EXERCISE SET \# 4

Exercise 1: For \mathcal{L} a framed link in S^{3}, prove that the linking matrix of \mathcal{L} is a presentation matrix for $H^{2}\left(S^{3}(\mathcal{L}) ; \mathbb{Z}\right) \cong H_{1}\left(S^{3}(\mathcal{L}) ; \mathbb{Z}\right)$.

Exercise 2: For R a commutative ring with identity, call a 3-manifold Y an R-homology S^{3} $\left(R H S^{3}\right)$ if $H_{*}(Y ; R) \cong H_{*}\left(S^{3} ; R\right)$.

- Prove that any $(\mathbb{Z} / 2 \mathbb{Z}) H S^{3}$ is orientable.
- Let Y be a $\mathbb{Q} H S^{3}$, and let A and B be simply-connected 4 -manifolds with $\partial A=$ $-\partial B=Y$, and form the closed 4-manifold $X=A \cup_{Y} B$. Show that $Q_{A} \oplus Q_{B} \hookrightarrow Q_{X}$, and that if A and B are both negative definite then so is X.

Exercise 3: Prove that neither of the following lens spaces bound a $\mathbb{Q} H B^{4}$.

- $L(25,18)$
- $L(2,1)$

Exercise 4: Certify that the trace of surgery on the following framed link yields a negative definite 4 -manifold with boundary the Poincaré homology sphere \mathcal{P}. Prove that \mathcal{P}, with this orientation, does not bound a positive-definite 4 -manifold.

Exercise 5: Construct a cobordism $X: \mathcal{P} \rightarrow L(5,4) \# L(3,2) \# L(2,1)$.
Exercise 6: Prove that the total space of the disc bundle associated to the tangent bundle of S^{2} is diffeomorphic to the trace of +2 -surgery on the unknot in S^{3} (up to orientation).

