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Abstract:  We offer a proof of quadratic reciprocity that arises from looking at the Jacobi symbol 

in a non-standard way.  We also give some non-standard proofs of some standard facts about the 

Jacobi symbol.   We also prove that the Jacobi symbol always satisfies Gauss's Lemma, a fact 

which we have never seen mentioned.   

 
 
Introduction:  Recall that if p is an odd prime and GCD(m, p) = 1, then the Legendre symbol 

(m / p)L is defined to be +1 if there is a solution to X2 ≡ m mod p, and is defined to be -1 

otherwise.  More generally, if n > 1 is odd with prime factorization n = 

! 

pr
r=1

c

" ,  

and if GCD(m, n) = 1, then the Jacobi symbol (m / n)J is defined to be 

! 

(m / pr )
r=1

c

" L, while  

(m / 1)J is defined as +1.  The most important fact about the Jacobi symbol is that it satisfies 

quadratic reciprocity.   That is, if m and n are relatively prime odd positive integers, then  

(m / n)J = (1)

! 

(m"1)(n"1)

4 (n / m)J.  

 

In order to describe our work here, we need a bit of notation. 

 

NOTATION:  We assume n > 0 is odd and GCD(m, n) = 1.  

For 1 ≤ i ≤ |m|, let Ii be the interval [(i - 1)n/2|m|,   in/2|m|)].   

We will call Ii an even (respectively odd) interval if i is even (respectively odd). 

If m > 0, let t(m, n) be the number of integers contained in the union of the even intervals. 

If m < 0, let t(m, n) be the number of positive integers contained in the union of the odd 

intervals.  (We note that 0 ∈ I1.  However, we canonically ignore it.) 

 

Definition:  Let (m / n) = (-1)t(m,n). 



 

We will first show that some standard properties of the Jacobi symbol hold for our symbol,  

using non-standard proofs.   We will then show that if n is an odd prime, then (m / n) = (m / n)L.  

Next, we show that our symbol satisfies quadratic reciprocity.  That will establish quadratic 

reciprocity for the Legendre symbol, which is our primary goal in this work.  However, we will 

then give a non-standard proof that (m1m2 / n) = (m1 / n)(m2 / n), and use that to show  

(m / n) = (m / n)J.    

 

Lemma 1:  (1 / n) = 1 and (m / 1) = 1. 

 

Proof:  For (1 / n), the only interval is I1, which is odd.  Thus t(1, n) = 0, and so (1 / n) = 1.   

For (m / 1), we have 
  

! 

I
ii=1

|m |

!  = [0, 1/2], and as that contains no nonzero integers, t(m, 1) = 0,  

so that (m / 1) = 1.   

 

Lemma 2: (-m / n) = (-1)

! 

n"1

2 (m /n). 

 

Proof:  
  

! 

I
ii=1

|m |

!  = [0, n/2].  Thus the set of positive integers contained in the union of all the 

intervals is {1, 2, …, (n - 1)/2.}  The only numbers contained in more than one interval have the 

form in/2m with 1 ≤ i ≤ |m|, and as GCD(m, n) = 1, none of those are integers.  Thus each 

integer between 1 and (n - 1)/2 is in exactly one of our intervals.    

Therefore, t(m, n) + t(-m, n) = (n - 1)/2, and so t(-m, n) ≡ (n - 1)/2 + t(m , n) mod 2.   

 

Using that the Jacobi symbol satisfies quadratic reciprocity, it is not hard to show that Lemmas 

3 and 5 below are true for the Jacobi symbol.  However, we have never seen that stated, and 

they do not appear to be of great interest when the standard definition of the Jacobi symbol is 

used.  However, for our work, with our non-standard definition, they are vital.   

 

 

 



Lemma 3:  If m > 0 is odd and n - 2m > 0, then (m / n - 2m) = (-1)

! 

m"1

2 (m / n). 

 

Proof:  We have that t(m, n) is the number of integers in the union of the even  

Ii = [(i - 1)n/2m,   in/2m)], with 1 ≤ i ≤ m.  Now t(m, n - 2m) is the number of integers in the 

union of the even intervals Ji = [(i - 1)(n - 2m)/2m, i(n - 2m)/2m] =  

[(i - 1)(n/2m) - (i - 1), i(n/2m) - i], with 1 ≤ i ≤ m.  The lower bound of Ji is less than the lower 

bound of Ii by exactly (i - 1) (an integer), and the length, (namely n/2m - 1 > 0), of Ji is one less 

than the length of Ii.  Thus, it is easily seen that Ji contains exactly one less integer than Ii.    

Therefore t(m, n) - t(m, n - 2m) equals the number of even i, which is (m - 1)/2,  

and so t(m, n - 2m) ≡ (m - 1)/2 + t(m, n) mod 2. 

 

We do not need the next corollary for our proof of quadratic reciprocity, but it is well known to 

hold for the Jacobi symbol.  However, the only proof for the Jacobi symbol that this author has 

seen uses quadratic reciprocity.  For our (m / n), it only needs Lemmas 2 and 3. 

 

Corollary 4:  If r > 0 and n ≡ r mod 4m, then (m / n) = (m / r). 

 

Proof:   For the case m > 0, we may suppose n > r and write r = n - 4mk.  By Lemma 3 

(used twice), we have (m / n) = (-1)

! 

m"1

2 (m / n - 2m) = ((-1)

! 

m"1

2 )2(m / n - 4m) = (m / n - 4m).   

That handles the case k = 1, and of course induction handles k > 1.  When m < 0, since  

n ≡ r mod 4(-m), we have (-m / n) = (-m / r).  Furthermore, since n ≡ r mod 4, we have  

(-1)

! 

n"1

2 = (-1)

! 

r"1

2 , so that Lemma 2 shows (m / n) = (m / r). 

 

Example:  Using Corollary 4, it can easily be shown that (-5 / n) = 1 if and only if n is congruent 

to one of 1, 3, 7, or 9 mod 20.  A similar rule (working mod 4m) holds for any (m / n).  

 

 

 



Lemma 5:  If m > 0 and 2m - n > 0, then (m / 2m - n) = (-1)

! 

m"1

2 (m / n). 

 

Proof:  As before, we have Ii = [(i - 1)n/2m,   in/2m] with 1 ≤ i ≤ m. 

We let Ki = [(i - 1)(2m - n)/2m, i(2m - n)/2m] = [(i - 1) - (i - 1)n/2m, i - in/2m]. 

 

Claim 1:  We claim that for 2 ≤ i ≤ m, there is exactly one integer in Ki ∪ Ii, and furthermore, 

that integer is not in Ki ∩ Ii.    (Note that since i > 1, all integers under consideration are 

positive.) 

 

Suppose claim 1 is true.  Then since t(m, n) counts the integers in the even Ii, while  

t(m, 2m - n) counts the integers in the even Ki, and since there is no overlap of those two counts,  

t(m, n) + t(m, 2m - n) = (m - 1)/2, the number of even i.  That shows  

t(m, 2m - n) ≡ (m - 1)/2 + t(m, n) mod 2, as required.  

 

It remains to prove claim 1.  We 'negate' the Ki, letting -Ki = [in/2m - i, (i - 1)n/2m - (i - 1) ]. 

 

Claim 2: For 2 ≤ i ≤ m, -Ki ∪ Ii contains exactly one integer (necessarily non-zero).    

 

We now show claim 2 implies claim 1.  Suppose the number of integers in  

Ii - Ki is x, the number of integers in Ki - Ii is y, and the number of integers in Ki ∩ Ii is z. 

Then -Ki contains x + z negative integers and Ii contains y + z positive integers, so that  

-Ki ∪ Ii contains x + y + 2z integers.  By claim 2, x + y + 2z = 1, and so z = 0 and one of x or y 

is 1, the other being 0.  That proves claim 1. 

 

It remains to prove claim 2.  We will induct on i, first noting that when i = 1,  

-K1 ∪ I1 = [n/2m - 1, 0] ∪ [0, n/2m] contains no nonzero integers (since n/2m < 1).   

For i > 1, consider 
  

! 

("K
h
# I

h
)

h=1

i

!  = [in/2m - i, in/2m].  That interval has length i and has  



non-integral end points, and so it contains exactly i integers, one of them being 0.  Thus 

  

! 

("K
h
# I

h
)

h=1

i

!  contains exactly i - 1 non-zero integers.  

 

When i = 2, we know that -K2 ∪ -K1 ∪ I1 ∪ I2 contains exactly 1 non-zero integer, and that 

integer is not in -K1 ∪ I1.  Therefore, it must be the only integer in -K2 ∪ I2.  In general, when 

moving from i to i + 1, we adjoin -Ki+1 ∪ Ii+1 to our previous union, and also add exactly one 

more nonzero integer (not contained in the previous union) to the count.  That new integer must 

be the one and only integer in -Ki+1 ∪ Ii+1, proving claim 2, and also the lemma.   

 

 

Before we can prove quadratic reciprocity for (m / n) (and for the Legendre symbol), we need 

one more property of (m / n).  To prove it, we must reveal that the number t(m, n) defined above 

can also be described in a way that Gauss introduced.  (We have so far hidden the connection, 

since we wished to stress how far our original description of t(m, n) could take us.) 

  . 

 

NOTATION:  We now take n > 1.  We will let S = {1, …, 

! 

n "1

2
} and T = {

! 

n "1

2
 + 1,…, n - 1}. 

We will say that r is reduced if r ∈ S ∪ T.  For b ∈ S, let rb be the (unique) reduced number 

congruent to mb modulo n.  (We will refer to the various rb as 'the remainders'.  Note that since 

GCD(m, n) = 1, and 1 ≤ b ≤ (n - 1)/2, rb is never 0.)   Let t′(m , n) be the number of rb that are in 

T (as b varies over S). 

 

 

Lemma 6: When n > 1, t′(m, n) is the number of b ∈ S such that rb ∈ T.   

 

Proof:  It will suffice to show that distinct b give distinct remainders.  To see that, if b and b′ are 

both in S, with rb = rb, then mb ≡ rb = rb′ ≡ mb′ mod n, so that b ≡ b′ mod n.  As b and b′ are both 

between 1 and (n - 1)/2, we have b = b′. 

 

 



 

Lemma 7:  t(m, n) = t′(m, n).  

 

Proof:  We will do the slightly harder case that m < 0.   In the proof of Lemma 2,  

we saw that S is exactly the set of nonzero integers contained in 
  

! 

I
ii=1

|m |

! .   Thus every integer in S 

is in exactly one of the Ii.  We must show that for b ∈ S, with b ∈ Ii, we have i even if and only if 

rb ∈ T.  As b ∈ Ii, we have (i - 1)n/2|m| < b <  in/2|m|.   Since m < 0, we have 

 

(*)  -in/2 < mb < -(i - 1)n/2.    

 

Suppose i is odd.  Then (i + 1)n/2 is an integral multiple of n.  Adding (i + 1)n/2 to each  

number in (*)  shows that n/2  < mb + (i + 1)n/2 < n.  That shows rb = mb + (i + 1)n/2 ∈ T. 

On the other hand, if i is even, we add in/2 to the terms in (*), and see that rb = mb + in/2 is in S.  

 

 

Corollary 8:  If n is an odd prime, (m / n) = (m / n)L.   

 

Proof:  This follows from Lemma 7 and Gauss's Lemma [B, Theorem 9.5]. 

  

Remark: Lemma 7 shows that our symbol (m / n) always satisfies Gauss's Lemma, even when n 

is not prime.  As we will later show (m / n) = (m / n)J, we will have that the Jacobi symbol 

satisfies Gauss's Lemma.  We have never seen that fact mentioned.  

 

 

Lemma 9:  If m ≡ k mod n, then (m / n) = (m / k). 

 

Proof:  For b ∈ S, mb ≡ kb mod n.  Thus the remainder rb found for mb is the same as that found 

for kb.  Therefore, t(m, n) = t(k, n), and the lemma follows. 

 



We have learned enough about our (m / n) that we can now give an easy (but slightly tedious) 

proof that it satisfies quadratic reciprocity.  By Corollary 8, we will automatically get that the 

Legendre symbol satisfies quadratic reciprocity.  

 

Theorem 10:   If  n and m are relatively prime positive odd integers,  

then (m / n) = (-1)

! 

(m"1)(n"1)

4 (n / m).   

 

Proof:  We are only concerned with odd m > 0.  To help focus on them, we make a definition.   

For relatively prime odd positive integers m and n, let <m / n> = (m / n). 

Our goal is now to show that <m / n> = (-1)

! 

(m"1)(n"1)

4 <n / m>.   

 

Let {m / n} = (-1)

! 

(m"1)(n"1)

4 <n / m>.  Our goal is now to show {m / n} = <m / n>. 

 

We now list five facts about <m / n>, along with their justifications. 

 

Fact 1) If m - 2n > 0, then <m - 2n / n> = <m / n>.  (Lemma 9.) 

 

Fact 2)  If m - 2n > 0, then <n / m - 2n> = (-1)

! 

n"1

2 <n / m>.  (Lemma 3, with n and m reversed.) 

 

Fact 3) If 2n - m > 0, then <2n - m / n> = (-1)

! 

n"1

2 <m / n>.   

(By Lemmas 2 and 9, (-1)

! 

n"1

2 <m / n> = <-m / n> =  <2n - m / n>.) 

 

Fact 4) If 2n - m > 0, then <n / 2n - m> = (-1)

! 

n"1

2 <n / m>.  (Lemma 5, with n and m reversed.) 

 

Fact 5:  <1 / 1> = 1.   (Lemma 1.) 

 

We will now show that {m / n} also satisfies those five facts.  Then we will use that to show  

{m / n} = <m / n>, and be done. 



 

For Fact 1, suppose m - 2n > 0.  Then {m - 2n / n} = (-1)

! 

(m"2n"1)(n"1)

4 <n / m - 2n> =  

(-1)

! 

(m"2n"1)(n"1)

4 (-1)

! 

n"1

2 <n / m>, using Fact 2 for < / >.  We need that to equal  

{m / n} = (-1)

! 

(m"1)(n"1)

4 <n / m>.  That is an easy exercise. 

 

For Fact 2, suppose m - 2n > 0.   Then {n / m - 2n} = (-1)

! 

(n"1)(m"2n"1)

4 <m - 2n / n> = (by Fact 1)  

(-1)

! 

(n"1)(m"2n"1)

4 <m / n>.   That is easily seen to equal (-1)

! 

n"1

2 {n / m} = (-1)

! 

n"1

2 (-1)

! 

(m"1)(n"1)

4 <m / n>.   

 

 

For Fact 3, suppose 2n - m > 0.  Then {2n - m / n} = (-1)

! 

(2n"m"1)(n"1)

4 <n / 2n - m> =  

(-1)

! 

(2n"m"1)(n"1)

4 (-1)

! 

n"1

2 <n / m>, by Fact 4 applied to < / >.   An easy exercise, using that n and m 

are odd, shows that equals (-1)

! 

n"1

2 {m / n} = (-1)

! 

n"1

2 (-1) 

! 

(m"1)(n"1)

4 <n / m>.   

 

 

For Fact 4, suppose 2n - m > 0.  We have {n / 2n - m} = (-1)

! 

(n"1)(2n"m"1)

4 <2n - m / n> =  

(by Fact 3) (-1)

! 

(n"1)(2n"m"1)

4  (-1)

! 

n"1

2 <m / n>.   That is easily seen to equal (-1)

! 

n"1

2 {n / m}. 

 

For Fact 5, we have {1 / 1} = (-1)

! 

(1"1)(1"1)

4 <1 / 1> = (1)(1) = 1. 

 

Remark:  The above arguments show that Facts 1 and 2 are "reciprocals" of each other,  

as are Facts 3 and 4.  That is what drives this proof of quadratic reciprocity. 

 

In order to complete the proof of Theorem 10, we must only show {m / n} = <m / n>.  If false, 

consider a counter-example {m / n} ≠ <m / n>, with n minimal and (for that n) m minimal.    

We will get the contradiction that m < n and also n < m. 

 



Suppose m - 2n > 0.  By Fact 1, {m - 2n / n} = {m / n} ≠ <m / n> = <m - 2n / n>. 

That contradicts the minimality of m.  Thus 2n - m > 0.  By Fact 3,  

{2n - m / n} = (-1)

! 

n"1

2 {m / n} ≠  (-1)

! 

n"1

2 <m / n> = <2n - m / n>.  Therefore, we must have  

m ≤ 2n - m.  Now equality can only hold if m = n, and since GCD(m, n) = 1, that would require 

m = 1 = n.  However, Fact 5 shows {1 / 1} = <1 / 1>.   Therefore, m < 2n - m, showing m < n. 

 

Now suppose n - 2m > 0.  Then reversing n and m in Fact 2, we have  

{m / n - 2m} = (-1)

! 

m"1

2 {m / n} ≠ (-1)

! 

m"1

2 <m / n> = <m / n - 2m>. 

That violates the minimality of n.  Thus 2m - n > 0.    Reversing n and m in Fact 4, we have  

{m / 2m - n} = (-1)

! 

m"1

2 {m / n} ≠ (-1)

! 

m"1

2 <m / n> = <m / 2m - n>.  Therefore, we must have  

n <  2m - n (equality impossible by Fact 5), showing n < m, and completing the proof. 

 

 

Combining Theorem 10 and Corollary 8 shows quadratic reciprocity holds for the Legendre 

symbol.  We now turn to our second goal, showing (m / n) is actually the Jacobi symbol.  There 

are two ways we could do that.  The less interesting (pedagogically at least) is to use that it is 

known that the Jacobi symbol (like our symbol) satisfies quadratic reciprocity.  Both symbols 

also satisfy Lemmas 1, 2, and 9.  Using those facts, it is not hard to give a proof that they are 

equal, similar to our above argument that {m / n} = <m / n> in the proof of Theorem 10.  

However, we opt to give a proof that does not require any prior knowledge of the Jacobi 

symbol, other than its definitionn.   We start with two more non-standard proofs. 

 

Lemma 11:   (2 / n) equals +1 if n is congruent to 1 or 7 mod 8,  

and equals -1 if n is congruent to 3 or 5 mod 8. 

 

Proof:  We consider the m = 2 intervals I1 = [0, n/4] and I2 = [n/4, n/2].  One can easily verify 

that t(2 / n), the number of integers in I2, is even exactly when n is congruent to 1 or 7 mod 8. 

 

 

In order to show that (m / n) = (m / n)J, we need to show that (m1m2 / n) = (m1 / n)(m2 / n). 



The proof of that fact for the Legendre symbol is well known.   Our proof is markedly different.  

It uses the following lemma, which is also used in the proof of Gauss's Lemma. 

 

LEMMA 12: S = {rb | rb ∈ S} ∪ {n - rb | rb ∈ T}. 

 

Proof: The union on the right is clearly a subset of S.  Lemma 6 shows there are |S| distinct 

remainders, and so |{rb | rb ∈ S}| + |{n - rb | rb ∈ T}| = |S|.  Therefore, it will suffice to show 

{rb | rb ∈ S} ∩ {n - rb | rb ∈ T} is empty.  If rb = n - rb′, we have  

mb ≡ rb = n - rb′ ≡  n - mb′ ≡ - mb′ mod n, so that b ≡ -b′ mod n. 

But 1 ≤  b + b′ ≤ n - 1, giving a contradiction. 

 

 

Lemma 13:  (m1m2 / n) = (m1 / n)(m2 / n). 

 

Proof:  Let m3 = m2m1.  For b ∈ S, and i = 1, 2, 3, let rib be the reduced remainder mod n of mib. 

Let ti be the number rib in T, so that (mi / n) = (-1)

! 

t
i

. 

 

We want to show (-1)

! 

t
1

(-1)

! 

t
2

= (-1)

! 

t
3

.  That is, we want t1 + t2 ≡ t3 mod 2. 

 

Let us say that b is of type 1 if r1b ∈ S, and is of type 2 if r1b ∈ T. 

By definition of t1, exactly t1 of the b ∈ S are of type 2. 

Suppose that exactly x of the type 1 b have r3b in T, and exactly y of the type 2 b have r3b in T.  

Then t3  = x + y. 

 

For b ∈ S, define f(b) = r1b for type 1 b, and f(b) =  n - rib for type 2 b.  

By Lemma 12, f is a permutation of S.  Thus, t2 equals the number of b ∈ S with r2f(b) ∈ T. 

 

CLAIM:  For exactly x of the type 1 b, r2f(b) is in T, while for exactly t1 - y of the type 2 b,   

r2f(b) is in T, implying that t2 = x + (t1 - y). 

 



Suppose the claim is true.  Then t1 + t2 = t1 + x + (t1 - y) has the same parity as t3 = x + y, and we 

are done.   

 

In this proof of the claim, all congruences are mod n.  If b is of type 1, then r2f(b) ≡ m2f(b) = m2r1b  

≡ m2m1b = m3b ≡ r3b.  As all remainders lie between 1 and n - 1, we see that in this case,  

r2f(b) = r3b.  As we are supposing that exactly x of the type 1 b have r3b ∈ T, we have proven the 

first part of the claim.  As for type 2 b, we have r2f(b) ≡ m2f(b) = m2(n - r1b) ≡ -m2r1b ≡ -m2m1b =  

-m3b  ≡ -r3b ≡ n - r3b, the last step to have a remainder between 1 and n - 1.  In this case, we have 

that r2f(b) = n - r3b.  That last is in T exactly when r3b is in S.  We have assumed that r3b is in T for 

exactly y of the type 2 b.  We saw that there are exactly ti b of type 2.   Thus, exactly t1 - y of the 

type 2 b have r3b ∈ S, and so have r2b = n - r3b ∈ T, completing the proof. 

 

 

 

 The next theorem is trivial if we use the standard definition of the Jacobi symbol, but (to the best 

of our knowledge) requires quadratic reciprocity (Theorem 10) using our non-standard 

definition. 

 

Lemma 14.  (m / n1n2) = (m / n1)(m / n2). 

 

Proof:  The cases m = -1 and m = 2 are easy, using Lemmas 2 and 11.  For example,  

suppose n1 ≡ 3 mod 8, and n2 ≡ 5 mod 8, so that n1n2 ≡ 1 mod 8.  By Lemma 11,  

(2 / n1n2) = +1 = (-1)(-1) = (2 / n1)(2 / n2).  

 

We claim that (

! 

h

n
1
n
2

) = (

! 

h

n
1

)(

! 

h

n
2

) whenever h > 0 is odd.  Suppose that is true.   

In general, say m = (-1)e(2)dh, with e ∈ {0, 1}, d ≥ 0, and h > 0 and odd.  By Lemma 13, we have  

(m / n1n2) = (-1 / n1n2)e(2 / n1n2)d(h / n1n2).  By the claim, we have (k / n1n2) = (k / n1)(k / n2) for 

k ∈ {-1, 2, h}, and we can then recombine those factors into (m /n1)(m / n2). 

Therefore, it only remains to prove the claim.   

 



By Theorem 10 and Lemma 13, we have (h / n1n1) = (-1)

! 

(h"1)(n1n2"1)

4 (n1n2 / h) =  

(-1)

! 

(h"1)(n1n2"1)

4 (n1 / h)(n2 / h) = (-1)

! 

(h"1)(n1n2"1)

4 (-1)

! 

(h"1)(n1"1)

4 (-1) 

! 

(h"1)(n2"1)

4 (h / n1)(h / n2). 

Thus, it will suffice to show (1/4)(h - 1)[n1n2 - 1 + n1 - 1 + n2 - 1] is even.  As h -1 is even,  

we must show (1/2)[n1n2 + n1 + n2 - 3] is even or equivalently, n1n2 + n1 + n2 ≡ 3 mod 4.   

The four possible cases (mod 4) are easily checked. 

 

 

Theorem 15:  (m / n) = (m / n)J. 

 

Proof:  They both when n = 1.   For n > 1, suppose the factorization of n is n = 

! 

pr
r=1

c

" . 

By Lemmas 14 and Corollary 8, (m / n) = 

! 

(m / pr )
r=1

c

"  = 

! 

(m / pr )
r=1

c

" L = (m / n)J. 

 

 

Remark:  It appears difficult to prove via our non-standard definition that if n is an odd prime, 

then there is an m with (m / n) = -1, without making use of Gauss's Lemma.  If that could be 

done easily, it would lead to a pleasant proof of Gauss's Lemma, avoiding Euler's Criterion. 
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