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1 Introduction
Today we’ll show that the separable closure of a field extension K/F (i.e. the set of elements separable over F )
is a field. We will further show that this separable closure L has the property that K/L is a purely inseparable
extension, which we’ll define shortly. A good reference for this is Keith Conrad’s blurb Separable Extensions,
which you can find by googling it.

1.1 Primer on Separability
For the whole day, we’ll fix a field F , which we’ll refer to the "base" or the "ground" field whenever I feel like
changing it up and typing more letters out than just typing the letter F . Moreover, we’ll fix an algebraic closure
F that all the action of today is going to be taking place in–meaning that any field extension we refer to is
implicitly assumed to be a subset of F . If you want a proof that such a thing exists, it’s in Dummit and Foote.
We’ll start off with some basics regarding this:

Definition 1.1. We say that an element α ∈ F is separable over F if the minimal polynomial of α over F ,
say q(x), does not have α as a multiple root–that is, (x−α)2 6 |q(x). We say a field extension K/F is separable
if every element in K is separable over F .

It isn’t too hard to check whether a given element is separable once you know its minimal polynomial:

Exercise 1.2. Assume p(x) ∈ F [x] has root α. Show p(x) has a multiple root α (that is, (x− α)2|p(x) if and
only if the (formal) derivative p′(x) has α as a root). (Hint: Show that the product rule formally holds and
write p(x) = q(x)(x− a)).

For a topic that is not analysis, the derivative comes up a lot more than you might think. For example:

Exercise 1.3. Fix α ∈ F , and let q(x) ∈ F [x] denote the minimal polynomial of α. Show that q(x) has α as
a multiple root if and only if q′(x) = 0. Conclude that no irreducible polynomial over a field of characteristic
zero has a multiple root, and classify those polynomials with coefficients in a field of characteristic p which have
derivative zero.

In particular, every polynomial over Q is separable.

1.2 Primer on Morphisms of Fields
Morphisms of fields F1 → F2 are just ring morphisms–that is, maps that preserve the addition and multiplication
structure of the ring. By convention, we’ll require our ring maps send 1→ 1. With this convention, we have an
interesting phenomenon:

Exercise 1.4. Show that any map of fields is an embedding/injection.

We’ll use the two terms embedding and injection interchangeably. This result suggests that field embeddings
are the things we should look closer at. One natural question is, if K/F is a finite dimensional field extension,
how many different ways can we embed K in a different way into some subfield of F (meaning, for example,
that the identity and conjugation maps C→ C represent distinct maps)?
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2 Primer on Separable Closure
Exercise 2.1. (Bound on Embeddings) Let K/F be an n ∈ N>0 dimensional extension of fields. Show that
there are at most n distinct embeddings K ↪−→ F which fix F pointwise. (Hint: Let K = F (α1, ..., αn) and
proceed by induction on n, noting that n = [K : F ] = [F (α1, ..., αn) : F (α1, ..., αn−1)]...[F (α1) : F ]. Most of the
work should be done in the base case.)

Exercise 2.2. (Separability Maximizes Embeddings) Let K/F be an n ∈ N>0 dimensional extension of fields.
Show that there are exactly n distinct embeddings K ↪−→ F which fix F pointwise if and only if K/F is separable.
(Hint: Most of the work you did in the last exercise–argue wherever you wrote "≤", you should argue why equality
holds.)

Exercise 2.3. (Sneakily proving that a field is separable if and only if some set of generators is separable,
except it’s not that sneaky because I’m putting it in these parenthesis) Let K/F be an n ∈ N>0 dimensional
extension of fields. Show that there are exactly n distinct embeddings K ↪−→ F which fix F pointwise if and only
if K = F (α1, ..., αn) and each αi is separable over F . (Again, you did of the work you did in the last exercise.
For "only if," argue by contrapositive and argue why "<" needs to occur somewhere).

Oh but look! If you put those last two exercises together in the obvious way, you get:

Corollary 2.4. A finite dimensional field extension K/F is separable if and only if some generating set of K/F
contains only separable elements.

Exercise 2.5. Show that if α, β ∈ F are separable over F , then α± β, αβ and α−1 are also separable over F .
(If you want some algebra fun, you can argue α−1 is separable over F directly, but the others are not so easy to
do directly).

Corollary 2.6. The separable closure Ksep of a field extension K/F , defined to be the set of all elements of
K separable over F , is a field.

Definition 2.7. We define the separability degree of an extension K/F to be the degree of [Ksep : F ].

3 Primer on Purely Inseparable Extensions
Definition 3.1. A field extension E/L is said to be purely inseparable over L if p := char(L) is nonzero1

and for all α ∈ E,α raised to the power pn for some n is in L (written more normally, this means there is
some n ∈ N>0 such that αpn ∈ L, but I always would misread that as (αp)n ∈ L, which isn’t the same thing) or
E = L.2

Exercise 3.2. (Alternate Definition of Purely Inseparable Extensions) Show that equivalently a purely insepa-
rable extension E/L with p := char(L) > 0 is an extension where for all α ∈ E, the minimal polynomial of α
over E is xp

n − αpn

(again "alpha raised to a power that is itself a power of p") for some n ∈ N.

Exercise 3.3. (Alternate Definition of Purely Inseparable Extensions) Show that equivalently a purely insepa-
rable extension E/L is an extension where for all α ∈ E, if α is separable over E then α ∈ L.

To close this fun off, you should prove the below theorem (which is actually just one finishing step):

Theorem 3.4. (Field Extensions Split into Separable and Purely Inseparable Extensions) Given any finite
dimensional extension K/F , then there exists an intermediate field L with F ⊂ L ⊂ K where L/F is separable
and K/L is purely inseparable.

This idea will be used a lot. Want to prove something is true for all field extensions? Can you prove it for
a separable field extension and a purely inseparable one and then show that if your statement is true for L/F
and K/L then it’s true for K/F .

1Fun fact! One way to view the characteristic of a field L is to view it as number n such that nZ is the kernel of the unique
map Z → L. This explains why the characteristic of Q is said to be 0 instead of what you might have thought would be natural at
first, "characteristic ∞".

2This is a technical condition you don’t really need to worry about–it’s just stated to make the last theorem of this paper sound
more clean. Also, two footnotes in one definition! How cool is that?!
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