Dehn Surgery and 3-Manifolds Exercise Set \#2

Exercise 1: Given two slopes α_{1}, α_{2} in $\mathbb{Q} \cup\{1 / 0\}$. Define $\Delta\left(\alpha_{1}, \alpha_{2}\right)$ to be the minimum geometric intersection number of curves representing those slopes on the torus. Show that $\Delta\left(m / l, m^{\prime} / l^{\prime}\right)=$ $\left|m l^{\prime}-m^{\prime} l\right|$.

Exercise 2: Show that, $S_{m / l}^{3}(K)$ only depends on m / l (up to orientation-preserving homeomorphism).

Exercise 3: Show that $H_{1}\left(S_{m / l}^{3}(K)\right) \cong \mathbb{Z} /|m| \mathbb{Z}$.
Exercise 4: Show that $\pi_{1}\left(S_{-1}^{3}(R H T)\right)=\left\langle x, z:(x z)^{2}=z^{3}=x^{7}\right\rangle$.
Exercise 5: Show that the manifold defined by the following surgery diagram below is $S^{1} \times S^{2}$.

Figure 1: $S^{1} \times S^{2}$?

Exercise 6: Show that the manifold below is the Poincaré homology sphere.

Figure 2: $S^{1} \times S^{2}$?
Exercise 7: Show that +5 surgery on the RHT is a lens space.
Exercise 8: Show that +6 surgery on the RHT is $L(2,1) \# L(3,1)$.

