Kirby Diagrams and Framings Exercises

Exercise \#1: Let X be a simply-connected 4-manifold with nonempty connected boundary. Show that X is determined by X_{2} and the number of 3 -handles attached.

Figure 1: Knot in $S^{1} \times S^{2}$
Exercise \#2: (Exercise 4.4.4) For the knot K in $S^{1} \times S^{2}$ shown above, why algebraically does changing a framing of K by two twists not change the isotopy class of the knot's framing? Show geometrically an isotopy of K that changes the framing by two twists? How does this relate to Philippine dancing?

Exercise $\#$ 3: Let F_{1} and F_{2} be Seifert surfaces respectively for knots K_{1} and K_{2} in S^{3}. Show directly that $F_{1} \cdot K_{2}=F_{2} \cdot K_{1}$. Conclude that the Seifert surface definition of linking number is well-defined.

Exercise \#4: Fill in the details of the induction step in the proof that all three definitions of linking number are the same.

Exercise \#5: Draw a picture of a 0 -framed left-handed trefoil. (Don't just write 0.)
Exercise \#6: (Example 4.4.2) Consider the manifold obtained from attaching a 2-handle to a D^{4} along an unknot, K. Let S be the 2 -sphere created by a disk bound by K pushed into the interior of D^{4} and the core of the 2 -handle. Let S^{\prime} be the 2 -sphere created as follows. Take a noncore disk $D^{2} \times p$ in the 2-handle which intersects ∂D^{4} on K^{\prime} a push off of K. Glue this disk to an annulus $K^{\prime} \times I$ which extends into the interior of D^{4}. Finally, cap off the other end of the annulus with a disk in the interior. Calculate $S \cdot S^{\prime}$.

Exercise \#7: Let X be a 4 -manifold constructed with one 0 -handle and m 2-handles attached along knots K_{1}, \ldots, K_{m} with framings n_{1}, \ldots, n_{m}.
a) What 3-manifold is ∂X ?
b) (Proposition 4.5.11) Show that Q_{X} with respect to some basis of $H_{2}(X ; \mathbb{Z})$ is equal to the linking pairing of K_{1}, \ldots, K_{m}.
c) Show that Q_{X} is equal to the presentation matrix of $H_{1}(\partial X ; \mathbb{Z})$.

