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Lecture 7
Weak Convergence

The definition

In addition to the modes of convergence we introduced so far (a.s.-
convergence, convergence in probability and Lp-convergence), there is
another one, called weak convergence or convergence in distribution.
Unlike the other three, whether a sequence of random variables (ele-
ments) converges in distribution or not depends only on their distri-
butions. In addition to its intrinsic mathematical interest, convergence
in distribution (or, equivalently, the weak convergence) is precisely the
kind of convergence we encounter in the central limit theorem.

We take the abstraction level up a notch and consider sequences of
probability measures on (S,S), where (S, d) is a metric space and S =

B(d) is the Borel σ-algebra there. In fact, it will always be assumed
that S is a metric space and S is the Borel σ-algebra on it, throughout
this chapter.

Definition 7.1. Let {µn}n∈N be a sequence of probability measures on
(S,S). We say that µn converges weakly1 to a probability measure µ 1 It would be more in tune with stan-

dard mathematical terminology to use
the term weak-∗ convergence instead of
weak convergence. For historical rea-
sons, however, we omit the ∗.

on (S,S) - and write µn
w→ µ - if∫

f dµn →
∫

f dµ,

for all f ∈ Cb(S), where Cb(S) denotes the set of all continuous and
bounded functions f : S→ R.

Definition 7.2. A sequence {Xn}n∈N of random variables (elements)
is said to converge in distribution to the random variable (element)

X, denoted by Xn
D→ X, if µXn

w→ µX .

For the uniqueness of limits, we need a simple approximation result:

Problem 7.1. Let F be a closed set in S. Show that for any ε > 0 there
exists a Lipschitz and bounded function fF;ε : S→ R such that
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1. 0 ≤ fF;ε(x) ≤ 1, for all x ∈ R,

2. fF;ε(x) = 1 for x ∈ F, and

3. fF;ε(x) = 0 for d(x, F) ≥ ε, where d(x, F) = inf{d(x, y) : y ∈ F}.

Hint: Show first that the function x 7→ d(x, F) is Lipschitz. Then argue that fF;ε(x) =

h(d(x, F)) has the required properties for a well-chosen function h : [0, ∞)→ [0, 1].

Proposition 7.3. Suppose that {µn}n∈N is a sequence of probability mea-
sures on (S,S) such that µn

w→ µ and µn
w→ µ′. Then µ = µ′.

Proof. By the very definition of weak convergence, we have∫
f dµ = lim

n

∫
f dµn =

∫
f dµ′, (7.1)

for all f ∈ Cb(S). Let F be a closed set, and let { fk}k∈N be as in
Problem 7.1, with fk = fF;ε corresponding to ε = 1/k. If we set Fk =

{x ∈ S : d(x, F) ≤ 1/k}, then Fk is a closed set (why?) and we have
1F ≤ fk ≤ 1Fk . By (7.1), we have

µ(F) ≤
∫

fk dµ =
∫

fkdµ′ ≤ µ′(Fk),

and, similarly, µ′(F) ≤ µ(Fk), for all k ∈ N. Since Fk ↘ F (why?), we
have µ(Fk) ↘ µ(F) and µ′(Fk) ↘ µ′(F), and it follows that µ(F) =

µ′(F).
It remains to note that the family of all closed sets is a π-system

which generates the σ-algebra S to conclude that µ = µ′.

Out next task if to give a useful operational characterization of
weak convergence. Before we do that, we need a simple observation;
remember that ∂A denotes the topological boundary ∂A = Cl A \ Int A
of a set A ⊆ S.

Problem 7.2. Let (Fγ)γ∈Γ be a partition of S into (possibly uncount- Hint: For n ∈ N, define Γn = {γ ∈ Γ :
µ(Fγ) ≥ 1

n }. Argue that Γn has at most
n elements.

ably many) measurable subsets. Show that for any probability mea-
sure µ on S , µ(Fγ) = 0, for all but countably many γ ∈ Γ

Definition 7.4. A set A ∈ S with the property that µ(∂A) = 0, is called
a µ-continuity set

Theorem 7.5 (Portmanteau Theorem). Let µ, {µn}n∈N be probability
measures on S . Then, the following are equivalent:

1. µn
w→ µ,

2.
∫

f dµn →
∫

f dµ, for all bounded, Lipschitz continuous f : S→ R,
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3. lim supn µn(F) ≤ µ(F), for all closed F ⊆ S, Note: Here is a way to remember
whether closed sets go together with the
lim inf or the lim sup: take a convergent
sequence {xn}n∈N in S, with xn → x.
If µn is the Dirac measure concentrated
on xn, and µ the Dirac measure concen-
trated on x, then clearly µn

w→ µ (since∫
f dµn = f (xn) → f (x) =

∫
f dµ). Let

F be a closed set. It can happen that xn 6∈
F for all n ∈ N, but x ∈ F (think of x on
the boundary of F). Then µn(F) = 0, but
µ(F) = 1 and so lim sup µn(F) = 0 <
1 = µ(F).

4. lim infn µn(G) ≥ µ(G), for all open G ⊆ S,

5. limn µn(A) = µ(A), for all µ-continuity sets A ∈ S .

Proof. 1.⇒ 2.: trivial.

2. ⇒ 3.: given a closed set F and let Fk = {x ∈ S : d(x, F) ≤ 1/k},
fk = fF;1/k, k ∈ N, be as in the proof of Proposition 7.3. Since 1F ≤
fk ≤ 1Fk and the functions fk are Lipschitz continuous, we have

lim sup
n

µn(F) = lim sup
n

∫
1F dµn ≤ lim

n

∫
fk dµn =

∫
fk dµ ≤ µ(Fk),

for all k ∈ N. Letting k → ∞ - as in the proof of Proposition 7.3 -
yields 3.

3.⇒ 4.: follows directly by taking complements.

4.⇒ 1.: Pick f ∈ Cb(S) and (possibly after applying a linear trans-
formation to it) assume that 0 < f (x) < 1, for all x ∈ S. Then,
by Problem 5.10, we have

∫
f dν =

∫ 1
0 ν( f > t) dt, for any prob-

ability measure on B(R). The set { f > t} ⊆ S is open, so by 3.,
lim infn µn( f > t) ≥ µ( f > t), for all t. Therefore, by Fatou’s lemma,

lim inf
n

∫
f dµn = lim inf

n

∫ 1

0
µn( f > t) dt ≥

∫ 1

0
lim inf

n
µn( f > t) dt

≥
∫ 1

0
µ( f > t) dt =

∫
f dµ.

We get the other inequality -
∫

f dµ ≥ lim supn
∫

f dµn, by repeating
the procedure with f replaced by − f .

3., 4. ⇒ 5.: Let A be a µ-continuity set, let Int A be its interior and
Cl A its closure. Then, since Int A is open and Cl A is closed, we have

µ(Int A) ≤ lim inf
n

µn(Int A) ≤ lim inf
n

µn(A) ≤ lim sup
n

µn(A)

≤ lim sup
n

µn(Cl A) ≤ µ(Cl A).

Since 0 = µ(∂A) = µ(Cl A \ Int A) = µ(Cl A)− µ(Int A), we con-
clude that all inequalities above are, in fact, equalities so that µ(A) =

limn µn(A)

5.⇒ 3.: For x ∈ S, consider the family {BF(r) : r ≥ 0}, where

BF(r) = {x ∈ S : d(x, F) ≤ r},

of closed sets.
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Claim: There exists a countable subset R of [0, ∞) such that BF(r)
is a µ-continuity set for all r ∈ [0, ∞) \ R.

Proof. For r ≥ 0 define CF(r) = {x ∈ S : d(x, F) = r}, so that
{CF(r) : r ≥ 0} forms a measurable partition of S. Therefore,
by Problem, 7.2, there exists a countable set R ⊆ [0, ∞) such that
µ(CF(r)) = 0 for r ∈ [0, ∞) \ R. It is not hard to see that ∂BF(r) ⊆
CF(r) (btw, the inclusion may be strict), for each r ≥ 0. Therefore,
µ(∂BF(r)) = 0, for all r ∈ [0, ∞) \ R.

The above claim implies that there exists a sequence rk ∈ [0, ∞) \ R
such that rk ↘ 0. By 5. and the Claim above, we have µn(BF(rk)) →
µ(BF(rk)) for all k ∈N. Hence, for k ∈N,

µ(BF(rk)) = lim
n

µn(BF(rk)) ≥ lim sup
n

µn(F).

By continuity of measure we have µ(BF(rk)) ↘ µ(F), as k → ∞, and
so µ(F) ≥ lim supn µn(F).

As we will soon see, it is sometimes easy to prove that µn(A) →
µ(A) for all A in some subset of B(R). Our next result has something
to say about cases when that is enough to establish weak convergence:

Proposition 7.6. Let I be a collection of open subsets of S such that

1. I is a π-system,

2. Each open set in S can be represented as a finite or countable union of
elements of I .

If µn(I)→ µ(I), for each I ∈ I , then µn
w→ µ.

Proof. For I1, I2 ∈ I , we have I1 ∩ I2 ∈ I , and so

µ(I1 ∪ I2) = µ(I1) + µ(I2)− µ(I1 ∩ I2)

= lim
n

µn(I1) + lim
n

µn(I2)− lim
n

µn(I1 ∩ I2)

= lim
n

(
µn(I1) + µn(I2)− µn(I1 ∩ I2)

)
= lim

n
µn(I1 ∪ I2).

Therefore, we can assume, without loss of generality that I is closed
under finite unions.

For an open set G, let G = ∪k Ik be a representation of G as a union
of a countable family in I . By continuity of measure, for each ε > 0
there exists K ∈ N such that µ(G) ≤ µ(∪K

k=1 Ik) + ε. Since ∪K
k=1 IK ∈ I ,

we have

µ(G)− ε ≤ µ(∪K
k=1 Ik) = lim

n
µn(∪K

k=1 Ik) ≤ lim inf µn(G).

Given that ε > 0 was arbitrary, we get µ(G) ≤ lim infn µn(G).
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Corollary 7.7. Suppose that S = R, and let µn be a family of probability
measures on B(R). Let F(x) = µ((−∞, x]) and Fn(x) = µn((−∞, x]),
x ∈ R be the corresponding cdfs. Then, the following two statements are
equivalent:

1. Fn(x)→ F(x) for all x such that F is continuous at x, and

2. µn
w→ µ.

Proof. 2. ⇒ 1.: Let C be the set of all x such that F is continuous at
x; eqivalently, C = {x ∈ R : µ({x}) = 0}. The sets (−∞, x] are µ-
continuity sets for x ∈ C, so the Portmanteau theorem (Theorem 7.5)
implies that Fn(x) = µn((−∞, x])→ µ((−∞, x]) = F(x), for all x ∈ C.

1.⇒ 2.: The set Cc is at most countable (why?) and so the family

I = {(a, b) : a < b, a, b ∈ C},

satisfies the the conditions of Proposition 7.6. To show that µn
w→ µ,

it will be enough to show that µn(I) → µ(I), for all a, b ∈ I . Since
µ((a, b)) = F(b−) − F(a), where F(b−) = limx↗b F(x), it will be
enough to show that

Fn(x−)→ F(x),

for all x ∈ C. Since Fn(x−) ≤ Fn(x), we have lim supn Fn(x−) ≤
lim Fn(x) = F(x). To prove the other inequality, we pick ε > 0, and,
using the continuity of F at x, find δ > 0 such that x − δ ∈ C and
F(x− δ) > F(x)− ε. Since Fn(x− δ) → F(x− δ), there exists n0 ∈ N

such that Fn(x − δ) > F(x) − 2ε for n ≥ n0, and, by increase of Fn,
Fn(x−) > F(x) − 2ε, for n ≥ n0. Consequently lim infn Fn(x−) ≥
F(x)− 2ε and the statement follows.

One of the (many) reasons why weak convergence is so important,
is the fact that it possesses nice compactness properties. The central
result here is the theorem of Prohorov which is, in a sense, an analogue
of the Arzelá-Ascoli compactness theorem for families of measures.
The statement we give here is not the most general possible, but it will
serve all our purposes.

Definition 7.8. A subsetM of probability measures on S is said to be

1. tight, if for each ε > 0 there exists a compact set K such that

sup
µ∈M

µ(Kc) ≤ ε.

2. relatively (sequentially) weakly compact if any sequence {µn}n∈N

inM admits a weakly-convergent subsequence {µnk}k∈N.
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Theorem 7.9 (Prohorov). Suppose that the metric space (S, d) is complete
and separable, and let M be a set of probability measures on S . Then M is
relatively weakly compact if and only if it is tight.

Proof. (Tight ⇒ relatively weakly compact): Suppose that M is tight, Note: In addition to the fact that the
stated version of the theorem is not the
most general available, we only give the
proof for the so-called Helly’s selection
theorem, i.e., the special case S = R.
The general case is technically more in-
volved, but the key ideas are similar.

and let {µn}n∈N be a sequence in M. Let Q be a countable and
dense subset of R, and let {qk}k∈N be an enumeration of Q. Since all
{µn}n∈N are probability measures, the sequence {Fn(q1)}n∈N, where
Fn(x) = µn((−∞, x]) is bounded. Consequently, it admits a conver-
gent subsequence; we denote its indices by n1,k, k ∈ N. The se-
quence {Fn1,k (q2)}k∈N is also bounded, so we can extract a further
subsequence - let’s denote it by n2,k, k ∈ N, so that Fn2,k (q2) converges
as k → ∞. Repeating this procedure for each element of Q, we arrive
to a sequence of increasing sequences of integers ni,k, k ∈ N, i ∈ N

with the property that ni+1,k, k ∈N is a subsequence of ni,k, k ∈N and
that Fni,k (qj) converges for each j ≤ i. Therefore, the diagonal sequence
mk = nk,k, is a subsequence of each ni,k, k ∈ N, i ∈ N, and can define
a function F̃ : Q→ [0, 1] by

F̃(q) = lim
k→∞

Fmk (q).

Each Fn is non-decreasing and so if F̃. As a matter of fact the “right-
continuous” version

F(x) = inf
q<x,q∈Q

F̃(q),

is non-decreasing and right-continuous (why?), with values in [0, 1].
Our next task is to show that Fmk (x)→ F(x), for each x ∈ CF, where

CF is the set of all points where F is continuous. We pick x ∈ CF, ε > 0
and q1, q2 ∈ Q, y ∈ R such that q1 < q2 < x < y and

F(x)− ε < F(q1) ≤ F(q2) ≤ F(x) ≤ F(y) < F(x) + ε.

Since Fmk (q2) → F̃(q2) ≥ F(q1) and Fmk (s) → F̃(s) ≤ F(s) (why is
F̃(s) ≤ F(s)?), we have, for large enough k ∈N

F(x)− ε < Fmk (q2) ≤ Fmk (x) ≤ Fmk (s) < F(x) + ε,

which implies that Fmk (x)→ F(x).
It remains to show - thanks to Corollary 7.7 - that F(x) = µ((−∞, x]),

for some probability measure µ on B(R). For that, in turn, it will be
enough to show that F(x) → 1, as x → ∞ and F(x) → 0, as x → −∞.
Indeed, in that case, we would have all the conditions needed to use
Problem 6.24 to construct a probability space and a random variable
X on it so that F is the cdf of X; the required measure µ would be the
distribution µ = µX of X.

To show that F(x) → 0, 1 as x → ±∞, we use tightness (note that
this is the only place in the proof where it is used). For ε > 0, we pick
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M > 0 such that µn([−M, M]) ≥ 1− ε, for all n ∈ N. In terms of
corresponding cdfs, this implies that

Fn(−M) ≤ ε and Fn(M) ≥ 1− ε for all n ∈N.

We can assume that −M and M are continuity points of F (why?), so
that

F(−M) = lim
k

Fmk (−M) ≤ ε and F(M) = lim
k

Fmk (M) ≥ 1− ε,

so that limx→∞ F(x) ≥ 1− ε and limx→−∞ F(x) ≤ ε. The claim follows
from the arbitrariness of ε > 0.

(Relatively weakly compact⇒ tight): Suppose to the contrary, thatM
is relatively weakly compact, but not tight. Then, there exists ε > 0
such that for each n ∈ N there exists µn ∈ M such that µn([−n, n]) <
1− ε, and, consequently,

µn([−M, M]) < 1− ε for n ≥ M. (7.2)

The sequence {µn}n∈N admits a weakly-convergent subsequence, de-
noted by {µnk}k∈N. By (7.2), we have

lim sup
k

µnk ([−M, M]) ≤ 1− ε, for each M > 0,

so that µ([−M, M]) ≤ 1− ε for all M > 0. Continuity of probability
implies that µ(R) ≤ 1− ε - a contradiction with the fact that µ is a
probability measure on B(R).

The following problem cases tightness in more operational terms:

Problem 7.3. Let M be a non-empty set of probability measures on
R. Show that M is tight if and only if there exists a non-decreasing
function ϕ : [0, ∞)→ [0, ∞) such that

1. ϕ(x)→ ∞ as x → ∞, and

2. supµ∈M
∫

ϕ(|x|) µ(dx) < ∞.

Prohorov’s theorem goes well with the following problem (it will
be used soon):

Problem 7.4. Let µ be a probability measure on B(R) and let {µn}n∈N Hint: If µn 6
w→ µ, then there exists

f ∈ Cb and a subsequence {µnk}k∈N of
{µn}n∈N such that

∫
f dµnk converges,

but not to
∫

f dµ.

be a sequence of probability measures on B(R) with the property that
every subsequence {µnk}k∈N of {µn}n∈N has a (further) subsequence
{µnkl

}l∈N which converges towards µ. Show that {µn}n∈N is conver-
gent.
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We conclude with a comparison between convergence in distribu-
tion and convergence in probability.

Proposition 7.10 (Relation between P→ and D→). Let {Xn}n∈N be a se-

quence of random variables. Then Xn
P→ X implies Xn

D→ X, for any random

variable X. Conversely, Xn
D→ X implies Xn

P→ X if there exists c ∈ R such
that P[X = c] = 1.

Proof. Assume that Xn
P→ X. To show that Xn

D→ X, the Portmanteau
theorem guarantees that it will be enough to prove that lim supn P[Xn ∈
F] ≤ P[X ∈ F], for all closed sets F. For F ⊆ R, we define Fε = {x ∈
R : d(x, F) ≤ ε}. Therefore, for a closed set F, we have

P[Xn ∈ F] = P[Xn ∈ F, |X− Xn| > ε] + P[Xn ∈ F, |X− Xn| ≤ ε]

≤ P[|X− Xn| > ε] + P[X ∈ Fε].

because X ∈ Fε if Xn ∈ F and |X− Xn| ≤ ε. Taking a lim sup of both
sides yields

lim sup P[Xn ∈ F] ≤ P[X ∈ Fε] + lim sup
n

P[|X− Xn| > ε] = P[X ∈ Fε].

Since ∩ε>0Fε = F, the statement follows.
For the second part, without loss of generality, we assume c = 0.

Given m ∈ N, let fm ∈ Cb(R) be a continuous function with values
in [0, 1] such that fm(0) = 1 and fm(x) = 0 for |x| > 1/m. Since
fm(x) ≤ 1[−1/m,1/m](x), we have

P[|Xn| ≤ 1/m] ≥ E[ fm(Xn)]→ fm(0) = 1,

for each m ∈N.

Remark 7.11. It is not true that Xn
D→ X implies Xn

P→ X in general.
Here is a simple example: take Ω = {1, 2} with uniform probability,
and define Xn(1) = 1 and Xn(2) = 2, for n odd and Xn(1) = 2 and
Xn(2) = 1, for n even. Then all Xn have the same distribution, so we

have Xn
D→ X1. On the other hand P[|Xn − X1| ≥ 1

2 ] = 1, for n even.

In fact, it is not hard to see that Xn 6
P→ X for any random variable X.

Additional Problems

Problem 7.5 (Total-variation convergence). A sequence {µn}n∈N of
probability measures on B(R) is said to converge to the probability
measure µ in (total) variation if

sup
A∈B(R)

|µn(A)− µ(A)| → 0 as n→ ∞.
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Compare convergence in variation to weak convergence: if one implies
the other, prove it. Give counterexamples, if they are not equivalent.

Problem 7.6 (Scheffé’s Theorem). Let {Xn}n∈N be absolutely contin- Hint: Show that
∫

R
| fXn − f | dλ → 0 by

writing the integrand in terms of ( f −
fXn )

+ ≤ f .
uous random variables with densities fXn , such that fXn(x) → f (x),
λ-a.e., where f is the density of the absolutely-continuous random
variable X. Show that Xn converges to X in total variation (defined in
Problem 7.5), and, therefore, also in distribution.

Problem 7.7 (Convergence of moments). Let {Xn}n∈N and X be ran- Hint: Use the Weierstrass approxima-
tion theorem: Given a < b ∈ R, a
continuous function f : [a, b] → R and
ε > 0 there exists a polynomial P such that
supx∈[a,b] | f (x)− P(x)| ≤ ε.

dom variables with a common uniform bound, i.e., such that

∃M > 0, ∀ n ∈N, |Xn| ≤ M, |X| ≤ M, a.s.

Show that the following two statements are equivalent:

1. Xn
D→ X (where D→ denotes convergence in distribution), and

2. E[Xk
n]→ E[Xk], as n→ ∞, for all k ∈N.

Problem 7.8 (Convergence of Maxima). Let {Xn}n∈N be an iid se-
quence of standard normal (N(0, 1)) random variables. Define the se-
quence of up-to-date-maxima {Mn}n∈N by

Mn = max(X1, . . . , Xn).

Show that

1. Show that limx→∞
P[X1>x]

x−1 exp(− 1
2 x2)

= (2π)−
1
2 by establishing the fol- Hint: Integration by parts.

lowing inequality

1
x
≥ P[X1 > x]

φ(x)
≥ 1

x
− 1

x3 , x > 0, (7.3)

where, φ(x) = 1√
2π

exp(− 1
2 x2) is the density of the standard nor-

mal.

2. Prove that for any θ ∈ R, limx→∞
P[X1>x+ θ

x ]
P[X1>x] = exp(−θ).

3. Let {bn}n∈N be a sequence of real numbers with the property that
P[X1 > bn] = 1/n. Show that

P[bn(Mn − bn) ≤ x]→ exp(−e−x).

4. Show that limn
bn√

2 log n
= 1.

5. Show that Mn√
2 log n

→ 1 in probability.
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