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These notes are intended to be both a quick introduction
to Galois Theory, as well as a training exercise for talented
but not yet experienced students. [ have assumed some basic
exposure to abstract mathematics, but have tried to limit the
amount needed. [ do not assume familiarity with group
theory, and very limited familiarity with beginning linear
algebra. My basic goal was to write notes which [ myself
could have (propably) followed when [ was a sophomore.
(Admittedly, [ was a smart sophomore, but no one ever came
close to confusing me with a genius!) Athough the subject
matter is more far reaching and sophisticated then appears in
standard begining abstract mathematics texts, I have tried to
keep the level of proof at about same level as such texts
(used at good schools).

A few results are stated and used without proof. That
was necessary to stay at the right level, and to adhere to the
adjective "quick".

Many exercises are given, some easy, some less so. Some
of them are later referred to as parts of a proof.

Due the the mysteries of software, occasionally a page
number is missing. The math is all there.

Admittedly, these notes are neither fish nor fowl. They
were originally conceived as a course for talented minority
students attending a Summer math program at Berkeley.
Truth in advertising forces me to admit that after writing
them, I realized the six week long program was a few weeks
too short to cover the material. As of this writing, these
notes are untested. [ hope that changes, and that someone
will find them suitable for some setting (perhaps if not a
standard class, then as some sort of honors work). In short,

[ hope these notes are neither too fishy nor too foul to be of
use.



l Introduction

If asked to solve the equation X2 = 2, you would no
doubt say the solution is X = iVE. This is correct, of
course, for the very simple reason that the symbol \/_é
was defined to mean a (positive) number whose square is
2. That is to say, the symbol \/_2 was made up precisely
to be the answer to our question. Of course the symbol i
was defined to be a solution to the equation X2 = -1, and
so if you were asked to solve the equation X2 = -1, you

would say that the answer is X = #i. In exactly the same

was made up to solve the equation

way, the symbol %

4X = 3, and so if you were asked to solve the equation
. . 3
4X = 3, you would say the solution is X = Z
Suppose now that you were asked to solve
X2 - 2X + = = 0. You could proceed in the same fashion,

2
and invent a symbol, let us say y, such that y is a
solution to this equation. You would then say a solution
is X = y. However, it is not necessary to do that. We
know by the quadratic formul_a that the solutions of
V2

1
X2-2X+E=OareX=li7. We did not need to

invent a new symbol. We could solve the problem using a

symbol we had already invented, namely V2.



In general, the solution to

b+ Vb2 -
aX2 + bX + c= 0 is X = VZa 43¢ we did not

need to invent a new symbol to do this, assuming that
we already had the symbol \/bz - 4ac

What this amounts to is saying that by inventing
enough symbols to solve X2 = d for any number d, we get
for free (without anymore need to invent symbols) the
solutions to any quadratic equation aX? + bX + ¢ = 0.

What we will do in these notes is assume that we
have enough symbols to solve X" = d for all positive
integers n, and all numbers d, (i.e., we will asume we
know what n\/E means). and then we will explore the

question of what other polynomial equations

a, X"+ an_an'1 +..+a X+ a; = 0 we can solve using
these symbols, along with our standard operations of
addition. subtraction, multiplication, and division.
Obviously, in this way we can solve any linear
equation aX + b = 0, and the quadratic formula tells us
how to solve any quadratic equation aX? + bX + ¢ = 0.
We shall shortly present a method of this sort allowing us
to solve any cubic equation aX3 + bX? + cX + d = 0. We
also mention that there is a similar method to solve any

quartic equation aX4 + bX° + CX? + dX + e = 0, (but we

will not present that method here).



The main bulk of our work. however, will be to show
that there are some quintic polynomial equations which
cannot be solved in this way. For instance, we will show
that the equation X> - 6X + 2 cannot be solved in this
manner.

Actually, in some philosophical sense, we cannot
even find a solution of X¢ = 2. We already saw that
saying the solution is X = i\/— begs the question, since
we do not know what V2 is. other than it is a solution of
X2 = 2. A common way of ‘finding" \/E the way we use (n
pratical applications, is to approximate \/E Thus, we say
that \/E ~ 1.412. We could. in fact, improve this
approximation to any desired degree of accuracy. [In that
sense, we can find V2. In a similar way, we can find the

solutions of X3 - 6X + 2, by finding sufficiently good

approximations to them.

(1.1) Exercise: Look up Newton's method (in almost any
calculus book) and use it to find (ie., approximate) the

largest real root of X2 - 6X + 2.

We stress that we are not saying that it is
impossible to ‘find” a solution of X> - 6X + 2 = 0, only
that a solution cannot be found by a particular method.

namely restricting ourselves to doing additions,



subtractions, multiplications. divisions, and taking roots.

(We will be more precise, later.)

Notation: We will use Z, Q. R, and C to denote the
integrers, the rational numbers, the real numbers, and

the complex numbers. respectively.
2 Cubic equations

In order to better appreciate the rigorous definition of
what it means for a polynomial to be solvable by radicals, it
will be helpful to look at the case of a cubic equation We will
here present the method for solving any cubic equation.

(We will simply present the method, without discussing the
hard work that went into finding it.)

Starting with the cubic equation aX3 + bX? + ¢X + d = 0,
we may divide through by the leading coefficient a, and get an
equation of the form X3 + pX? + gX + r = 0. We first treat the
special case in which p = 0. That is, we consider
X3 + gX + r = 0. We now show how to find the solutions of
this equation. (By the way, those solutions are called the roots
of X3 + gX + r). The method is called Cardan's Formula. We

blithely assume it was discovered by Cardan.

1 V3 2 4l
Letw=—2+21.LetT=\/ +27.(Ingeneral,

there are two choices for this square root. Pick either of




3
-r
them.) Let o = \/ SOt (In general, there are three

choices for this cube root. Pick any one of them.)

Let B = é—?x. Then the roots of X3 + gX + r are o + B, aw + sz.

and ow? + Bw.

(2.1) Exercise: Show that o + f. aw + pw?, and aw? + Bw are
the solutions of X2 + gX + r = 0, by showing that
X3 4+ gX +r = (X - (c+p)(X - (aw+pw?))NX - (aw?+Bw)).

(Hint: first, show that w? + w + 1 = 0, w3 =1, af = - q and

g,

a3 + B3 = -r)
(2.2) Exercise: Find the roots of X3 + 3x + 2.

We now turn to the general cubic equation
X3 + pX?2 + gX + r = 0. We will use a change of variable to
reduce this problem to the special case we just discussed.

Thus, we let X = Y - P—. Substituting, we get

3
. . 1 2p3
0 = X’ +pX2+qX+r=Y9+(q-§p2)Y+(r+ 2p7 -9-3—)=
\ 1 2p3
Y2+ qY + r/, with 9" = g - gpz, and r’" =r + 2p7 - q_3_g Since
we know how to solve Y3 + qY + r/ = 0, we find the values of

Y making this equation true, and then find the corresponding

values of X = Y -

W O



(2.3) Exercise: Find the roots of X3 + 6X? + 4X + 3.

(2.4) Exercise: Find a change of variable which changes the

polynomial X% + aln_IXn‘l + ..+ a X + ay into a polynomial of

degree n whose Xn-1 term has zero for its coefficient.

The Quadratic Formula was apparently discovered by
Arabic mathematicians around 900 AD. The general cubic
equation was probably first solved by Scipione del Ferro
(1465-1526). The general quartic equation was solved by
Ludovico Ferrari (1522-1565). (As we are not interested in
solvable polynomials so much as unsolvable ones, we will not
discuss Ferrari's work.) Inspired by these successes,
mathematicians vigorously attacked the problem of trying to
find the general solution of the quintic. It was not until the
end of the eighteenth century that some people began to
suspect that there was no such solution. Niels Abel
(1802-1829) produced the first example of a nonsolvable
quintic, and Evariste Galois (1811-1832) then perfected
the theory of how to determine what polynomials are

solvable.



3 Solvable by radicals

Vague Definition: A polynomial with rational coefficients is
called solvable by radicals (over Q) if its roots can be
expressed using only rational numbers and succesive additions,
subtractions, multiplications. divisions, and extractions of

roots.

Remark: This definition is not really acceptable, since the
phrase ‘'can be expressed’ is somewhat vague. For instance we
can express the number e using only rational numbers and
succesive additions, subtractions, multiplications, divisions, by
saying e is the smallest (real) number bigger than

1 1 1

1 + 1 + >t (3t * (2)(3).(n) for all n. Yet this is not in

the spirit of what we intended by a method of expression. We
will now give a rigorous definition of what it means for a

polynomial to be solvable by radicals over Q.

Definition: Let o« € C. We say that o is obtainable by radicals
over Q if there is a finite list of numbers ¢, Cp, C3, ..., Cpy, such
that every number in this list is either in Q, or is the sum,
difference, product, or quotient of two earlier numbers in the
list. or is an k-th root, for some positive integer Kk, of an

earlier number in the list, and such that c, = «



Definition: Let f(X) € Q[X]. We say that f(X) is solvable by
radicals over Q if every root of f(X) is obtainable by radicals

over Q.

These definitions may seem a bit bizarre. Perhaps an

example will make them less so.

Example: Using Cardan's Formula, we see that the roots of

X3 - 6X + 4 are o + B, aw + pw?, and aw? + Pw, where

3 2 3
o<=\/—2+Zi,[3=§———‘=§‘andw=-%+\/—2§i.
NV-2+21

We claim that each of these roots is obtainable by radicals
over Q (so that X3 - 6X + 4 is solvable by radicals over Q).

We will construct a list of numbers showing that o« + B is
obtainable by radicals over Q, and leave the cases of the other
two roots as an exercise. Since -1, -2, and 2 are in Q, we may
begin our list with them. Now since -1 is already part of our
list, we may adjoin its square root, i, to the list. So far, we
have -1, -2, 2, i. Since 2 and i are in our list, we may adjoin
2i, giving -1. -2, 2, i, 2i. Since -2 and 2i are in our list, we
may adjoin -2+2i, giving -1. -2, 2, i. 2i, -2+2i. Since -2+2i is

in our list, we may adjoin its cube root, giving



3
-1, -2, 2,1, 2i, -2+2i, V¥-2+2i. Since this cube root is just «,
we have -1, -2, 2.1, 2i, -2+2i, «. Now 2 and o are in our list,

. , 2
and so we may adjoin the quotient o p. Thus our list

becomes -1, -2, 2, i, 2i, -2+2i. o, p. Finally, since a« and g are
in our list, we may adjoin the sum o + f, giving
-1, -2, 2,1, 2i. -2+2i. o B, a+B. The existence of this list

shows that o« + B is obtainable by radicals over Q.

(3.1) Exercise: Complete the demonstration that X3 - 6X + 4 is
solvable by radicals over Q. by showing that its other two

roots are obtainable by radicals over Q.

Remark: Of course the list we found in this example is not the
only possible list. For instance, we could have interchanged
the first two terms, starting with -2, -1, instead of -1, -2.
We could have thrown a 17 into the list anywhere except at
the end. (It would not have helped, but it does not violate
the rules.) Lots of variations are possible. All the definition

requires is that there is at least one such list.

(3.2) Exercises: a) Show that X2 + 3X + 5 is solvable over Q.
b) Show that X + 6 is solvable over Q.

c) Show that X3 + 6X2 + 4X + 3 is solvable over Q.



Remark: The definition of what it means to say o is
obtainable by radicals over Q requires that a certain type of
list exist. It does not require that we actually know exactly
what the list is. In the preceding example, we found a list.
However, in general, actually finding the list is not required.
[t is enough that such a list exist, even if we do not know
exactly what it is.

In the above example, we found the list by using Cardan's
Formula. In general, we can see that when there is a formula
(involving only rational numbers, sums, differences, products,
quotients, and roots) giving the roots of the polynomial f(X),
then that formula will give us a way of actually finding the
list which demonstrates that any root of f(X) is obtainable by
radicals over Q. However, it is conceivable that some
polynomial f(X) is solvable by radicals. (i.e.. the necessary lists
exist), and yet there is no formula telling us how 1o find the
roots of the polynomial [t simply may happen that
appropriate lists of numbers exist, but we do not know
exactly how to find them.

We already mentioned that we will show that X2 - 6X + 2
is not solvable by radicals over Q. This will tell us that no
formula just involving rational numbers, sums, differences,
products, quotients, and roots, will give us all the roots of
X5 - 6X + 2. However, it tells us even more than that. [t says

that at least one of those roots simply cannot be part of a list

10



of the sort in the definition of being obtainable by radicals

over Q.

Remark: In the definition of &« being obtainable by radicals
over Q we are allowed to take roots, but not, for instance,
sines. We could, if we wished, define a concept in which we
are allowed to take sines but not roots. Thus, let us say that

o is obtainable by sines over Q if there is a finite list of

numbers ¢y, Cy, C3, ... Cppy. such that every number in this list is

either in Q, or is the sum. difference, product or gquotient of

two earlier numbers in the list, or is the tangent of an earlier

number in the list, and such that ¢, = o

(3.3) Exercise: Show that if o« is obtainable by tangents over Q,

then o« € R.
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