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1 Introduction
Today we’ll show that given any principal ideal domain R, any torsion free R module M is isomorphic to a the
free module Rm for some m. This comes up a lot in working over Discrete Valuation Rings, the natural setting
where a lot of number theory occurs.

1.1 Primer on Principal Ideal Domains
Recall that a Principal Ideal Domain R is an integral domain R such that any ideal I ⊂ R can be written
I = Ra for some element a ∈ R. One of the reasons we like to work with principal ideal domains is that is
that if we can show that the set of all elements of an ring that satisfy a property P is an ideal, then we are
guaranteed an element a ∈ R such that a given r ∈ R has property P if and only if a|r. The other reason we
work with PIDs are that we have a Bézout Identity :

Exercise 1.1. (PIDs Satisfy Bézout Identity): Assume a1, ..., an are elements of a PID R. Determine a notion
of a greatest common divisor of {a1, ..., an}, and let d denote this greatest common divisor. Show that if e ∈ R
such that e|ai for all i, e|d. Moreover, show that the Bézout Identity holds, that is, there exist ri ∈ R such
that r1a1 + ...+ rnan = d.

Exercise 1.2. (UFDs Don’t Satisfy Bézout Identity) Determine the notion of a greatest common divisor in
a unique factorization domain. Let S := k[x, y] where k is some field. Then S is a UFD. Show that for all
r, s ∈ S, rx+ sy 6= gcd(x, y).

1.2 Primer on Modules
Recall that a module M over a ring R is a definition you can Google, and that we say M is torsion free if
r ∈ R,m ∈M and rm = 0 implies either r = 0 or m = 0.

Exercise 1.3. (Torsion Free Hypothesis is Necessary) Show that if M is a non torsion free module over a
principal ideal domain R, then for all k ∈ N,M 6∼= Rk.

2 Primer on Modules over a Principal Ideal Domain
Theorem 2.1. Let M be a torsion free module over a principal ideal domain R that can be generated with n
elements and cannot be generated by any fewer number of elements. Then M ∼= Rk.

Proof. Induction on n. For the inductive step, assume n > 1 and that if N is a torsion free module over a R that
can be generated with n − 1 elements and cannot be generated by any fewer number of elements, N ∼= Rn−1.
Let m1, ...,mn be a set of minimal generators for M . Then there is a "natural" map φ : Rn →M .

Exercise 2.2. Determine what φ should be, and argue why this immediately implies that φ is a module morphism
(i.e. an R−"linear" map) and that φ is surjective. Conclude M ∼= Rn/ker(φ).

Thus is suffices to show that W := ker(φ) is trivial. Assume it isn’t.
Let’s set up some notation. Let πi : Rn → R be projection onto the ith coordinate, and ζi : W → R defined

to be the composite of inclusion W ↪−→ Rn with πi. We claim that W = Rm for some m ∈M .

Exercise 2.3. (Kernel Has Rank ≤ 1) Show there exists an i such that ζi is not the zero map. Swapping
generators if necessary, we assume that ζ := ζn 6= 0. Show there exists a nonzero x ∈ Rn such that W = Rx.
(Hint: Show that if the last coordinate of two elements of W agree, then the vectors themselves agree. Then let
I denote the set of all elements rn ∈ R with r1e1 + ...+ rnen ∈W .)
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Exercise 2.4. (Almost basis completion) Show that given any element nonzero1 x ∈ M , there exists a b ∈ R
and a basis of Rn, say, {y1, ..., yn} such that by1 = x. (Hint: Let x = (xi) componentwise and let b :=
gcd(x1, ..., xn), y1 = 1

bx. Then there exists ri such that r1 x1

d + ...+rn
xn

d = 1. Let Φ : Rn → R via Φ(b1, ..., bn) =
r1b1 + ...+ rnbn. Then x = Φ(x)y1 + (x− Φ(x)y1) to show Rn ∼= Ry1 ⊕ ker(Φ). )

Exercise 2.5. Combine the last two exercises to contradict the assumption that our generating set was minimal.
(Hint: What assumption haven’t we used yet?)

This result is the result that is used a lot in the specific applications of Discrete Valuation Rings and the
like, which will be covered on like, day one of the course. But in the meantime, know that there’s a stronger
version of the theorem that gives a lot more power, whose proof isn’t that much harder than this proof and can
be found in Dummit and Foote:

Theorem 2.6. (Fundamental Theorem of Modules over a Principal Ideal Domain) LetM be a finitely generated
module over a principal ideal domain R. Then there exists a unique n ∈ N (including the possibility of n = 0)
such that M ∼= Rn ⊕R/(a1)⊕ ...⊕R/(am) for some a1|a2|...|am in R.

Exercise 2.7. (Finite Generation Hypothesis is Necessary) Determine a torsion free R module that is not a
direct sum (even of infinite index!) of copies of R. (Hint: You learned the specific example you need in high
school or before).

Exercise 2.8. (Finite Fields Are Cyclic) Assuming the Fundamental Theorem of Modules over a Principal
Ideal Domain, show that the multiplicative group of a finite field is a cyclic group.

1This also trivially holds for x = 0, but a hint is that the proof is different if x is nonzero.
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