Exercise Set \#5

Exercise 1: Suppose F is a surface of genus g obtained by Seifert's algorithm on a regular projection of a link of n components, c crossings and s the number of Seifert circles. Show that

$$
g=1-\frac{s+n-c}{2} .
$$

Exercise 2: Find Seifert surfaces for the following links.

Exercise 3: Let K_{1} and K_{2} be knots in S^{3} with Seifert surfaces F_{1} and F_{2}. Denote the algebraic intersection of A and B by $A \cdot B$.
(a) Show that $F_{1} \cdot K_{2}=F_{2} \cdot K_{1}$.
(b) Show that K_{1} has a Seifert surface F_{1}^{\prime} which is disjoint from K_{2} if and only if $F_{1} \cdot K_{2}=0$.

Exercise 4: Complete the following boundary link exercises.
a Let U be an unknot in S^{3}, K a knot in M_{U}. and $\pi: \tilde{M}_{U} \rightarrow M_{U}$ an n-fold covering map. Show that if link $L=U \cup K$ is a boundary link, then K bounds a surface F in M_{U} such that $\pi^{-1}(F)$ is n disjoint copies of F.
b Determine which of the following are boundary links.

Exercise 5: Let K be a knot in a $\mathbb{Z} H S, M$, and let $i: \partial M_{K} \rightarrow M_{K}$ be the inclusion map. Given a class $\left[p_{0}\right] \in H^{1}\left(\partial M_{K}\right)$, use exact sequences on homology and cohomology and Poincaré-Lefschetz duality to show that $\left[p_{0}\right] \in \operatorname{im} i^{*}$.

