, where Mx = π−1(x). In particular, this means that

16



the AB-module H•AM/B(M/B) is trivial and E•,•2 ' H•AB(B) ⊗ span{α1, . . . , αd}.
Then the spectral sequence degenerates at the E2 page since everything in E2 is
already represented by a global cohomology class so that H•AM (M) ' H•AB(B) ⊗
H•AM/B(M/B) (here we are conflating the trivial vector bundle H•AM/B(M/B) with

the vector space underlying it). More generally, the same techniques give

Theorem 4 (Twisted Leray-Hirsch). Let E → B be an AB-module and F an AM -
module. Suppose there exist α1, . . . , αd ∈ H•AM (M ;F ) that restrict to a basis of
H•AM/B(Mx;F |Mx) for every x ∈ B, then

H•AM (M ; π∗E ⊗ F ) ' H•AB(B;E)⊗H•AM/B(M/B;F ).

17



Part II

Elliptic involutive structures
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Chapter 5

General theory

In this chapter we introduce one of our main objects: elliptic involutive structures.
These turn out to be equivalent to transversely holomorphic foliations. Good ref-
erences for the analytical properties are [Trè92, BCH08]. Geometric expositions of
transversely holomorphic foliations can be found in [GM80, Jac00] and a classifica-
tion of such structures on 3-manifolds is described in [Bru96, Ghy96].

Definition 10. [Trè92] An elliptic involutive structure over M is a subbundle V ⊂
TCM such that

1. V is involutive: [X, Y ] ⊂ Γ(M ;V ) whenever X, Y ∈ Γ(M ;V ).

2. V is elliptic: V + V = TCM .

In other words, an elliptic involutive structure is an elliptic complex Lie algebroid
with injective anchor.

Definition 11. The real distribution VR := V ∩V ∩TM is involutive and so defines
a foliation of M , called the characteristic foliation.

Dually, we may describe V in terms of its annihilator V ⊥ ⊂ T ∗CM . The usual
arguments show that

Proposition 5. A distribution V ⊂ TCM is involutive if and only if V ⊥ generates
a differential ideal and V is elliptic if and only if V ⊥ ∩ T ∗M = 0 (note that here
T ∗M is the real tangent bundle).

The ellipticity condition on V is equivalent to the dga (Ω•V (M), dV ) being an
elliptic complex. Thus we have the following

Proposition 6. If M is compact, then the vector spaces H•V (M ;E) are finite-
dimensional for any V -module E.
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In chapter 7 we will give a detailed study of V -modules. For now, we just remark
that V comes canonically with two modules, V ⊥ and TCM/V . The connection on
V ⊥ is given by the Lie derivative and the connection on TCM/V is given by the Lie
bracket. Explicitly,

(∇V ;V ⊥

v α)(w) = v · α(w)− α[v, w], α ∈ Γ(M ;V ⊥), v ∈ V,w ∈ TCM.

and
∇V ;TCM/V
v (w + V ) = [v, w] + V, v ∈ V,w + V ∈ Γ(M ;TCM/V ).

Recall that for a complex manifold, the tangent bundle has a canonical holo-
morphic structure. The V -module TCM/V is the natural generalization of this for
arbitrary elliptic involutive structures. The space

H0
V (M ;TCM/V ) = {w + V ∈ Γ(M ;TCM/V ) | [v, w + V ] = 0 ∀v ∈ Γ(M ;V )}

is analogous to the space of holomorphic vector fields. Although the Lie bracket does
not descend to TCM/V it does descend to H0

V (M ;TCM/V ), giving it the structure
of a finite dimensional Lie algebra.

Definition 12. The bigraded vector space H•(M ; Λ•V ⊥) is called the Dolbeault
cohomology of V .

We have the following immediate examples of elliptic involutive structures:

1. The trivial elliptic involutive structure V = TCM .

2. By the Newlander-Nirenberg theorem, an elliptic structure with V ∩ V = 0
is equivalent to specifying an integrable complex structure on M by taking V
to be the −i eigenspace. In this case we have that H•(M ; Λ•V ⊥) = H•,•(M)
is the usual Dolbeault cohomology.

3. If A is an elliptic Lie algebroid then the image ρ(A) ⊂ TCM is an elliptic
involutive structure.

4. Suppose f : E → M is a fiber bundle and V ⊂ TCM is an elliptic involutive
structure. Then f ∗V ⊥ generates a differential ideal, which corresponds to
an elliptic involutive structure on E. In particular, any fiber bundle over a
complex manifold has a canonical elliptic involutive structure that is neither
trivial nor complex.

5. Below, we will show that the total space of any flat complex vector bundle over
an arbitrary manifold and its projectivization have natural elliptic involutive
structures, which are holomorphic in the vertical directions (in contrast to the
last example).
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Chapter 6

The sheaf OV and cohomology

A fundamental object associated to an elliptic involutive structure V ⊂ TCM is the
sheaf of rings OV defined by

OV (U) = {f ∈ C∞(M) | v · f = 0, for all v ∈ V },

where U ⊂ M is open. In the case V = T 0,1M we have the Newlander-Nirenberg
theorem and there are Poincaré lemmas for the two extreme cases V = T 0,1M and
V = TCM . We also have nice descriptions of flat and holomorphic vector bundles
(i.e. TCM and T 0,1M modules) in terms of locally constant sheaves of modules over
OTCM = CM and OT 0,1M , respectively. We will now show that these statements
generalize to elliptic involutive structures.

Our first main analytic fact is

Theorem 5 (Newlander-Nirenberg [Trè92, BCH08]). Let V be an elliptic involutive
structure on M . Then, locally, there exist on M real coordinates (t1, . . . , td) and
complex coordinates (z1, . . . , zn) such that

V = span

{
∂

∂ti
,
∂

∂z̄j

}
= span{dzj}⊥.

On overlapping coordinates (s1, . . . , sd) and (w1, . . . , wn), the transition functions
are given by

sj = f j(t1, . . . , td, z1, . . . , zd)

wj = gj(z1, . . . , zd)

where the functions gj are holomorphic.

Corollary 1. Elliptic involutive structures are equivalent to transversely holomor-
phic foliations [GM80].

Corollary 2. If M is compact and connected, then H0(OV ) = C.
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Proof. The proof is essentially the same as the proof of the statement in the holo-
morphic case. By compactness, for any f ∈ OV (M) the function |f | obtains its
maximum value, which we denote by c. Now suppose x ∈ |f |−1(c). Use the theo-
rem to choose coordinates (ti, zj) on a neighborhood U around x. Since dV f = 0,
f is constant in the ti directions. On the other hand, for fixed ti we have a holo-
morphic function f(ti, ·) with |f(ti, ·)| attaining its maximum. By the maximum
principle, f(ti, ·) is constant and so f is constant on U . Thus U ⊂ |f |−1(c). There-
fore |f |−1(c) is open (and non-empty) but it is also clearly closed. By connectedness
U = M so that f is constant on M .

The second analytic statement we will use is

Theorem 6 (Poincaré lemma, [BCH08] thm. VIII.3.1, [Trè92]). Let U ⊂ Rd be
open and convex and W ⊂ Cn be open and pseudo-convex. Then for the elliptic
involutive structure V = TU ⊕ T 0,1WΣ on U ×W , we have

Hk
V (U ×W ) =

{
C; k = 0

0; otherwise
.

Corollary 3. We have

H•(OV (Λ•V ⊥)) ' H•V (V ; Λ•V ⊥),

where the left hand side is sheaf cohomology and OV (Λ•V ⊥) is the sheaf of sections
of Λ•V ⊥ killed by ∇V ;V ⊥. In particular,

H•(OV ) ' H•V (M),

Proof. The Poincaré lemma says that

0→ OV → Ω0
V

dV→ Ω1
V

dV→ · · ·

is a resolution of OV , where Ω•V is the sheaf of sections of the bundle Λ•V ∗. Further,
Theorem 5 shows that Λ•V ⊥ is locally trivial as a V -module so

0→ OV (Λ•V ⊥)→ Ω0
V ⊗ Λ•V ⊥ → Ω1

V ⊗ Λ•V ⊥ → · · ·

is a resolution (since locally it is just a direct sum of the resolution of OV ). Since
Ω•V ⊗Λ•V ⊥ is a sheaf of C∞M modules (which is fine), the sheaves Ω•V are acyclic for
the global sections functor and so we may use them to compute the cohomology of
OV .

22



Chapter 7

V -modules

Thinking of an elliptic involutive structure V as a Lie algebroid, we recall from
chapter 3 that a V -module consists of a complex vector bundle E → M together
with a flat partial connection

dV ;E : Ω•V (M ;E)→ Ω•+1
V (M ;E), d2

V ;E = 0.

For the extreme cases V = TCM and V = T 0,1X, there is a 1-to-1 correspondence
between V -modules and locally free sheaves of OV -modules. This is true for general
elliptic involutive structures:

Theorem 7. Let E → M be a rank r vector bundle. The following data are
equivalent:

1. A flat V -connection on E.

2. A locally free sheaf O(E) of OV -modules such that E = C∞M ⊗OV O(E).

3. A trivializing cover {Uj} for E such that the transition functions Ui ∩ Uj →
GL(r,C) take values in OV (Ui ∩ Uj).

Remark. Vector bundles satisfying the third condition are discussed by Gómez-
Mont [GM80], which he calls h-foliated vector bundles.

Proof. It it easily seen that 2. and 3. are equivalent. Given transition functions
as in 3., we get a flat V -connection on E by declaring the frame corresponding to
Uj × Cr to be parallel. Thus 3. implies 1. To show 1. implies 3., it is sufficient
to prove that for any V -module (E,∇V ) and x ∈ M , there exists a parallel local
frame defined on some open neighborhood of x.

Our proof is adapted from the proof in the holomorphic setting given by [Mor07]
and uses Theorem 5. Choose an arbitrary local frame σj of E over some U ⊂ M
containing x and write

∇σj = τ kj ⊗ σk, τ kj ∈ Γ(M ;V ∗),
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where we use the summation convention to implicitly sum over a repeated upper
and lower index. Also choose U small enough so that, by Theorem 5, we have

V |U = spanC{dz1, . . . , dzm}⊥

for some complex coordinates z1, . . . , zm.
On this trivialization, we have E|U ' U × Cr. Let u1, . . . , ur be complex coor-

dinates on Cr and consider the complex distribution

V ′ = spanC

{
∂

∂ūk
, v − τ kj (v)uj

∂

∂uk
| v ∈ V ⊂ TC(U × Cr)

}
⊂ TC(U × Cr).

We claim that this distribution is integrable. We have[
v − τ ji (v)ui

∂

∂uj
, w − τ lk(w)uk

∂

∂ul

]
= [v, w]− (v · τ lk(w))uk

∂

∂ul
+ (w · τ ji (v))ui

∂

∂uj

+ τ ji (v)τ lk(w)

[
ui

∂

∂uj
, uk

∂

∂ul

]
= [v, w]− (v · τ lk(w))uk

∂

∂ul
+ (w · τ ji (v))ui

∂

∂uj
+ τ ji (v)τ lj(w)ui

∂

∂ul

− τ ji (v)τ ik(w)uk
∂

∂uj

= [v, w]− (v · τ kj (w))uj
∂

∂uk
+ (w · τ kj (v))uj

∂

∂uk
+ τ lj(v)τ kl (w)uj

∂

∂uk

− τ kl (v)τ lj(w)uj
∂

∂uk

= [v, w] +
(
−v · τ kj (w) + w · τ kj (v) + τ lj(v)τ kl (w)− τ kl (v)τ lj(w)

)
uj

∂

∂uk

Now, the flatness condition says that

dAτ
k
j − τ lj ∧ τ kl = 0, ∀j, k.

Evaluating this at v, w gives

0 = v · τ kj (w)− w · τ kj (v)− τ kj ([v, w])− τ lj(v)τ kl (w) + τ lk(w)τ kl (v).

Putting this into the top gives[
v − τ ji (v)ui

∂

∂uj
, w − τ lk(w)uk

∂

∂ul

]
= [v, w]− τ kj ([v, w])uj

∂

∂uk
∈ V ′,

as desired.
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Since V ′ + V ′ = TC(U × Cr), this distribution gives an elliptic structure on
U × Cr. Let τ̃ ji ∈ Ω1(U) be a lift of τ ji ∈ Γ(M ;V ∗). Then the space of differential
1-forms that annihilate this distribution is

(V ′)⊥ = V ⊥ + span{duj + τ̃ ji u
i : j = 1, . . . , r}

= span{dz1, . . . , dzm}+ span{duj + τ̃ ji u
i : j = 1, . . . , r}. (7.0.1)

Theorem 5 says that there exists coordinates t1, . . . , td, z̃1, . . . , z̃n for U × Cr

(here the tj are real and the z̃j are complex) such that (V ′)⊥ = span{dz̃1, . . . , dz̃n}.
Thus by eq. (7.0.1) we can write

dz̃j = F j
i dz

i +Gj
i (du

i + τ̃ iku
k),

for some F j
i , G

j
i ∈ C∞(U × Cr).

Since the map determined by the F j
i and Gj

i is an isomorphism, there must be
some indices j1, . . . , jr and some neighborhood such that the matrix [Gj

i ]i=1,...,r,j=j1,...,jr

is in GL(r,C). By rearranging indices, assume j1 = 1, . . . , jr = r.
Differentiating the above equation for dz̃j gives

0 = dF j
i ∧ dzi + dGj

i ∧ (dui + τ̃ iku
k) +Gj

i (dτ̃
i
ku

k − τ̃ ik ∧ duk).

At uk = 0 we get

dF j
i ∧ dzi + dGj

i |U×{0} ∧ dui −G
j
i |U×{0}τ̃ ik ∧ duk = 0.

Pulling back to V ∗ ⊗ (T 1,0Cr)∗, we see that

dVG
j
i |U×{0} −G

j
k|U×{0}τ

k
i = 0.

Let σ̃k be defined by σj = Gk
j |U×{0}σ̃k (which is possible since [Gj

i ] ∈ GL(r,C)).
Then one computes from the above equation that σ̃k is parallel:

τ kj ⊗ σk = ∇σj = dVG
k
j ⊗ σ̃k +Gk

j∇σ̃k
= Gk

l τ
l
j ⊗ σ̃k +Gk

j∇σ̃k = τ lj ⊗ σl +Gk
j∇σ̃k,

⇒ Gk
j∇σ̃k = 0

⇒ ∇σ̃k = 0.

It is interesting to note that even if we carry out the above proof in the case
of a flat vector bundle (where the theorem becomes the well-known result that flat
vector bundles are equivalent to local systems), a vital ingredient is the Newlander-
Nirenberg theorem for a non-trivial elliptic involutive structure.
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Corollary 4. If (E,∇V ) is a V -module with O(E) the corresponding sheaf of OV
modules then

H•(O(E)) = H•V (M ;E),

where the left hand side is sheaf cohomology.

Proof. As in Corollary 3 we have a resolution

0→ O(E)→ Ω0
V ;E

∇V→ Ω1
V ;E → · · ·

by acyclic sheaves (here Ω•V ;E is the sheaf of E-valued V -forms).

Corollary 5. Let (E,∇V ) be a rank k V -module. Then the total space of E itself
has an elliptic involutive structure. Furthermore, the elliptic involutive structure
descends to the projectivized bundle P(E).

Proof. By the theorem, for any x ∈ M there exists a neighborhood U 3 x and a
∇V -parallel frame {σ1, . . . , σk} of E on U . We may view this frame as a map

σ : U × Ck → E|U = π−1(U),

(x, u1, . . . , uk) 7→ ujσj(x).

We define the elliptic involutive structure V ′ on the total space of E by specifying
V ′|π−1(U) ⊂ TCE|U to be σ∗(V |U ⊕ T 0,1Ck). To show that this gives a well-defined

global distribution, suppose that Ũ is another open set containing x with a local
parallel frame σ̃1, . . . , σ̃k for E|Ũ . Write σi = gji σ̃j for gji ∈ C∞(U ∩ Ũ). Then we
have

σ̃−1σ : U ∩ Ũ × Ck → U ∩ Ũ × Ck,

σ̃−1σ(x, u1, . . . , uk) = (x, gji (x)ui).

But since the frames σ and σ̃ are both parallel, we have dV g
j
i = 0, from which it

follows that σ̃−1σ∗ takes V |U∩V × T 0,1Ck to itself. Thus the distributions defined
by σ and σ̃ agree.

The same reasoning shows that we similarly get an involutive elliptic structure
on P(E), which when pulled back to a fiber gives the usual complex structure on
CP k−1.

The above corollary provides many natural (and compact) examples of elliptic
involutive structures that are neither trivial nor complex. For example, if E →M is
any flat complex vector bundle then P(E) has a natural elliptic involutive structure.
We will examine this structure in more detail in section 8.3.
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7.1 Deformations

Generalizing the Kodaira-Spencer theory of deformations of complex structures,
the infinitesimal deformations of an elliptic involutive structure V is given by the
first cohomology group of the sheaf of sections of TCM/V that commute with V
[GHS83, DK84, DK79]. By Corollary 4, this is isomorphic to H1

V (M ;TCM/V ).

7.2 The Picard group

Definition 13. The Picard group associated to the elliptic involutive structure V
on M , denoted PicV (M), is the abelian group of isomorphism classes of rank 1
V -modules under tensor product.

The usual Čech argument gives

Proposition 7. We have a natural isomorphism PicV (M) ' H1(O×V ).

In later sections, we will make use of the following result.

Proposition 8. Suppose M is a manifold with elliptic involutive structure V and

H1(M ;Z) = 0 = H2(M ;Z).

Then every complex line bundle is topologically trivial and we have an isomorphism
PicV (M) ' H1(OV )(' H1

V (M)) via

H1
V (M) 3 ω 7→ dV − ω,

the right hand side being a V -connection on the bundle M × C.

Proof. The assumptions say that the long exact sequence in cohomology associated
to the short exact sequence

0→ Z→ OV → O×V → 0

gives
H1
V (M) ' H1(OV ) ' H1(O×V ) = PicV (M).

To see what this isomorphism looks like, let ω ∈ H1
V (M). Choose a good cover

{Uα} of M . Then on each Uα we may find fα ∈ C∞(Uα) such that dV fα = ω|Uα .
Put hαβ = fα − fβ ∈ C∞(Uαβ). Then dV hαβ = 0 so that hαβ gives a class h ∈
Ȟ1(OV ), which corresponds to ω under the isomorphism H1

V (M)→ H1(OV ). Then
gαβ := exphαβ represents a class in H1(O×V ), which determines a V -line bundle Lω
that has parallel frames σα on Uα with σα = gαβσβ on Uαβ.
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Now since Lω has to be topologically trivial (since H2(M ;Z) = 0), we have a
global section σ. Let tα ∈ C∞(Uα) be defined by σα = tασ|Uα . Then tα/tβ = gαβ.
Since σα is parallel we have

0 = ∇V ;Lσα = dV tα ⊗ σ|Uα + tα∇σ|Uα
⇒ ∇σ|Uα = −dV log tα ⊗ σ|Uα ,

where dV log tα = 1
tα
dV tα by definition (so we do not actually need a logarithm).

Now the forms −dV log tα patch together to give a global 1-form on M since

dV log tα − dV log tβ = dV log(tα/tβ) = dV hαβ = 0.

It is straightforward to verify that if ω = ω1 + ω2 then the local connection forms
for ω are the sum of the connections forms for ω1 and ω2, which corresponds to
taking the tensor product of V -modules. Thus the map is a homomorphism.

Since we are on a good cover, every function valued in C× has a logarithm. Then
we see that

exp(log tα − log tβ) = gαβ = exp(fα − fβ)

so that log tα − log tβ = fα − fβ + nαβ, where nαβ ∈ Z. Then nαβ determines a
Check cocycle in Ȟ1(X;Z). Since H1(X;Z) = 0 we can find mα integers such that
mα−mβ = nαβ. Then log tα− fα−nα piece together to a globally defined function
F . Differentiating gives

dV log tα − dV fα = dV F

⇒ −dV log tα = −ω − dV F.

Therefore we have the global description ∇V = dV − ω − dV F . But this is gauge
equivalent to dV − ω via the gauge transformation e−F .

7.2.1 A Hirzebruch-Riemann-Roch formula

We will now use the Atiyah-Singer index theorem to give a Hirzebruch-Riemann-
Roch formula for the Euler characteristic of the cohomology of a V -module. For an
EIS V , the real vector bundle TM/VR has a natural complex structure as follows.
Since V + V = TCM , we have

(TM/VR)⊗ C = TCM/(V ∩ V ) = (V/V ∩ V )⊕ (V /V ∩ V ).

Thus we get a complex structure by declaring T 1,0 := V/V ∩V to be the i-eigenspace
and T 0,1 := V /V ∩ V to be the −i-eigenspace. Choose a metric on M that is
compatible with the complex structure on TM/VR. Then we have the decomposition

TCM ' (V ∩ V )⊕ T 0,1 ⊕ T 1,0, Λ•V ∗ ' Λ•(V ∩ V )∗ ⊗ Λ•(T 0,1)∗.
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A Clifford action of TCM on Λ•V ∗ given by

c(v) =


ε(v[)− i(v); v ∈ V ∩ V
−
√

2i(v); v ∈ T 0,1

√
2ε(v[); v ∈ T 1,0,

where [ : TM → T ∗M is induced from the metric (and we recall that (T 1,0)[ =
(T 0,1)∗).

Modulo 0th order terms, the corresponding Dirac operator is dV + d∗V , whose
index is

∑
j(−1)j dimHj

V (M). Since the Clifford action is a direct sum of the

de Rham Clifford action of V ∩ V on Λ•(V ∩ V )∗ and the Dolbeault Clifford
action of TM/VR on Λ•(T 0,1)∗, the corresponding index density is the product
e(F )Td(TM/VR) [BGV92]. We can also twist this construction with a V -module
E, which multiplies the index density by ch(E). Thus the Atiyah-Singer index
theorem gives us

Theorem 8. If E is a V -module then∑
j

(−1)j dimHj
V (M ;E) =

∫
M

e(F )Td(TM/VR) ch(E).

7.3 Characteristic classes

We now describe two types of characteristic classes that can be associated to a
V -module (E,∇V ).

7.3.1 Atiyah classes

The Atiyah classes lie in H•V (M ; Λ•V ⊥) and are constructed from the fact that we
have a Lie algebroid pair (TCM,V ) [CSX12].

To define these, we first extend ∇V to a regular connection ∇ (which can always
be done by using a partition of unity). The curvature F∇ ∈ Ω2(M ; EndE) will be
non-zero in general but since (∇V )2 = 0, we see that if v ∈ V then F∇(v, ·) vanishes
on V . Thus F∇ defines an element in Ω1

V (M ;V ⊥ ⊗ EndE).

Definition 14 (Definition/Proposition [CSX12]). The element F∇ is dV ;EndE-closed
and its cohomology class,

At(E) ∈ H1
V (M ;V ⊥ ⊗ EndE),

is independent of the choice of connection extending ∇V . The kth scalar Atiyah
class is defined to be

atk(E) =
1

k!

(
i

2π

)k
tr at(E)k ∈ Hk

V (M ; ΛkV ⊥).
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The Chern character is defined by

ch(E) = tr exp

(
i

2π
At(E)

)
.

Proposition 9. The Atiyah classes satisfy

1. Suppose f : M → N is a smooth map of EISs VM and VN over M and N and
E → N is a VN -module. Then

At(f ∗E) = f ∗AtE ∈ H1
VM

(M ;V ⊥M ⊗ f ∗ EndE).

2. If
0→ E1 → E

p→ E2 → 0

is a short exact sequence of V -modules, then

ch(E) = ch(E1) + ch(E2).

3. If E1 and E2 are V -modules then

At(E1 ⊗ E2) = AtE1 ⊗ 1E2 + 1E1 ⊗ AtE2

and
ch(E1 ⊗ E2) = ch(E1) ch(E2).

Proof. For the first statement, note that if ∇ is a connection on E compatible with
∇VN ;E then the pullback connection f ∗∇ on f ∗E is compatible with ∇VM ;f∗E and
the curvatures are related by Ff∗∇ = f ∗F∇. Then since f∗VM ⊂ VN , it follows that
At(f ∗E) = f ∗AtE.

For 2., choose connections ∇1,∇2 on E1 and E2 that are compatible with the
respective EISs. Let s : E2 → E be a C∞ splitting of the above sequence. Then
∇V s := ∇V ;E ◦ s − s ◦ ∇V ;E2 ∈ Ω0,1(M ; Hom(E2, E1)) since p ◦ ∇V s = 0 (which is
because p ◦ ∇V ;E = ∇V ;E2 ◦ p). Then the connection

∇ =

(
∇1 ∇V s
0 ∇2

)
on E ' E1 ⊕ E2 extends ∇V ;E so that

At(E) =

(
At(E1) ∗

0 At(E2)

)
.

Thus

ch(E) = tr exp

(
i

2π
At(E)

)
= tr exp

(
i

2π
At(E1)

)
+ tr exp

(
i

2π
At(E2)

)
= ch(E1) + ch(E2).

For 3., choose compatible connections ∇1 and ∇2. Then the tensor product
connection ∇ := ∇1 ⊗ 1E1 + 1E2 ⊗∇2 is compatible with the EIS on E1 ⊗ E2 and
has curvature ∇2 = ∇2

1⊗1E1 +1E2⊗∇2
2. From this the two claims easily follow.
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7.3.2 Real classes

There is also a theory of characteristic classes for modules over real Lie algebroids
[Cra03], which generalize the Hodd(M ;R) valued characteristic classes of flat vector
bundles [KT75, BL95]. Since any V -module is, via restriction, a module for the real
Lie algebroid VR = (V ∩ V )∩ TM , we also have characteristic classes of V -modules
that lie in Hodd

VR
(M). These are constructed as follows. Given a VR-module (E,∇VR),

we let h be an arbitrary hermitian metric on E and form the adjoint connection
(∇VR)∗ defined by

dVRh(u, v) = h(∇VRu, v) + h(u, (∇VR)∗v), u, v ∈ Γ(M ;E).

Then (∇VR)∗ is another flat VR-connection on E. Define

ω(E, h) =
1

2
(∇VR − (∇VR)∗) ∈ Ω1

VR
(M ; EndE).

Then

Definition/Proposition 1 ([Cra03]). The form trω(E, h)2k−1 ∈ Ω2k−1
VR

(M) is dVR-

closed and its cohomology class u2k−1 ∈ H2k−1
VR

(M) is independent of the choice of
h.

Indeed, we have the unitary (generally non-flat) V -connection ∇VR,u := 1
2
(∇VR +

(∇VR)∗) and the fact that ∇VR and its adjoint are flat implies that ω(E, h) is parallel
with respect to ∇VR,u:

[∇VR,u, ω(E, h)] = 0.

This implies that the trace of any power of ω(E, h) is dVR-closed.

Proposition 10. If
0→ E1 → E

p→ E2 → 0

is a short exact sequence of V -modules, then

u2k−1(E) = u2k−1(E1) + u2k−1(E2).

Proof. Let h be a hermitian metric on E, which determines a splitting s : E2 → E
and hermitian metrics h1, h2 on E1 and E2. Then under the isomorphism E '
E1 ⊕ E2 we have

∇VR;E =

(
∇VR;E1 ∇s

0 ∇VR;E2

)
,

where ∇s = ∇VR;E ◦ s− s ◦ ∇VR;E2 . One computes that

ω(E, h) =

(
ω(E1, h1) ∇s
−(∇s)∗ ω(E2, h2)

)
.
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But the element

(
0 ∇s

−(∇s)∗ 0

)
∈ Ω1

VR
(M ; EndE) is exact with respect to the

connection ∇VR;E,u:

∇VR;E,u =

(
∇VR;E1,u ∇s
(∇s)∗ ∇VR;E2,u

)
and (

0 ∇s
−(∇s)∗ 0

)
=

[
∇VR;E,u,

(
0 0
0 1

)]
.

Since ω(E, h) is parallel with respect to ∇VR;E,u (see the preceeding discussion), it
follows that the cohomology class of trω(E, h)2k−1 is unchanged by adding ∇VR;E,u-
exact terms to ω(E, h). Thus in cohomology we have

[trω(E, h)2k−1] =

[
tr

(
ω(E1, h1) 0

0 ω(E2, h2)

)2k−1
]

= [trω(E1, h1)2k−1] + [trω(E2, h2)2k−1] ∈ H2k−1
VR

(M).

In the case of lines bundles we have the following alternative description of u1.
A rank 1 V -module is determined by a class in H1(O×V ), which induces a class in
H1(O×VR). We have the short exact sequence of sheaves

0→ OS1

VR
→ O×VR

log |·|→ OVR → 0.

Then u1 corresponds to the induced map in cohomology H1(O×VR) → H1(OVR) '
H1
VR

(M).

7.4 Duality

Let V be an elliptic involutive structure of rank r. The dualizing module (sec-
tion 3.4) is

QV = ΛtopV ⊗ ΛtopT ∗CM = ΛtopV ⊗ ΛtopV ∗ ⊗ ΛtopV ⊥ = ΛtopV ⊥.

Then Theorem 2 gives

Theorem 9. For any V -module E, there is a perfect pairing

Hk
V (M ;E)⊗Hr−k

V (M ; ΛtopV ⊥ ⊗ E∗)→ C.
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Chapter 8

Examples

We now describe several examples in detail.

8.1 Fiber bundles

Suppose B has an elliptic involutive structure and π : M → B is a fiber bundle.
The pullback π∗V ⊥ ⊂ T ∗CM is a differential ideal since V ⊥ is (it is also clearly
elliptic) and thus V induces a elliptic involutive structure on M , which we denote
by π!V . In particular, by taking M to be a complex manifold we can get a large
class of examples of elliptic involutive structures that are neither trivial nor complex
structures. In this case we have a map of Lie algebroids π∗ : π!V → V whose kernel
is the Lie algebroid (i.e. tangent bundle algebroid) formed by the vertical vectors.
The Leray-Hirsch theorem (Theorem 4) gives us

Proposition 11. Let π : M → B be a fiber bundle. If there exists α1, . . . , αd ∈
H•AM (M) that restrict to a basis of H•(Mx;C) for each x ∈ B, then

H•π!V (M ; Λ•(π!V )⊥) ' H•V (B; Λ•V ⊥)⊗H•(M/B;C).

8.1.1 Principal bundles over complex manifolds

One case where the above proposition can always be applied is for a G-frame bundle
π : P → X corresponding to a holomorphic vector bundle E → X with a G-
invariant hermitian metric. Then P has the pullback elliptic involutive structure
VP := π!T 0,1X. The metric on E gives us the Chern connection (i.e. the unique
metric connection whose (0,1) part is the holomorphic structure). This connection
induces a principal connection on P and in particular gives us a map Λ•g∗ → Ω•(P ),
where g = Lie(G). Choose α1, . . . , αd ∈ Λ•g∗ that form a basis (when viewed as left-
invariant forms) of H•(G) and write α̃j for the lifts to Ω1(P ). Since the curvature
of the Chern connection is of type (1,1), the horizontal lift of T 0,1X is an integrable
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distribution of TCP . It follows that dVP α̃j = 0 for all j so that the conditions of
Proposition 11 are satisfied:

Proposition 12. For a principal unitary G-frame bundle π : P → X of a holo-
morphic vector bundle over a complex manifold, we have

H•VP (P ; Λ•V ⊥P ) ' H•,•(X)⊗H•(g;C),

where VP = π!T 0,1X.

We also have

Proposition 13. The Lie algebra H0
VP

(P ;TCP/VP ) is isomorphic to the Lie algebra
H0(X;T 1,0X) of holomorphic vector fields on X.

Proof. The horizontal distribution on TP determined by the Chern connection re-
stricts to an isomorphism π∗T 1,0X → TCP/V of VP -modules. This gives an in-

jection H0(X;T 1,0X)
π∗→ H0

VP
(P ;TCP/V ) of Lie algebras. The image contains

those elements of H0
VP

(P ;V ⊥) that can be represented by horizontal lifts of vec-
tor fields on X, so to show that this map is an isomorphism we must show that
everything in H0

VP
(P ;TCP/V ) is invariant under the right G-action. Thus let

w + V ∈ H0
VP

(P ;TCP/V ). We can choose w to be in the horizontal distribu-
tion corresponding to π∗T 1,0X. Then since ∇V (w + V ) = 0 we have, in particular,
[Y ∗, w] + V = 0 for all Y ∈ g (where Y ∗ corresponds to the action vector field).
Since the G-action preserves the decomposition π∗T 1,0X⊕π∗T 0,1X of the horizontal
distribution, it follows that [Y ∗, w] = 0 for all Y ∈ g. But this is just the infinites-
imal condition that R∗gw = 0 for all g ∈ G so that w is G-invariant and thus a
horizontal lift of a vector field on X.

Odd dimensional spheres

In particular, all of the odd dimensional spheres S2n+1 have an elliptic involutive
structure since they are a U(1) frame bundle for the tautological line bundle O(−1)
over CP n. Writing V for VS2n+1 , the proposition tells us that

Hq
V (S2n+1; ΛpV ⊥) '

(
Hp,q−1(CP n)⊗H1(S1;C)

)
⊕
(
Hp,q(CP n)⊗H0(S1;C)

)
= Hp,q−1(CP n)⊕Hp,q(CP n)

=

{
C; 0 ≤ p, q ≤ 2n and p = q or p = q − 1

0; otherwise.

In particular, H1
V (S2n+1) = C and by Proposition 8 this is isomorphic to the

group PicV (S2n+1). Let X be a basis for Lie(S1) and X∗ the corresponding vector
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field on S2n+1 that generates the S1 foliation. Let µ ∈ Ω1(P ;Lie(S1)) be a connec-
tion 1-form on S2n+1 → CP n. Identifying Lie(S1) with iR, we view µ as an element
of Ω1

V (S2n+1) and we have that π∗O(−1) is canonically trivial with V -connection

∇V ;π∗O(−1) = dV + µ.

Now if n ∈ Z, the rank 1 V -module with connection dV + nµ is π∗O(−n). These
must pullback to the trivial flat vector bundle over any S1 fiber. Indeed, on any
fiber µ pulls back to the Maurer-Cartan form µMC and the connection d + cµMC

on S1 has holonomy e−2πic, which is trivial if c = n ∈ Z. For c /∈ Z, the V -module
dV + cµ has no global parallel sections since it does not have any global parallel
sections when restricted to any S1 fiber. Indeed, letting Lc be the V -module that is
the trivial line bundle with the connection dV +cµ, we have H•V (S2n+1/CP n;Lc) = 0
for c /∈ Z and thus by Theorem 4 we have

H•V (S2n+1;Lc) =

{
0; c ∈ C\Z.
H0,•(CP n;O(−c)); c ∈ Z.

Writing PicTCS1(S1) for the space of flat line bundles on S1 (i.e. rank 1 TCS
1

modules), this shows that we have a short exact sequence

0→ Pic(CP n)
π∗→ PicV (S2n+1)

i∗→ PicTCS1(S1)→ 0.

The bundles Lc are completely classified by the first Atiyah class (Definition 14):
we can complete dV + cµ to the connection d + cµ which has curvature cdµ =
cπ∗ω where ω ∈ Ω2(CP n) is the Fubini-Study Kähler form. Then ω defines a
class [ω] ∈ H1,1(CP n), which pullbacks to a class π∗[ω] ∈ H1

V (S2n+1;V ⊥) giving
at1(Lc) = cπ∗[ω]. We can recover c by integrating cµ ∧ at1(Lc)

n over S2n+1. That
is, cµ gives a class in H1

V (S2n+1) and at1(Lc)
n ∈ Hn

V (S2n+1;QV ) so we can use the
duality pairing, Theorem 2, to get a complex number. This will be proportional to
cn+1.

By Proposition 13, we have

H0
V (S2n+1;TCS

2n+1/V ) ' H0(CP n;T 1,0CP n) ' sl(n+ 1,C).

Interestingly, while the holomorphic structure on CP n is stable (i.e. H1(T 1,0
CPn) =

0), this is not true for the induced EIS on S2n+1. Indeed, we have a V -module
isomorphism TCS

2n+1/V ' π∗T 1,0CP n and so by Proposition 12 and Theorem 4 we
have

H1
V (S2n+1;TCS

2n+1/V ) ' H0(CP n;T 1,0CP n) ' sl(n+ 1,C).

8.2 Compact Lie groups and homogeneous spaces

Let G be compact semi-simple. Let T be a maximal torus. Then the flag manifold
G/T has a G-invariant complex structure so that, by the previous section, G has
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an elliptic involutive structure V . Explicitly such structures are determined by a
choice of positive root system ∆+. We then have the decomposition

gC = tC ⊕
⊕
α∈∆+

CZα ⊕ CZ̄α,

where Zα denotes the root vector for the root α, Z̄α the root vector corresponding
to −α, and a subscript C denotes complexification. The elliptic involutive structure
is the left-invariant distribution

V = tC ⊕
⊕
α∈∆+

CZα.

In other words, V is the left-invariant complex distribution of G determined by a
Borel subalgebra.

Sine the elliptic involutive structure on G is induced from G
π→ G/T being

a principal frame bundle over the complex manifold G/T (section 8.1.1) Proposi-
tion 12 gives us

H•V (G; Λ•V ⊥) ' H•,•(G/T )⊗ Λ•t∗.

Assume now that G is simply connected. Then the analysis is very similar to the
last section; since H2(G;Z) = 0 for compact semisimple Lie groups, from Propo-
sition 8 and the above equation, we have that PicV (G) ' H1

V (G) = t∗ since flag
manifolds only have cohomology in Dolbeault bi-degree (p, p). Let Lλ be the rank
1 V -module with V -connection dV + λ, λ ∈ t∗. If λ is integral (i.e. exponentiates
to a homomorphism T → C×), then Lλ is the pullback of the holomorphic vector
bundle G×expλ C. By Theorem 4 we have

H•V (G;Lλ) = H0,•(G/T ;G×λ C),

which can be computed using the Borel-Weil-Bott theorem.
While the holomorphic structure on G/T is stable (i.e. H1(T 1,0

G/T ) = 0) [Bot57]
section 14, this is not true for the EIS on G. Indeed, we have a V -module isomor-
phism TCG/V ' π∗T 1,0G/T and so by Proposition 12 and Theorem 4 we have

H1
V (G;TCG/V ) ' t∗C ⊗H0(G/T ;T 1,0

G/T )

and H0(G/T ;T 1,0
G/T ) is non-zero (it contains at least gC).

8.2.1 Homogeneous G-spaces

We will now describe certain subgroups H such that G/H inherits a G-invariant
elliptic involutive structure compatible with that of G’s and the map G → G/H.
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We recall that if m is the orthogonal complement of h with respect to the Killing
form on g then m is preserved by AdH and

T (G/H) ' G×AdH m.

A G-invariant complex distribution on G/H is then equivalent to specifying an
AdH-invariant subspace of mC.

Proposition 14. Suppose H ⊂ G is such that its Lie algebra is given by

hC = sC ⊕
⊕

α∈∆+(h)

CZα ⊕ CZα (8.2.1)

where ∆+(h) is some subset of ∆+ and sC ⊂ tC. Let ∆+(m) = ∆+\∆+(h) and
suppose that ∆+(m) satisfies the following property:

if α, β ∈ ∆+(m) and α + β ∈ ∆+, then α + β ∈ ∆+(m). (8.2.2)

Then
V0 = (tC ∩mC)⊕

⊕
α∈∆+(m)

CZα ⊂ mC.

descends to a left-invariant elliptic involutive structure VG/H on G/H.

Proof. As mentioned above, to show that V0 gives a well-defined distribution we
need to show that AdHV0 ⊂ V0, which is equivalent to [hC, V0] ⊂ V0. To show that
this distribution is involutive, it is sufficient to show that [V0, V0] ⊂ hC⊕V0. For the
first part, we clearly have [sC, V0] ⊂ V0. Now let α ∈ ∆+(h) and v ∈ V0, [Zα, v] is in
mC and a negative root vector and so much be in V0. Thus we are left to show that
[Zα, v] ⊂ V0 for all α ∈ ∆+(h), v ∈ V0. If v ∈ tC ∩ mC then [Zα, v] = α(v)Zα ∈ h
but [Zα, v] must also be in mC so that [Zα, v] = 0. Now suppose for contradiction
that β ∈ ∆+(m) and [Zα, Zβ] /∈ V0. Then [Zα, Zβ] is a root vector for the root
α− β and the only way for this to not be in V0 is if α− β is a positive root. Then
α = (α − β) + β is a root that is a sum of elements of ∆+(m). By assumption
(8.2.2), we must have α ∈ ∆+(m), contradicting that α ∈ ∆+(h). It is also clear
that condition (8.2.2) immediately implies that [V0, V0] ⊂ V0 ⊂ V0 ⊕ hC.

If H < G is of the above form, then tC ∩ m must commute with h. This is
because [h,m] ⊂ m but every element of h is either in tC or a root vector for g.
Then the maximal rank subalgebra u := h+m∩ t is isomorphic to h⊕m∩ t and the
proposition shows that the elliptic involutive structure on U = exp u is a complex
structure. By [BH58] section 13.5, it follows that U is a centralizer of a torus in G.
Conversely, suppose U is a centralizer of a torus with u ' h⊕ t′ where t′ is a torus.
Then by [BH58], we can find a system of positive roots for g such that the positive
complementary roots for u (which are those for h) are closed. Thus we have
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Proposition 15. A subgroup H ⊂ G has the form in Proposition 14 if and only if
U = exp(h ⊕ t ∩ m) is a centralizer of a torus. In this case, the elliptic involutive
structure on G/H is induced from the torus bundle G/H → G/U and the invariant
complex structure on G/U .

8.2.2 Representation theoretic aspects

Such pairs of groups H ⊂ G give an induction procedure from finite dimensional
representations of H to finite dimensional representations of G by taking global
sections (or more generally cohomology) of G-equivariant VG/H-modules. To do
this, we first describe the possible G-invariant V -connections on the principal H-
bundle G → G/H. We recall from Definition 9 that a connection is specified by
an H-invariant choice of lift of VG/H to TG. If we want this lift to be invariant
by the left G action, then this is equivalent to an AdH-invariant subspace of gC
whose orthogonal projection onto mC is V0. Such subspaces are in one to one
correspondence with maps V0 → hC that intertwine the adjoint action of h. To
summarize, we have

Proposition 16. The space of G-invariant principal VG/H connections on the H-
principal bundle G→ G/H is given by

HomH(V0, hC).

Explicitly, the horizontal subspace corresponding to ϕ ∈ HomH(V0, hC) is {v+ϕ(v) |
v ∈ V0} ⊂ gC. The connection is flat if

ϕ([v, w]) = [v, ϕ(w)] + [ϕ(v), w] + [ϕ(v), ϕ(w)], v, w ∈ V0.

Remark. If h is simple and dimV0 < dim h then the only invariant connection is
the trivial one. This is because if h is simple then the adjoint representation of h is
irreducible and so, besides the 0 map, HomH(V0, h) contains only surjections.

Definition 15. Denote by Homflat
H (V0, hC) the space of flat connections.

Now we have a map

Homflat
H (V0, hC)×R(H)→ R(G)

defined as follows. Let (E0, ρ) ∈ R(H) and let E = G×H E0 the associated bundle.
By Proposition 3, a flat VG/H-connection on G→ G/H makes E into a G-invariant
VG/H-module. Then the cohomology spaces H•VG/H (G/H;E) form representations

of G. Explicitly, we have an identification

Γ(G/H;E) ' {f : G→ E0 | f(gh) = ρ(h)−1f(g)}.
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Given a connection ω ∈ Homflat
H (V0, hC), the connection on Γ(G/H;E) is defined

by

∇VG/H ;E

[g,v] f = v · f + ρ(ω(v))f, [g, v] ∈ VG/H ' G×Ad V0.

G acts on Ω•(G/H;E) via pullback of differential forms by the left-action of G
on G/H and this action commutes with dVG/H ;E. Thus this action descends to a
representation of G on H•VG/H (G/H;E).

We now discuss two classes of examples.

8.2.3 SU(n) ⊂ SU(n+ 1)

The inclusion su(n) → su(n + 1), A 7→
(

A 0
0 0

)
satisfies the properties of

Proposition 14; taking the maximal torus t ⊂ su(n + 1) formed by the diagonal
elements, we see that diag(1, 1, . . . , 1,−n) lies in mC ∩ tC and centralizes su(n).
Then we have

∆+(su(n)) = {ei − ej | 1 ≤ i < j ≤ n}
⊂ ∆+(su(n+ 1)) = {ei − ej | 1 ≤ i < j ≤ n+ 1}.

where ei ∈ t∗C is the linear form diag(h1, . . . , hn+1) 7→ hi. Thus ∆+(m) = {e1−en+1 :
1 ≤ i ≤ n}, which clearly satisfies the condition (8.2.2).

Of course the homogeneous space is the sphere S2n+1 and this involutive elliptic
structure agrees with previous one we have defined (that coming from the bundle
S2n+1 → CP n). Now we have dimV0 = n < n2−1 = dim h so by Proposition 16 and
its proceeding remark, we have only one invariant connection (which is, of course,
flat). Thus we have an induction map

R(SU(n))→ R(SU(n+ 1)).

8.2.4 SU(n) ⊂ Spin(2n)

Recall we have the embedding

su(n)→ so(2n), A+ iB 7→
(
A −B
B A

)
.

The maximal torus for su(n) given by the diagonal elements maps into the maximal
torus of so(2n) given by

tC =

(
0 − diag(h1, . . . , hn)

diag(h1, . . . , hn) 0

)
,
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with orthogonal complement spanned by(
0 −Id
Id 0

)
∈ tC ∩mC.

This centralizes su(n) ⊂ so(2n) and so again Proposition 14 applies. Letting ei ∈ t∗C
be the map (h1, . . . , hn) 7→ hi, we have

∆+(su(n)) = {ei − ej | 1 ≤ i < j ≤ n}
∆+(so(2n)) = {ei + ej, ei − ej | 1 ≤ i < j ≤ n}

so that ∆+(m) = {ei + ej | 1 ≤ i < j ≤ n} satisfies condition 8.2.2. As in
the previous example, a dimension count shows that there is only one invariant
connection on Spin(2n)→ Spin(2n)/SU(n) so that our induction procedure gives
a map

R(SU(n))→ R(Spin(2n)).

8.3 Projectivizations of V -modules

Recall from Corollary 5 that if E → M is a rank k + 1 V -module, then the total
spaces of E and P(E) each have natural elliptic involutive structures. Note that
this structure is not the pullback structure from the projections from E,P(E) to
M ; the EIS we are considering is more refined since we are only looking at the
anti-holomorphic directions of the fibers.

Consider the tautological line bundle L→ P(E), i.e.

L = {(v, l) ∈ E ×M P(E) | v ∈ l} ⊂ π∗E,

where π : P(E)→M is the projection. We claim that L is a VP(E) module. Indeed,
let {Uα ⊂ M} be a trivializing cover of E with O×V valued transition functions.
Then over Uα, P(E)|Uα ' U × CP k with the product involutive structure. Then if
{Wj} is a cover of CP k on which O(−1) is trivial and holomorphic, the subspaces
of P(E) corresponding to Ui ×Wj give a cover of P(E) on which L is trivial and
the transition functions have values in O×VP(E)

.

Consider now the dual bundle L∗ → P(E). The higher direct image of this along
the fibration P(E) → M gives a flat (virtual) vector bundle on M . The vertical
cohomology of this at any fiber is just H•(CP k;O(1)), which is non-zero only in
degree 0 where it has dimension k+ 1. Thus the direct image is a single flat vector
bundle of rank k+ 1 over M . This vector bundle is canonically a V -module and we
claim that it is E∗.

Indeed, any section α ∈ Γ(M ;E∗) gives rise to an element α̃ ∈ Γ(P(E);L∗) by

α̃(v, l) = απ(v)(v), (v, l) ∈ L.
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By restricting to any fiber, these give the usual holomorphic sections of L∗ and so
we see that E∗ ' H0(P(E)/M ;L∗).

We now study the characteristic classes of L∗. Let h be a hermitian metric on
E. This determines hermitian metrics on π∗E,L and L∗, which we will also call h.
We can use the metric on L to extend dVP(E)

to a normal connection ∇L. Indeed,

for Z ∈ T 1,0, ∇Z is defined by

h(∇L
Zv, w) = Z · h(v, w)− h(v, cdVw), v, w ∈ Γ(P(E), L).

Thus, when restricted to each fiber ∇ is the Chern connection associated to h.
Let U ⊂ M be such that E|U has a parallel local frame σ0, . . . , σk and put

hij = h(σi, σj). Thus we have an identification

U × CP k ∼→ P(E)|U , (x, [z0 : · · · : zk]) 7→ [zjσj(u)].

Under this correspondence, consider the open set of P(E) where z0 6= 0. Then L is
trivialized on this set with section

ψ : [σ0 + z1σ1 + · · ·+ zkσk] 7→ σ0 + z1σ1 + · · ·+ zkσk.

Define H = h(ψ, ψ) = hijz
iz̄j, where we put z0 = 1. Then with respect to the

frame ψ, the connection is just ∇L = d+H−1∂H so that the connection for ∇L∗ is
d−H−1∂H. The curvature of ∇L∗ is then

FL∗ = −d∂ logH = −(dM + ∂̄)∂ logH,

whose class in H1
VP(E)

(P(E); (T 1,0)∗) represents at1(L∗).

For the real cohomology class (section 7.3.2), we have u1(L∗) = H−1dH ∈
H1
π∗VR

(P(E)).
Along any fiber CP k, the form at1(L) pulls back to the Atiyah class of O(−1)→

CP k, which generates H•(CP k; Λ•T 1,0CP k). Since V ⊥P(E) restricts to T 1,0CP k along
any fiber, Theorem 4 gives

H•VP(E)
(P(E); Λ•V ⊥P(E)) ' H•(M)⊗ span{at1(L), at1(L)2, · · · , at1(L)k}.
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Part III

Generalized Higgs algebroids

42



Chapter 9

Basic structure of generalized
Higgs algebroids

We will now begin our study of generalized Higgs algebroids. Special cases of
modules over such algebroids include Higgs bundles and generalized holomorphic
vector bundles. As motivation for the definition, we recall some basic facts about
Higgs bundles and generalized geometry.

Following Hitchin, Simpson [Sim92] defined a Higgs bundle over a complex man-
ifold X as a pair (E, θ) where (E, ∂̄E) → X is a holomorphic vector bundle and
θ ∈ Ω1,0(X; EndE) satisfies

[∂̄E, θ] = 0, θ ∧ θ = 0

⇔
(∂̄E + θ)2 = 0.

In [Blo05] it is shown that Higgs bundles are equivalent to modules over the so-called
Higgs Lie algebroid, AHiggs. This is the Lie algebroid which, as a vector bundle, is
TCX but has bracket defined by

[v′ + v′′, w′ + w′′] = [v′′, w′′] + p′([v′′, w′] + [v′, w′′]),

where v′, w′ ∈ T 1,0X, v′′, w′′ ∈ T 0,1X and p′ : TCX → T 1,0X is the projection. The
anchor is defined by the projection TCX → T 0,1X. We note that this is an elliptic
Lie algebroid with the property that the kernel of the anchor map, T 1,0X is abelian
(i.e. the bracket is trivial).

Generalized holomorphic vector bundles have a similar description. We first
recall that for any smooth manifold M , TM ⊕ T ∗M carries a natural bilinear form
and the Courant bracket [Gua11], which is defined by

[X + ξ, Y + η] = [X, Y ] + LXη − LY η −
1

2
d(iXη − iY ξ),
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for X, Y ∈ Γ(M ;TM), ξ, η ∈ Ω1(M). A generalized complex structure is then
defined to be an isotropic subbundle E0,1 of (TM ⊕ T ∗M)⊗C that is closed under
the Courant bracket and satisfies E0,1 ∩E0,1 = 0. Despite the Courant bracket not
defining a Lie bracket on TM⊕T ∗M , it does define one on E0,1, which makes it into
a Lie algebroid with anchor map E0,1 ↪→ TCM ⊕ T ∗CM → TCM . The algebroid E0,1

is elliptic and the kernel of the anchor map is T ∗CM ∩ E0,1, which is abelian. E0,1-
modules are called generalized holomorphic vector bundles. An important difference
between Higgs algebroids and generalized complex structures is that for AHiggs, the
exact sequence of Lie algebroids

0→ kerAHiggs → AHiggs
ρ→ AHiggs/ ker ρ.

splits.
Based on these examples, we make the following definition.

Definition 16. A generalized Higgs algebroid is an elliptic complex Lie algebroid
A such that ker ρ is abelian and the sequence

0→ ker ρ→ A→ A/ ker ρ→ 0

admits a (Lie algebroid) splitting.
A twisted generalized elliptic Higgs algebroids is an elliptic complex Lie algebroid

with ker ρ abelian (but the above sequence may not split).

Remark. From the perspective of generalized geometry, we do not want the splitting
to be part of the data of a (untwisted) generalized Higgs algebroid. This will give us
additional algebroid automorphisms, analogous to the B-field actions in generalized
geometry.

We note that elliptic Higgs algebroids together with a splitting are in 1-to-1
correspondence with the data of an elliptic involutive structure V and a V -module
E (then the corresponding generalized Higgs algebroid is the abelian extension EoV
of V by E).

Remark. In the language of [Blo05], this coincides with what would be called a gen-
eralized Higgs algebroid associated to a module over an elliptic involutive structure.

Besides Higgs algebroids and the Lie algebroid determined by a generalized
complex structure, another natural example of a generalized Higgs algebroid is the
Atiyah algebroid, at(P ) = TP/T , of a principal complex torus bundle T → P →M .
This fits in the sequence

0→ t→ at(P )→ TM → 0, (9.0.1)

where t = Lie(T ) is the trivial vector bundle over M . This is a transitive Lie
algebroid (and so in particular is elliptic) with abelian kernel so that at(P ) is a
twisted generalized Higgs algebroid.
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9.1 Extensions and gerbes

Suppose A is a twisted generalized Higgs algebroid. Then we have, in particular, an
involutive elliptic structure V := ρ(A) and a V -module K := ker ρ. To understand
the extent to which A is determined by the pair (V,K), we need to understand
the theory of abelian Lie algebroid extensions. These are classified by H2

V (M ;K).
Given a closed form c ∈ Ω2

V (M ;K) we can define an abelian extension Ac of V by
K as follows. As a vector bundle, Ac = K⊕V with anchor inherited from V ’s. The
Lie bracket is given by

[(w1, v1), (w2, v2)] = (∇v1w2 −∇v2w1 + c(v1, v2), [v1, v2]).

That this bracket satisfies the Jacobi identity is a consequence of dV ;Kc = 0. Fur-
thermore, the isomorphism class of the extension Ac depends only on the cohomol-
ogy class of c in H2

V (M ;K). Conversely, given an extension A of V by K we get a
class in H2

V (M ;K) by choosing a vector bundle splitting s : V → A and defining
cs ∈ Ω2

V (M ;K) by cs(v1, v2) = [s(v1), s(v2)]− s[v1, v2] ∈ K. Then one verifies that
cs is closed and its cohomology class is independent of the choice of s. The extension
is trivial, i.e. A ' K o V , if and only if c is cohomologically trivial.

In the case of an untwisted Higgs algebroid, we are interested in knowing when
the splitting is unique. We call two Lie algebroid splittings s, s′ : A/ ker ρ → A
isomorphic if they are related by an inner automorphism of A that acts trivially
on ker ρ. The space of inner derivations that annihilate ker ρ is given by {adw |
w ∈ ker ρ} 1 so that inner automorphism acting trivially on ker ρ are given by
expadw = 1 + adw. Now suppose s1, s2 : V → A are two Lie algebroid splittings of
0→ K → A→ V → 0. Then their difference defines a class in H1

V (M ;K) and the
two splittings are isomorphic if and only if this class is trivial. We summarize

Theorem 10. Given a Lie algebroid V and a V -module K, abelian Lie algebroid ex-
tensions of V by K are in one-to-one correspondence with H2

V (M ;K). The split, i.e.
semi-direct product extension corresponds to the class 0 ∈ H2

V (M ;K). In this case,
the isomorphism classes of splittings are an affine space over H1

A/ ker ρ(M ; ker ρ).

Since the cohomology of any elliptic involutive structure is locally trivial (chap-
ter 7), we have

Corollary 6. Any twisted Higgs algebroid has a local splitting.

Corollary 7. A twisted generalized Higgs algebroid over M is determined (up to
isomorphism) by a triple (V,K, [c]), where

1. V is an EIS.

1this is because if v ∈ Γ(M ;A) with [v, w] = 0 for all w ∈ ker ρ then [v, fw] = (ρ(v) · f)w = 0
for all w ∈ ker ρ, f ∈ C∞(M) so that v ∈ ker ρ.
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2. K is a V -module.

3. [c] is a class in H2
V (M ;K), which we call the curvature of the TGHA.

In the case of an Atiyah algebroid (9.0.1), the curvature is in H2(M ; t) and is
represented by the curvature F of a principal connection.

9.1.1 Gerbes

Recall from Corollary 5 that K∗ being a module over an elliptic involutive struc-
ture implies that the total space totK∗ has an elliptic involutive structure itself.
Following Hitchin [Hit10], the curvature c ∈ H2

V (M ;K) of a twisted Higgs alge-
broid determines a class in H2(O×totK∗) as follows. Pulling back c via the projection
π : K∗ → M gives a class π∗c ∈ H2

VtotK∗
(totK∗; π∗K). But π∗K∗ → totK∗ has

a canonical section and pairing this with π∗c gives us a class in H2
VtotK∗

(totK∗) '
H2(OVtotK∗ ). Exponentiating then gives a class in H2(O×VtotK∗

). Just as a class in
degree 2 sheaf cohomology with coefficients in the sheaf of locally constant non-zero
functions or the sheaf of holomorphic non-zero functions classifies a flat gerbe or
holomorphic gerbe, we can think of this class as defining a gerbe relative to the
elliptic involutive structure.

We note that the gerbe we have defined is topologically trivial. This is because
the underlying topological gerbe is classified by the element in H3(totK∗;Z) coming
from the map

H2(O×VtotK∗
)→ H3(totK∗;Z)

induced from the short exact sequence of sheaves

0→ Z→ OVtotK∗ → OVtotK∗ → 0.

But this element is zero since our gerbe was defined by exponentiating an element
of H2(OVtotK∗ ).

9.2 B-field actions

Once we choose a splitting K o V ' A of an untwisted Higgs algebroid A, any
closed element B of Ω1

V (M ;K) gives rise to an automorphism ϕB of A via

w + v
ϕB7→ w + ivB + v, w ∈ K, v ∈ V.

We call such automorphisms B-field actions since for co-Higgs bundles these corre-
spond to B-field actions in generalized complex geometry. We emphasize that while
we need a splitting to define such an action, the automorphism will not preserve
the splitting in general. Indeed, the action of the B-field gives a different splitting
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and by the previous section the new splitting is isomorphic to the original one if
and only if the class of B in H1

V (M ;K) is trivial.
Because of Corollary 6 we may consider any twisted generalized Higgs algebroid

as being pieced together by untwisted Higgs algebroids and B-fields relating the two
algebroids on overlaps. Then we will see that many of the constructions/analyses
that are done for untwisted Higgs algebroids can be done for twisted ones by working
over the gerbe defined in the previous section. This is done in the case of twisted
co-Higgs bundles in [Hit10].
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Chapter 10

Modules over generalized Higgs
algebroids

We keep the notation of the previous chapter: A → M is a (possibly twisted)
generalized Higgs algebroid, K = ker ρ ⊂ A and V = ρ(A) ⊂ TCM .

10.1 The case of untwisted generalized Higgs al-

gebroids

We first consider the case where we have a splitting A = KoV . Then the following
is straightforward

Proposition 17. Let A → TCM be an elliptic generalized Higgs algebroid. Upon
choosing a splitting, an A-module is equivalent to the data of a V module (E,∇V )
together with a “Higgs field”: an element θ ∈ Ω1

K(M ; EndE) such that

[∇V , θ] = 0 (10.1.1)

θ ∧ θ = 0. (10.1.2)

Now let E •V denote the sheaf of V -parallel elements of Γ(M ; Λ•K∗ ⊗ E). Then
eq. (10.1.1) and eq. (10.1.2) imply that we have a complex of sheaves

E 0
V

θ∧→ E 1
V

θ∧→ · · · .

The following is familiar in the case of Higgs bundles [Sim92].

Proposition 18. The Lie algebroid cohomology computes the hypercohomology of
the above sequence of sheaves:

H•(E •V , θ) = H•A(M ;E).
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Proof. By Theorem 6 and eq. (10.1.1), we have a resolution

...
...

...

Ω1
V ;E

θ∧ //

OO

Ω1
V ;K∗⊗E

θ∧ //

OO

Ω1
V ;Λ2K∗⊗E

θ∧ //

OO

· · ·

Ω1
V ;E

−θ∧//

dV ;E

OO

Ω1
V ;K∗⊗E

−θ∧ //

dV ;K∗⊗E

OO

Ω1
V ;Λ2K∗⊗E

−θ∧ //

dV ;Λ2K∗⊗E

OO

· · ·

Ω0
V ;E

θ∧ //

dV ;E

OO

Ω0
V ;K∗⊗E

θ∧ //

dV ;K∗⊗E

OO

Ω0
V ;Λ2K∗⊗E

θ∧ //

dV ;Λ2K∗⊗E

OO

· · ·

E 0
V

θ∧ //

OO

E 1
V

θ∧ //

OO

E 2
V

θ∧ //

OO

· · ·

0

OO

0

OO

0

OO

is a resolution. Since the sheaves ΩV ;Λ•K∗⊗E are soft, the hypercohomology of (E •V , θ)
is equal to the cohomology of the total complex of the double complex formed by
taking global sections of the resolution. But this is exactly H•A(M ;E).

10.1.1 K-valued Higgs bundles

If K is a holomorphic vector bundle over X, we can form the generalized Higgs
algebroid K o T 0,1X. Then a module over this algebroid is a holomorphic vector
bundle (E, ∂̄E) → X together with θ ∈ Γ(X;K∗ ⊗ EndE) such that θ ∧ θ = 0
and [∂̄E, θ] = 0. Such modules are called K-valued Higgs bundles [KOP, Don95].
Of course, when K = T 1,0X these are Higgs bundles and when K = (T 1,0X)∗

these are called co-Higgs bundles [Ray11, Hit10] and are precisely the generalized
holomorphic bundles corresponding to the generalized complex structure induced
by a regular complex structure.

10.1.2 Gauge transformations and the B-field action on mod-
ules

Recall from section 9.2 that any closed element B ∈ Ω1
V (M ;K) gives rise to an

automorphism ϕB of A. We now consider the action of these elements on the space
of A-modules:

Ω1
V,cl(M ;K) 3 B : (E,∇A;E) 7→ (E,ϕ∗B∇A;E).
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Explicitly, writing ∇A;E = ∇V ;E + θ, we have

(ϕ∗B∇A;E)w+v = ∇A;E
w+ivB+v = ∇V ;E

v + θ(w + ivB).

Thus B leaves the Higgs field unchanged but changes the V -module structure by

∇V ;E 7→ ∇V ;E + θ ◦B.

It is straightforward to verify

Proposition 19. B-field transformations commute with gauge transformations.

We also have the following generalization of Proposition 2 of [Hit10].

Proposition 20. Suppose the class [B] ∈ H1
V (M ;K) vanishes, i.e. B = ∇V ;Kw

for some w ∈ Γ(M ;K). Then the action of B on an A-module (E, θ) corresponds
to the gauge transformation exp(θ(w)) ∈ Aut(E).

Proof. The condition θ ∧ θ = 0 implies that exp(θ(w)) preserves the Higgs field.
Thus we just need to show that

exp(−θ(w)) ◦ ∇V
v ◦ exp(θ(w)) = ∇V

v + θ(ivB) = ∇V
v + θ(∇V ;K

v w) (10.1.3)

for all v ∈ V . Now,

exp(−θ(w)) ◦∇V ;E
v ◦ exp(θ(w)) = ∇V ;E

v + exp(−θ(w))∇V ;EndE
v exp(θ(w)). (10.1.4)

The condition (10.1.1) implies that θ(∇V ;K
v w) = ∇V ;EndE

v (θ(w)) so that

[∇V ;EndE
v θ(w), θ(w)] = [θ(∇V ;K

v w), θ(w)] = 0,

since θ ∧ θ = 0. By Leibniz we then have

∇V ;EndE
v exp θ(w) = exp(θ(w))∇V ;EndE

v θ(w) = exp(θ(w))θ(∇V ;K
v w),

which, together with eq. (10.1.4), establishes eq. (10.1.3).

10.2 Spectral varieties

The notions of spectral variety and spectral sheaf, used in the theory of Higgs
bundles [Sim94, Don95, KOP], carry over to generalized Higgs algebroids.

Let (E,∇A) be a rank r A-module with Higgs field θ ∈ Γ(M ;K∗ ⊗ EndE).
Let p : K∗ → M denote the projection and consider the pullback bundle p∗K∗ →
totK∗ which has a canonical section λ ∈ Γ(totK∗; p∗K∗). We have the section
λ⊗ Id− p∗θ ∈ Γ(totK∗; p∗(K∗ ⊗ EndE)).
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Definition 17. The spectral variety, S, is the subspace of totK∗ given by the
vanishing of the section

det(λ⊗ Id− p∗θ) ∈ Γ(totK∗; p∗SrK∗).

Generically, S is an r-fold cover of M .

The spectral variety is the support of a sheaf L, which encodes the eigenspaces
of θ, with the property that p∗L = E. Generically, L is a line bundle.

Since S is a finite cover of M , it inherits an elliptic involutive structure VS from
the elliptic involutive structure V on M . If the Lie algebroid is split then E is a
V -module and L is a VS-module. In the general twisted case, L will be a VS-sheaf
over the gerbe defined in section 9.1.1 [Hit10].

10.3 Cohomology

Most of the results of [Hit10] on the cohomology of co-Higgs bundles carry over to
generalized Higgs bundles. In particular, letting m = rkV, k = rkK, we have

Proposition 21 (Proposition 6 of [Hit10]). Let A = K oV be a (split) generalized
Higgs algebroid. Suppose (L, θ) is a rank 1 A-module such that the section θ ∈
Γ(M ;K∗) has non-degenerate zero set. Then

Hj
A(M ; (L, θ)) =

{
0; j 6= k

H0
V (θ−1(0);L⊗ ΛkK∗); j = k.

Theorem 11 (Theorem 7 of [Hit10]). Let A = KoV be a (split) generalized Higgs
algebroid with m ≥ dimM . Suppose (E, θ) is an A-module such that the spectral
sheaf is a line bundle and the spectral cover S ⊂ totK∗ is smooth with and the zero
section Z ⊂ totK∗ are in general position. Then

Hj
A(M ; (E, θ)) =

{
0; j 6= k

H0
V (S ∩ Z;L ⊗ ΛkK∗); j = k.

More generally, suppose (E, θ) is a module over a twisted Higgs algebroid such
that the spectral sheaf is a line bundle over the gerbe constructed in section 9.1.1.
This gerbe is canonically trivial when restricted to Z ⊂ totK∗ and so the spectral
sheaf determines a regular line bundle L on S ∩Z and the above result holds in the
twisted case as well (in the co-Higgs case this is Theorem 8 of [Hit10]).
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Chapter 11

Higgs bundles

In this section, which will largely be self-contained, we specialize to the case of
Higgs bundles over a complex manifold X. Recall that these are pairs (E, θ) where
E → X is a holomorphic vector bundle and θ ∈ Ω1(X; EndE) satisfies θ ∧ θ = 0
and [∂̄E, θ] = 0. Equivalently, these are modules over the Higgs algebroid

AHiggs := T 1,0X o T 0,1X.

Something that separates the Higgs algebroid from generalized Higgs algebroids
is its close relationship with the tangent bundle algebroid. Indeed, we have the
family of Lie algebroids At defined as follows. As a vector bundle, At = TCX =
T 1,0X ⊕ T 0,1X and the bracket and anchor are

[v′ + v′′, w′ + w′′]t = p′([v′, w′′] + [v′′, w′]) + [v′′, w′′]

+ tp′′([v′, w′′] + [v′′, w′]) + t[v′, w′]

ρt(v
′ + v′′) = tv′ + v′′

where

v′, w′ ∈ T 1,0X, v′′, w′′ ∈ T 0,1X, p′ : TCX → T 1,0X, p′′ : TCX → T 0,1X.

Then
AHiggs = A0, (TCX, [·, ·]) = A1.

Furthermore, all At are isomorphic to A1 = (TCX, [·, ·]) for t 6= 0 via the map

A1 → At, v′ + v′′ 7→ 1

t
v′ + v′′.

Further, when X is compact Kähler the non-abelian Hodge theorem of Simpson
[Sim92] gives an equivalence between the category of certain AHiggs-modules and
certain TCX-modules (i.e. flat vector bundles):
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Theorem 12 (Non-abelian Hodge theorem [Sim92]). For X a compact Kähler
manifold, there is a 1-to-1 correspondence polystable Higgs

bundles on X with
vanishing Chern

classes

←→ (
semi-simple flat

vector bundles on X

)
.

To go from a Higgs bundle to a flat bundle requires the existence of a Hermitian-
Yang-Mills metric h. The flat connection is then given by

∇ = ∇h + θ + θ∗,

where ∇h denotes the Chern connection (i.e. the unique connection preserving h
and having (0, 1) part equal to ∂̄E) and θ∗ is defined by

h(θψ1, ψ2) = h(ψ1, θ
∗ψ2), ψ1, ψ2 ∈ Γ(X;E).

11.1 Characteristic classes of Higgs bundles

Since a Higgs bundle (E, θ) is in particular a holomorphic vector bundle, it has
an Atiyah class At(E) ∈ H1,1(X; EndE) [Ati57] (see also section 7.3.1). We can
incorporate the Higgs field by noting that it defines a class in H1,0(X; EndE). We
define the following characteristic classes:

Definition 18. For j ≥ 0, let

aj(E, θ) =
1

j!

(
i

2π

)j
tr(At(E)jθ) ∈ Hj+1,j(X).

Proposition 22. Suppose

0→ (E1, θ1)→ (E, θ)→ (E2, θ2)→ 0

is an exact sequence of Higgs bundles. Then we have

aj(E, θ) = aj(E1, θ1) + aj(E2, θ2).

for all j ≥ 0.

Proof. This follows from the proof of Proposition 9(2) and the fact that θ, in terms
of a vector bundle splitting E ' E1 ⊕ E2, has the form

θ =

(
θ1 θ2,1

0 θ2

)
for some θ2,1 ∈ Ω1,0(X; Hom(E2, E1)).
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11.1.1 Reznikov’s theorem and the nonabelian Hodge the-
orem

Suppose now X is a compact Kähler manifold. By the non-abelian Hodge the-
orem (Theorem 12), certain Higgs bundles (E, θ) over X correspond to certain
flat vector bundles (E,∇). Flat vector bundles have characteristic classes u• ly-
ing in Hodd(X;R) (see section 7.3.2) and the Hodge decomposition says that we
can view the characteristic classes of Higgs bundles, which lie in H•+1,•(X), as el-
ements of Hodd(X;C). We will show that the Higgs and flat characteristic classes
are equivalent (up to scale) under these correspondences. We first recall a theorem
of Reznikov, which says that the flat characteristic classes all vanish in degrees 3
and higher. We will give an independent proof of this using the non-abelian Hodge
theorem.

Theorem 13 (Reznikov’s theorem/Bloch’s conjecture [Rez95, Blo78]). If E → X
is a flat vector bundle with X Kähler, then the classes u2j+1(E) ∈ H2j+1(X;R)
vanish for j ≥ 1.

Proof. Because the class u2j+1 vanish on short exact sequences, It suffices to show
this for simple flat vector bundles, i.e. those whose monodromy representation of
π1X is irreducible. Indeed, if we know the result is true for simple flat vector bundles
and E is not simple, then we can find E ′ ⊂ E simple so that by Proposition 10
u2j+1(E) = u2j+1(E/E ′). Then we can repeat this procedure, replacing E/E ′ with
a quotient by a simple flat subbundle until we get something simple.

Thus we assume (E,∇) is simple and appeal to the non-abelian Hodge theorem,
which gives us a metric h and Higgs field θ ∈ Ω0,1(X; EndE) such that ∇ =
∇h + θ + θ∗. The adjoint connection with respect to h is then

∇∗ = ∇h − θ − θ∗

so that
ω(E, h) = θ + θ∗.

But since θ2 = 0 = (θ∗)2 we have, for j ≥ 1,

− tr(ω(E, h)2j+1) = tr
(
(θ + θ∗)2j+1

)
= tr([θ, θ∗]j(θ + θ∗))

= tr((θθ∗ · · · θθ∗)θ) + tr((θ∗θ · · · θ∗θ)θ∗)
= tr(θ(θθ∗ · · · θθ∗)) + tr(θ∗(θ∗θ · · · θ∗θ))
= 0,

where in the second to last line we used the fact that the trace vanishes on commu-
tators. Thus u2j+1(E) = 0.
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We now show that the flat and Higgs characteristic classes correspond under the
non-abelian Hodge theorem.

Proposition 23. Suppose (E, θ) → X is a polystable Higgs bundle with vanishing
Chern classes over a compact Kähler manifold X and let ∇ denote the corresponding
flat connection.

1. Using the Hodge decomposition to view a1(E, θ) as a class in H1(X;C), we
have

Re a1(E, θ) =
1

2
(a1(E, θ) + a1(E, θ)) =

1

2
u1(E,∇).

2. a2j+1(E, θ) = 0, for j ≥ 1.

Proof. The proof of 2. is similar to the proof of Theorem 13. The condition on
(E, θ) implies that if h denotes the hermitian Yang-Mills metric, then

∇ = ∇h + θ + θ∗

Then
0 = (∇)2 = Fh + [∇h, θ + θ∗] + [θ, θ∗].

Since [∂̄E, θ] = 0, the (1, 1) part of the above equation gives us

Fh = −[θ, θ∗].

Then for j ≥ 1,

aj(E, θ, h) = (−1)j tr([θ, θ∗]jθ) = (−1)j tr((θθ∗ · · · θθ∗)θ) = 0,

since the trace vanishes on supercommutators.
For the first part, since ∇h preserves h we have

∇∗ = ∇h − θ − θ∗

so that

u1(E,∇, h) =
1

2
tr(∇−∇∗) =

1

2
tr(2(θ + θ∗))

= tr(θ + θ∗) = tr θ + trθ = a1(E, θ, h) + a1(E, θ, h).

Since a1(E, θ, h) is a ∂̄-closed (1, 0) form it is actually harmonic (since we trivially
have ∂̄∗a1(E, θ, h)). Thus taking cohomology and using the Hodge decomposition
gives (1).
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11.2 Higher direct image and a secondary

Grothendieck-Riemann-Roch theorem

We now want to apply our construction from chapter 4 to study the direct image of
Higgs bundles. Thus suppose we have a fibration of complex manifolds Z →M

π→ B
and a Higgs bundle (E, θ)→ M . Define T (M/B) = ker π∗ and recall the set-up of
chapter 4. There we defined a complex of infinite rank bundles, E•M/B, whose fiber
over x ∈ B is the space of E-valued differential forms on the fiber with differential
given by the vertical Higgs differential ∂̄M/B;E + θ|M/B. A choice of connection (i.e.
horizontal distribution) on the fiber bundle M → B gives us an identification

Ω•(B;E•M/B) ' Ω•(M ;E)

and so, from the point of view of E•M/B → B, ∂̄E + θ is a super-Higgs bundle
structure of total degree 1, which we denote by A, and whose degree 0 piece is the
vertical differential. We will now examine the decomposition A = A[0] + A[1] + · · ·
in the case of an especially nice type of fibration M → B with connection, which is
called a Kähler fibration.

11.2.1 Kähler fibrations

In [BGS88], Bismut, Gillet, and Soule give the definition

Definition 19 (Definition 1.4 in [BGS88]). The data (π, gM/B, THM), where gM/B

is a metric on T (M/B), is called a Kähler fibration if there exists ω ∈ Ω1,1(M) such
that

1. ω is closed

2. THM and T (M/B) are orthogonal with respect to ω.

3. For X, Y ∈ T (M/B), ω(X, Y ) = gM/B(X, JY ).

Note that for a Kähler fibration, each fiber is Kähler with Kähler form given by
the restriction of ω.

When viewed as a superconnection on E•M/B, the total exterior derivative dE on

M has the following decomposition [BGV92, BL95]

dE = dM/B;E + ∇̃M/B;E + Ŝ + iΩ, (11.2.1)

where Ω is the curvature of the connection on M → B, ∇̃M/B;E is the connection
defined by

∇̃M/B;E
v = ∇M ;E⊗Λ•T ∗(M/B)

vH
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(where vH is a horizontal lift of v and the connection on T ∗(M/B) is the Bismut
connection corresponding to gM/B), and Ŝ : TB → End(Λ•T ∗(M/B)) is defined on
T ∗(M/B) by

〈Ŝ(v)µ,X〉 = −α(∇M/B

vH
X − [vH , X]), X ∈ Γ(M ;T (M/B)), µ ∈ T ∗(M/B)

and is extended to be a derivation (above 〈·, ·〉 represents the paring of T ∗(M/B)
and T (M/B)). The relationship between Ŝ and the tensor S in [BGS88] is

〈Ŝ(v)µ,X〉 = g(S(X)µ], vH), (11.2.2)

where µ# ∈ T (M/B) corresponds to µ via gM/B.

Proposition 24. If v ∈ T 1,0B then Ŝ(v) vanishes on Λ0,1T ∗(M/B) and if v ∈ T 0,1B
then Ŝ(v) vanishes on Λ1,0T ∗(M/B). Indeed we have,

Ŝ(T 1,0B) ⊂ End(Λ1,0T ∗(M/B),Λ0,1T ∗(M/B))

Ŝ(T 0,1B) ⊂ End(Λ0,1T ∗(M/B),Λ1,0T ∗(M/B)).

Proof. In [BGS88] it is shown that the tensor g(S(X)·, ·) is (1,1) and that if X ∈
T 1,0M/B, Y ∈ T 0,1M/B then S(X)Y = 0 = S(Y )X. The proposition then follows
from these properties along with (11.2.2) and the fact that

gM/B :

{
T 1,0M/B

∼→ Λ0,1T ∗(M/B),

T 0,1M/B
∼→ Λ1,0T ∗(M/B).

Let
KS := Ŝ|T 1,0B.

Then KS is a Dolbeault representative of the Kodaira-Spencer map T 1,0B →
H1(Mb, T

1,0
Mb

) (c.f. lemma 4.3 in [FS90]). Then from (11.2.1) we have the following
decomposition of the Dolbeault operator on M ,

∂̄ = ∂̄M/B︸ ︷︷ ︸
(0,1,0,0)

+ (∇̃M/B)0,1︸ ︷︷ ︸
(0,0,0,1)

+ KS︸︷︷︸
(−1,1,1,0)

+ iΩ1,0︸︷︷︸
(−1,0,1,1)

. (11.2.3)

where the quadruple (a, b, c, d) under the operator means that it maps

Λp,qT ∗(M/B)→ Λp+a,q+bT ∗(M/B)⊗ Λc,dT ∗B.

More generally, if E → M is a holomorphic vector bundle with connection ∇E

compatible with ∂̄E, then we may write

∂̄E = ∂̄M/B;E + (∇̃T ∗(M/B)⊗E)0,1 +KS + iΩ1,0 . (11.2.4)

where ∇̃T ∗(M/B)⊗E is the connection on E•M/B induced by the connection∇M/B⊗∇E

on Λ•T ∗(M/B)⊗ E.
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11.2.2 Secondary Grothendieck-Riemann-Roch

In this section we will prove

Theorem 14. Suppose B is a complex manifold, Y is Kähler and (E, θ) is a Higgs
bundle over B × Y . Then

ak(ind(∂̄Y ;E + θY )) =

∫
Y

e(TY )ak(E, θ), k ≥ 0.

In keeping with the notation of the previous section, we let M = B×Y and will
write M/B for Y .

Hodge theory

The infinite rank bundle E•M/B has an L2 metric induced from the metrics gM/B

and hE. Set D′′M/B = ∂̄M/B;E + θM/B, the vertical Higgs differential. Then

(D′′M/B)∗ = ∂̄∗M/B;E + i(θ∗M/B)

where θ = θM/B + θB with θM/B ∈ Γ(Λ1,0T ∗(M/B) ⊗ EndE), θB ∈ Γ(Λ1,0T ∗B ⊗
EndE). Using Hodge theory we have the identification

Heven
Dol (M/B;E)−Hodd

Dol(M/B;E) ' ker(D′′M/B + (D′′M/B)∗).

Letting P ∈ End(E•M/B) be the orthogonal projection onto ker(∂̄M/B + ∂̄∗M/B +

θM/B + i(θ∗M/B)), the Higgs field on ker(D′′M/B + (D′′M/B)∗) is P ◦ (θB +KS).
Using this correspondence, the metric on E•M/B restricts to give a metric on

Heven
Dol (M/B;E) − Hodd

Dol(M/B;E), whose corresponding Chern connection is P ◦
∇̃T ∗(M/B)⊗E ◦ P .

11.2.3 Index theorem

We will now prove theorem Theorem 14, following the techniques of [BL95] and
[BGS88]. Let c denote the Clifford action of T (M/B) on Λ0,•T ∗(M/B), i.e.

c(X) =
√

2(X[
1,0 ∧ −iX0,1), X = X1,0 +X0,1 ∈ T 1,0(M/B)⊕ T 0,1(M/B),

where [ denotes the isomorphism T (M/B)→ T ∗(M/B) given by gM/B. Then

Λ•T ∗(M/B)⊗ E = Λ•,0T ∗(M/B)⊗ Λ0,•T ∗(M/B)⊗ E

is a Clifford module with twisting bundle Λ•,0T ∗(M/B)⊗ E.
It is in the following crucial lemma that we use our simplifying hypothesis that

M is a product manifold.
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Lemma 3. Let

A′ = ∂̄∗M/B;E + i(θ∗M/B) + (∇̃T ∗(M/B)⊗E)1,0

A′′ = ∂̄M/B;E + θM/B + (∇̃T ∗(M/B)⊗E)0,1

Θ = θB +KS.

Then

(A′)2 = 0 = (A′′)2

[A′′,Θ] = 0.

Proof. From eq. (11.2.4) and the fact that Ω = 0 since M is a product, we have

0 = (∂̄E + θ)2 = (A′′ + Θ)2.

Then decomposing the above using the 4-part type decomposition and eq. (11.2.3)
gives (A′′)2 = 0 and [A′′,Θ] = 0. Then (A′)2 = 0 follows, by duality, from (A′′)2 =
0.

Definition 20. Let NM/B and NB be the number operators on Λ•T ∗(M/B) and
Λ•T ∗B, respectively, i.e.

NM/B|ΛiT ∗(M/B) = i, NB|ΛiT ∗B = i.

For t > 0, define
At = t−NM/B ◦ A′ ◦ tNM/B + A′′.

Proposition 25. The element Str (exp(−A2
t )Θ) ∈ Ω•(B) is ∂̄-closed, its Dolbeault

cohomology class is independent of t, and

lim
t→∞

Str
(
exp(−A2

t )Θ
)

= Str(exp(−(P ◦ ∇̃T ∗(M/B)⊗E ◦ P )2)Θ)

=
∑
k

1

k!

(
ak
(
Heven
Dol (M/B;E|M/B)

)
− ak

(
Hodd
Dol(M/B;E|M/B)

))
.

Proof. We have

∂̄B Str
(
exp(−A2

t )Θ
)

= Str
[
A′′, exp(−A2

t )Θ
]
.

Now, A2
t = [A′t,A′′] so that [A′′,A2

t ] = 0 since (A′′)2 = 0. Further, [A′′,Θ] = 0 by
Lemma 3 so the above vanishes. To show that the Dolbeaut cohomology class is
independent of t, let Ft = A2

t . Then by Lemma 3,

Ft = [A′′, t−NM/B ◦ A′ ◦ tNM/B ]
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so that
∂

∂t
Ft =

[
A′′,

∂

∂t
t−NM/B ◦ A′ ◦ tNM/B

]
.

Now it is easy to see that Bt := ∂
∂t
t−NM/B ◦ A′ ◦ tNM/B is C∞(B) linear, i.e. lies in

Ω•(B; EndE•M/B). Then, using ˙ to denote differentiation with respect to t, we have
for any integer k

∂

∂t
Str(FktΘ) =

k∑
j=0

Str(Fjt ḞtF
k−j−1
t Θ) =

k∑
j=0

Str(Fjt [A′′,Bt]F
k−j−1
t Θ)

=
k∑
j=0

Str([A′′,FjtBtF
k−j−1
t Θ] = ∂̄

k∑
j=0

Str(FjtBtF
k−j−1
t Θ),

where we have used the fact that Ft and Θ (super)commute with A′′. This shows
that the cohomology class of Str(exp(−A2

t )Θ) is independent of t.
For the last part, we have

Str
(
exp(−A2

t )Θ
)

= Str
(
tNM/B/2 exp(−A2

t )Θt
−NM/B/2

)
= Str

(
exp(−(tNM/B/2Att

−NM/B/2)2)Θ
)
.

The superconnection

tNM/B/2Att
−NM/B/2 =

√
t(D′′M/B + (D′′M/B)∗) + ∇̃T ∗(M/B)⊗E

is adapted to the Dirac operator D′′M/B + (D′′M/B)∗ and so by Theorem 9.19 of

[BGV92]

lim
t→∞

exp(−(tNM/B/2Att
−NM/B/2)2) = exp(−(P ◦ ∇̃T ∗(M/B)⊗E ◦ P )2).

Thus, as in the heat kernel proof of the families index theorem, we will investigate
the limit of exp(−AtΘ) as t→ 0. Define

A = A′ + A′′ = ∂̄M/B;E + ∂̄∗M/B;E + θM/B + i(θ∗M/B) + ∇̃T ∗(M/B)⊗E.

Modulo the degree 0 part θM/B + i(θ∗M/B), this is the Bismut superconnection for

the Dirac operator ∂̄M/B;E + ∂̄∗M/B;E.
We have

Str (exp(−At)Θ) = exp(−(tNM/B/2Att
−NM/B/2)2)

= Str
(

exp(−tt
−NB

2 A2t
NB

2 )Θ
)

= Str
(

exp(−tt
−NB

2 A2t
NB

2 )
√
tt
−NB

2 Θt
NB

2

)
= t

−NB
2 Str(exp(−tA2)

√
tΘ).
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We will now follow the techniques and notation of [BGV92]. Let k̃t(·, ·) be the
kernel of the operator e−tA

2
Θ and kt(·, ·) the kernel of e−tA

2
. Then since Θ has order

zero, k̃t(x, y) =
√
tkt(x, y)Θ(y). Writing kt(x), k̃t(x) for kt(x, x, ), k̃t(x, x), we have

an asymptotic expansion [BGV92] on the diagonal

kt(x) = (4πt)−n/2
∞∑
i=0

tiki(x)

⇒ k̃t(x) = (4π)−n/2t−(n−1)/2

∞∑
i=0

tiki(x)Θ.

with
ki ∈ Γ(M ;T ∗B ⊗ End(Λ•T ∗(M/B)⊗ E)).

Now,

End(Λ•T ∗(M/B)) ' End(Λ0,•T ∗(M/B))⊗ End(Λ•,0T ∗(M/B))

' C(T (M/B))⊗ End(Λ•,0T ∗(M/B)) ' Λ•T ∗(M/B)⊗ End(Λ•,0T ∗(M/B)).

Thus we may also view ki as being in A•(M ; End(Λ•,0T ∗(M/B)⊗ E)).
Let StrΛ•T ∗(M/B)⊗E denote the supertrace of an element in End(Λ•T ∗(M/B)) and

let StrΛ•,0T ∗(M/B)⊗E denote the supertrace of an element in End(Λ•,0T ∗(M/B)⊗E).
For a ∈ End(Λ•T ∗(M/B)) write a[p,n] ∈ ΛpT ∗B ⊗ End(Λ•,0T ∗(M/B) ⊗ E) for
the projection of a, under the correspondence above, onto the space ΛpT ∗B ⊗
ΛnT ∗(M/B) ⊗ End(Λ•,0T ∗(M/B) ⊗ E) followed by the Berezin integral. In other
words, a[p,n] is the coefficient of a on d volM/B. Then we have [BGV92]

StrΛ•T ∗(M/B)⊗E a = (−2i)n/2
∑
p

StrΛ•,0T ∗(M/B)⊗E a[p,n]

and

Str(exp(−A2
t )Θ) =

∫
M/B

t
−NB

2 StrΛ•T ∗(M/B)⊗E k̃t(x)d volM/B

= (4π)−n/2
∫
M/B

∞∑
i=0

t−
NB+n−1

2
+i StrΛ•T ∗(M/B)⊗E(ki(x)Θ)

= (2πi)−n/2
∫
M/B

∞∑
i,j=0

t−
j+n−1

2
+i StrΛ•,0T ∗(M/B)⊗E(ki(x)Θ)[j,n]

= (2πi)−n/2
∫
M/B

∞∑
i,j=0

t−
j+n−1

2
+i StrΛ•,0T ∗(M/B)⊗E(ki(x)[j−1,n]Θ).

For this to have a limit as t→ 0, we need

Str(ki(x)[j−1,n]Θ) = 0, if n+ (j − i) > 2i.
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Assuming this holds, we then have

lim
t→0

Str(exp(−A2
t )Θ) = (4π)−n/2

∫
M/B

∑
i

Str(ki(x)[2i−n,n]Θ).

Theorem 14 will then follow from Proposition 25 and the following lemma.

Lemma 4. We have

Str(ki(x)[j−1,n]Θ) = 0, if n+ (j − i) > 2i

and ∑
i

Str(ki(x)[2i−n,n]Θ) = e(TM) tr(eF θB).

Proof. We follow the rescaling argument of [BGV92]. Fix x0 ∈ M and use normal
coordinates so that x0 = 0. Introduce the rescaling operator δu with

(δua)(x, t) = u−i/2a(u1/2x, ut)

for
a(x, t) ∈ ΛiT ∗M ⊗ End(Λ•,0T ∗(M/B)) ⊂ End(Λ•T ∗(M/B)).

Let
r(u, t, x) = un/2(δuk)(t, x)

be the rescaled heat kernel. Then we have

r(u, 1, 0) = (4π)−n/2
∑
i,j

ui−j/2ki(x0)[j],

where the subscript [j] denotes the part that has differential form degree j. Thus
the lemma will be proved by showing that limu→0 r(u, 1, 0) exists and is equal to
e(TM) tr(eF θB).

Now r(u, t, x) satisfies(
∂

∂t
+ uδuA2δ−1

u

)
r(u, t, x) = 0

and limu→0 r(u, t, x) is determined by limu→0 uδuA2δ−1
u . Letting A0 = ∂̄M/B;E +

∂̄∗M/B;E + ∇̃T ∗(M/B)⊗E, we have

A2 = A2
0 + θM/Bi(θ

∗
M/B) + i(θ∗M/B)ε(θM/B) + ∇̃θM/B + ∇̃i(θ∗M/B).

Now θM/B and i(θ∗M/B) are of degree 0 since they lie in End(Λ•,0T ∗M/B) and

∇̃θM/B, ∇̃i(θ∗M/B) are order 1. Thus

uδuA2δ−1
u = uδuA2

0δ
−1
u + uθM/Bi(θ

∗
M/B) + ui(θ∗M/B)ε(θM/B)

+
√
u∇̃θM/B +

√
u∇̃i(θ∗M/B),
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so that limu→0 uδuA2δ−1
u = limu→0 uδuA2

0δ
−1
u . Thus we may use the superconnection

A0 instead of A for computing limu→0 r(u, 1, 0).
The lemma then follows from the standard result on the index density for the

Dirac operator ∂̄M/B;E + ∂̄∗M/B;E [BGV92] and the fact that the term KS does not
contribute to the trace since it is the only endomorphism appearing that does not
act as a degree zero operator on Λ•,0T ∗M/B.

63



Bibliography

[Ati57] M. F. Atiyah. Complex analytic connections in fibre bundles. Trans.
Amer. Math. Soc., 85:181–207, 1957.

[BCH08] Shiferaw Berhanu, Paulo D. Cordaro, and Jorge Hounie. An introduction
to involutive structures, volume 6 of New Mathematical Monographs.
Cambridge University Press, Cambridge, 2008.

[BGS88] Jean-Michel Bismut, Henri Gillet, and Christophe Soulé. Analytic tor-
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