Exercise Set \#3

Exercise 1: Suppose Q is an integral form. Show that the following are equivalent:
(i) Q is even.
(ii) Every matrix representation of Q has diagonal with all even entries.
(iii) At least one matrix representation of Q has diagonal with all even entries.

Exercise 2: Compute $\operatorname{sign}\left(E_{8}\right)$.

$$
E_{8}=\left(\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -2
\end{array}\right)
$$

Exercise 3: Prove that any closed oriented simply-connected 4-manifold with even intersection form and vanishing signature is homeomorphic to S^{4} or a connected sum of some number of $S^{2} \times S^{2}$.

Exercise 4:

a) Given a bilinear integral form $Q: L \times L \rightarrow \mathbb{Z}$, define $F: L \rightarrow L^{*}$ by $F(x)=F_{x}$ where $F_{x}(y)=Q(x, y)$. Show that Q is unimodular if and only if F is an isomorphism.
b) Show that if M is a closed simply-connected orientable 4-manifold, then the intersection form Q_{M} is unimodular. (Hint: Use Poincaré duality.)

Exercise 5: Let U_{1} and U_{2} be disjoint (not necessarily unlinked) framed unknots in the boundary of a 0 -handle, B, with framings n_{1} and n_{2}. Let M be the 4 -manifold obtained by attaching 2 -handles to B along U_{1} and U_{2}. For $i=1,2$, let F_{i} be the sphere obtained by pushing the interior of a disk in ∂B bound by U_{i} into the interior of B and capping of the disk with the core of the attached 2-handle. Compute $F_{1} \cdot F_{2}$ and $F_{1} \cdot F_{1}$.

Exercise 6: Let M be a 4-dimensional manifold constructed by attaching 1- and 2-handles to a 0 -handle.
a) Let M^{\prime} be the manifold obtained by attaching a zero framed 2-handle to the belt sphere of one the 2-handles of M. Show that $\pi_{1}(M) \cong \pi_{1}\left(M^{\prime}\right)$.
b) Find a handle decomposition of the double of M which is $D M:=M \cup_{i d_{\partial M}} \bar{M}$.
c) Let G be a finitely presented group. Find a closed orientable 4 -manifold M with $\pi_{1}(M) \cong G$.

