Handle Diagram and Heegard Diagram Problems

Lisa Piccirillo
July 12, 2017

Problem 1. (Alg. Top Sanity Check) Prove computationally that handle slides and cancelling pairs don't change H_{*} or π_{1}.

Problem 2. Build a handle diagram for a closed M^{3} with $H_{*}(M)=H_{*}\left(S^{3}\right)$ and such that you feel in your heart that $M \not \approx S^{3}$. The Poincare Conjecture (1900) asserted that if $H_{*}(M)=H_{*}\left(S^{3}\right)$ then $M \cong S^{3}$. Use your example and π_{1} to disprove this Poincare conjecture.

Problem 3. Let H be a handle decomposition of a closed M^{3} with one 0-handle, one 3handle, and g 1-handles. How many 2 -handles does H have?

Problem 4. Prove or disprove: Let $f: \#_{n}\left(S^{1} \times S_{1}\right) \rightarrow \#_{n}\left(S^{1} \times S^{1}\right)$ be a homeomorphism. Then there exists $F: \mathfrak{b}_{n}\left(S^{1} \times D^{2}\right) \rightarrow \bigsqcup_{n}\left(S^{1} \times D^{2}\right)$ with $\left.F\right|_{\partial}=f$. (Fact: the analog of this claim where $S^{1} \times S^{1}$ is replaced by $S^{1} \times S^{2}$ and $S^{1} \times D^{2}$ with $S^{1} \times D^{3}$ is true, and fundamentally important to how we use handle calculus for four manifolds. We will rely on it next lecture.)

Problem 5. Draw Heegard diagrams for: (a) $S^{1} \times S^{2}$ (b) $I \times T^{2}$ (c) $S^{1} \times S^{1} \times S^{1}$ (d) $\mathbb{R} P^{3}$ (e) $S_{2}^{3}(U)$

Problem 6. (Bouns) Let $f: \Sigma \rightarrow \Sigma$ be the homeomorphism given by Dehn twisting around γ in the associated picture. Draw a a handle decomposition for the mapping torus of f.

Problem 7. A knot $K \hookrightarrow S^{3}=\partial B^{4}$ is said to be ribbon if $K=\partial D^{2} \stackrel{j}{\hookrightarrow} B^{4}$ and such that with respect to the Morse function on B^{4} giving the standard handle diagram j can be isotoped to have only index 0 and 1 critical points.
(a) Show that $B^{4} \backslash \nu(j(D))$ admits a handle decomposition with only 0,1 , and 2 handles (do this at the conclusion of the seminar).
(b) Show that $i_{*}: \pi_{1}\left(\partial\left(B^{4} \backslash \nu(j(D))\right) \rightarrow \pi_{1}\left(B^{4} \backslash \nu(j(D))\right)\right.$ is surjective (do this now).

Problem 8. Identify the manifold in the associated picture.

