Day 3: Primer on Noetherian Stuff

Tom Gannon

August 17, 2017

1 Introduction

Today we'll deal with everything regarding the finitely generated and Noetherian properties. A lot of times finitely generated things turn out to be the right thing to work with in algebra, and we'll show why this is with a few strange pathologies. We'll also prove a property we'll need to use tomorrow that any submodule of \mathbb{R}^n is free and of rank $\leq n$ if R is a PID.

1.1 Motivation from Principal Ideal Domains

Recall that a *Principal Ideal Domain* R is an integral domain R such that any ideal $I \subset R$ can be written I = Ra for some element $a \in R$, and specifically recall a part of the proof that principal ideals are unique factorization domains:

Exercise 1.1. (PIDs Are Factorization Domains): Show that if R is a PID, then any nonzero element $r \in R$ has some factorization $r = s_1...s_n$ where s_i are not necessarily distinct irreducible elements of R. (Hint: If $r_i = r_{i+1}t_{i+1}$ was reducible, then $(r_i) \subsetneq (r_{i+1})$. Let $I = \bigcup_i (r_i)$.)

1.2 The Initial Definition

The definition of a Noetherian ring generalizes the above proof technique we used:

Definition 1.2. We say a ring A is Noetherian if any chain of ideals $I_1 \subset I_2 \subset ... \subset A$ stabilizes¹ at some point-that is, there exists an $n \in \mathbb{N}$ such that $m \ge n$ implies that $I_n = I_m$.

Another (equivalent) way to think of Noetherian rings is that the chain $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq ...$ can't happen for ideals $I_k \subset A$. This is called the **ascending chain condition** on ideals. Also, note that ideals of A are just A modules that *just so happen* to be a submodule of the A module A. In particular, it is possible to define the concept of a **Noetherian Module**, and you should do so. Feel free to do so before I tell you to in this next exercise. That way, you can feel like you're ahead of the game.

Exercise 1.3. Define what it means for an A module M to be **Noetherian** using the ascending chain condition on submodules. Show that equivalently, an A module M is Noetherian if and only if each submodule of M is finitely generated as an A module. Determine what this condition specifically means in terms of rings and ideals.

Exercise 1.4. (A Non-Noetherian Ring/Module) Show that the ring $\mathbb{R}[x_i]_{i\in\mathbb{N}^{>0}} = \mathbb{R}[x_1, x_2, ...]$ is not a Noetherian ring.

If you ever come across something with "Noetherian" in the hypothesis, it's a good idea to throw the above ring in the theorem and see if it still holds.

2 Primer on Stock Results on Noetherian Modules that I Like To Keep Around

Exercise 2.1. (Submodules/Quotients of Noetherian modules are Noetherian) Show that if $N \subset M$ is a submodule of an A module M, then N and M/N are Noetherian.

¹A word on notation. " \subset " and " \subseteq " will mean the same thing–"is a subset of" and \subsetneq means that the two sets aren't equal.

Exercise 2.2. (Finitely Generated Module with Non Finitely Generated Submodule) Let $R := \mathbb{R}[x_i]_{i \in \mathbb{N}^{>0}} = \mathbb{R}[x_1, x_2, ...]$. Show that R is a finitely generated R module, but R has a submodule which is not finitely generated as an R module.

This shows that the hypothesis of a ring/module being Noetherian is stronger than requiring it to be finitely generated, because any Noetherian ring/module is finitely generated.

But on the other hand:

Exercise 2.3. Show that any finitely generated module of a Noetherian ring R is a Noetherian module. (Easy mode: Assume that R^n is Noetherian. Hard Mode: Prove it.)

We also have a very helpful:

Theorem 2.4. (Hilbert's Basis Theorem) If A is a Noetherian ring, so is A[x].

Exercise 2.5. Prove this theorem. (Hint: Don't actually try to prove this theorem, just go look it up in a book somewhere. Like Dummit and Foote. To check if you really understand the proof, modify the idea of the proof slightly to show that if A is a Noetherian ring, then the ring of formal power series of A, A[[x]], is a Noetherian ring.)

3 Primer on the Module R^n

Note that in the world of being "well behaved", modules are just the absolute worst. We have above that a finitely generated module can have a not finitely generated submodule. Also even if the submodules are finitely generated (i.e. the module is Noetherian), we don't have any good rank bounds:

Exercise 3.1. Show that the ring $R := \mathbb{Q}[x, y]$ has rank 1-that is, there is a subset of R consisting of one linearly independent element over R but no set of two linearly independent elements over R. However, construct a submodule (ideal) of R with rank 2.

Definition 3.2. An A-module M is free on generators $m_1, ..., m_k \in M$ if $r_1m_1 + ... + r_km_k = 0$ implies $r_i = 0$ for all i.

Exercise 3.3. (Rank one submodule that isn't a free submodule) Let $R = \mathbb{Z}[x]$ and let I denote the submodule/ideal (2, x). Show that any two elements are linearly dependent and no single element spans.

This sort of tomfoolery 2 doesn't happen when you restrict to PIDs. In particular,

Theorem 3.4. If R is a PID, then any submodule of \mathbb{R}^n is a free submodule³ of rank $\leq n$.

Exercise 3.5. Prove the above theorem. (Hint: Let $M_i := (Re_1 + ... + Re_i) \cap M$, where M is the submodule and $\{e_i\}$ is the standard basis of \mathbb{R}^n . For the inductive hypothesis at step k, let I denote the set of all elements r_k that have the form $r_1e_1 + ... + r_ke_k$ and are in M. Pick some v whose last coordinate is a generator of I, and show that $M_k \cong M_{k-1} \oplus \mathbb{R}v$).

We'll use this theorem tomorrow to help us prove that there's only one quality that a module M over a PID R can have, called *torsion*, that stops M from looking like R^n for some $n \in \mathbb{N}$.

 $^{^{2}}$ Side note. If you can think of a good adjective to describe a person that has the word "Tom" in it, I'd love to hear it. Currently there are only bad ones (e.g. "Peeping Tom")

³It could also be the zero submodule, by the way. You can think of R^0 as the zero module. But note that for a general ring, R^0 isn't the *only* module of rank zero!