1. Find and classify (as local maxs, mins, saddle points or none of these) any critical points of $f(x, y) = x + y + 1/xy$.
2. Graph the projection (or shadow) in the xz-plane of the space curve

\[\mathbf{r}(t) = < 1 + t, -5t, 4t^2 > \]

Label the axes of the plane.

3. Find \(\frac{\partial^2 f}{\partial x \partial y} \) when \(f(x, y) = 3x^2 y + \ln(xy) \).
4. Find the direction in which \(f(x, y) = 3x^2y + \ln(xy) \) increases most rapidly at the point \(P(1, 1) \).

5. Find the equation of the tangent plane to the surface \(z = 3x^2y + \ln(xy) \) at the point \((1, 1, 3) \).
6. Graph the level curve at level $k = 1$ for the function $f(x, y) = 5 + 4y^2 - 9x^2$. Label the xy axes.
For problems 7-10 below consider the space curve
\[r(t) = <4t, \sin(3t), \cos(3t)> \]

7. Find the equation of the tangent line, in vector or parametric form, for the tangent line to \(r(t) \) when \(t = 0 \). (Recall that a line is determined by a point and a direction).

8. Find the unit tangent vector to \(r(t) \) at any time \(t \).
9. Find the unit normal vector to \(r(t) \) at any time \(t \).

10. Find the curvature of \(r(t) \) at any time \(t \).
11. Use the method of Lagrange multipliers to find the maximum value of \(f(x, y) = e^{xy} \) given the constraint \(x^3 + y^3 = 16 \). (It turns out that \(f(x, y) \) does not achieve a minimum)
12. Find the extreme values (max and min) of \(f(x, y) = -x^2 - y^2 + 2x + 6y - 8 \) on the line segment in the \((x, y)\)-plane between the points \((2, 0)\) and \((2, 4)\). (Note: this is a problem you would face in finding the extreme values of \(f(x, y) \) over a region in the plane that has the given line segment as part of its boundary).