EXERCISE SET # 4

<u>Exercise 1:</u> For \mathcal{L} a framed link in S^3 , prove that the linking matrix of \mathcal{L} is a presentation matrix for $H^2(S^3(\mathcal{L});\mathbb{Z}) \cong H_1(S^3(\mathcal{L});\mathbb{Z})$.

<u>Exercise 2</u>: For R a commutative ring with identity, call a 3-manifold Y an R-homology S^3 (RHS^3) if $H_*(Y;R) \cong H_*(S^3;R)$.

- Prove that any $(\mathbb{Z}/2\mathbb{Z})HS^3$ is orientable.
- Let Y be a $\mathbb{Q}HS^3$, and let A and B be simply-connected 4-manifolds with $\partial A = -\partial B = Y$, and form the closed 4-manifold $X = A \cup_Y B$. Show that $Q_A \oplus Q_B \hookrightarrow Q_X$, and that if A and B are both negative definite then so is X.

Exercise 3: Prove that neither of the following lens spaces bound a $\mathbb{Q}HB^4$.

- L(25, 18)
- L(2,1)

<u>Exercise 4</u>: Certify that the trace of surgery on the following framed link yields a negative definite 4-manifold with boundary the Poincaré homology sphere \mathcal{P} . Prove that \mathcal{P} , with *this* orientation, does not bound a positive-definite 4-manifold.

Exercise 5: Construct a cobordism $X : \mathcal{P} \to L(5,4) \# L(3,2) \# L(2,1)$.

<u>Exercise 6:</u> Prove that the total space of the disc bundle associated to the tangent bundle of S^2 is diffeomorphic to the trace of +2-surgery on the unknot in S^3 (up to orientation).