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Abstract:  For each partition J ∪ K of {1, 2, …, n} (n ≥ 2) with |J| ≥ 2, let 

! 

M (J | K) 
be a finite set of maximal ideals in the polynomial ring Z[X], and suppose that if  
J ∪ K and J′ ∪ K′ are two different partitions, then 

! 

M (J | K) and 

! 

M (J′ | K′) are 
disjoint. Then there is a sequence p1, p2, …, pn of height 1 primes in Z[X] such 

! 

M (J | K) equals the set of maximal ideals that contain pj for each j ∈ J, but do not 
contain pk for any k ∈ K.  A version involving infinite sequences is also given. 
 
 
Introduction:   In [3], Roger Wiegand shows that spec Z[X] is 
characterized among countable posets by the following five axioms. 
 
1) It has a unique minimal prime. 
 
2)  It has dimension 2. 
 
3) Each height 1 prime is contained in infinitely many maximal primes. 
 
4)  If p1 ≠ p2 are height 1 primes, then only finitely many maximal ideals 
contain both p1 and p2. 
 
RW)  Given a finite set S of height 1 primes and a finite set T of 
maximal primes, there is a height 1 prime p contained in each maximal 
in T, and such that if a maximal q contains both p and some prime in S, 
then q ∈ T. 
 
Remarks:  a) In [2], Wiegand shows that two countable posets, both of 
which satisfy the above five axioms, are isomorphic. 
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b)  One of the most interesting consequences of Wiegand's work is that 
spec Z[X] is not isomorphic to spec Q[X, Y].  The latter does not satisfy 
axiom RW, although it does satisfy the first four axioms.   The nature of 
spec Q[X, Y] appears to still be rather mysterious.  That illustrates the 
difficulty of characterizing what posets arise as the spectrum of a 
Noetherian ring, a problem that has been under scrutiny for several 
decades.  See [1] for a progress report. 
 
c) Our work here is really about any poset satisfying those axioms.  
Nonetheless, since spec Z[X] is the most interesting example, we will 
always refer to that, knowing that our results apply equally well to any 
isomorphic poset.   For instance, [3] shows that if D is an order in an 
algebraic number field, then spec D[X] is isomorphic to spec Z[X]. 

This paper might be considered an homage to RW (both the axiom 
and the man). 
 
 
NOTATION:  We work within Spec Z[X].  Let p1, p2, p3, …pn  
(n ≥ 2) be a finite sequence of distinct height one primes.  Let J ∪ K be a 
partition of {1, 2, …, n}.  Let M(J | K) be the set of maximal primes that 
contain pj for each j ∈ J but do not contain pk for each k ∈ K. 
 
 
LEMMA 1:  Let J ∪ K be a partition of {1, 2, …, n}.  
 
i) If J′ ∪ K′ is a partition of {1, 2, …, n}, then M(J | K) and M(J′ | K′) 
are disjoint unless J = J′ and K = K′. 
 
ii) M(J | K) is finite if |J| ≥ 2. 
 
iii) M(J | K) is infinite if |J| < 2. 
 
Proof: (i) is obvious, (ii) follows from axiom 4,  



 3 

and (iii) follows from axioms 3 and 4. 
 
 
 
 The purpose of this paper is to determine to what extent we can 
pre-determine the various M(J | K).  More specifically, suppose that for 
any partition J ∪ K of {1, 2, …, n} we specify a set 

! 

M (J | K) of maximal 
ideals of Z[X] in such a way that the three statements of lemma 1 hold 
for the 

! 

M  sets.   Must there be a sequence p1, p2, …, pn of height 1 
primes in Z[X] such that M(J | K) = 

! 

M (J | K) for all J ∪ K?  We give an 
example showing that the answer is no.   However, we then show that 
the problem only arises for those M(J | K) that are infinite.  Indeed, all of 
the finite M(J | K) (i.e., have |J| ≥ 2) can be pre-determined (and the 
infinite ones can be partially pre-determined). 
 
 
EXAMPLE:  Consider the case n = 2.  We take

! 

M ({1}| {2}}) to be the 
set of maximal ideals that contain 2Z[X], 

! 

M ({2} | {1}) to be the set of 
maximal ideals that contain 3Z[X] with the exception of (3, X)Z[X], 

! 

M ({1, 2} | ∅) to be empty, and 

! 

M (∅ | {1, 2}) to be the set of all 
maximal ideals not in one of the previous three sets.  (Notice that the 
three conditions of Lemma 1 hold.)   

Suppose there does exist a sequence p1, p2 of height 1 primes in 
Z[X] such that 

! 

M (J | K) = M(J | K) in each of those four cases.  Since p1 
is contained in every maximal ideal in 

! 

M ({1} | {2}), we must have that 
p1 = 2Z[X].  Similarly, p2 = 3Z[X].  However, M({2} | {1}) contains  
(3, X)Z[X], and that is not in 

! 

M ({2} | {1}). (Also 

! 

M (∅ | {1, 2}) ≠  
M(∅ | {1, 2}). 

 
 
 
 
THEOREM A:  Suppose n ≥ 2, and for every partition J ∪ K of  
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{1, 2, …., n}, there is a finite set 

! 

M (J | K) of maximal ideals of Z[X], 
such that if J ∪ K and J′ ∪ K′ are two different partitions of  
{1, 2, …, n}, then 

! 

M (J | K) and 

! 

M (J′ | K′) are disjoint.  Then there is a 
sequence p1, p2, …, pn of height 1 primes in Z[X] such that when  
M(J | K) is defined in terms of that sequence, we have  

! 

M (J | K) ⊆ M(J | K) for all J ∪ K, and furthermore, equality holds 
whenever |J| ≥ 2. 
 
 We will prove the theorem by induction.  We will first do the 
initial step, when n = 2, as a lemma.  We will then present the inductive 
step as Theorem B.  Later, we will show that Theorem B is essentially 
equivalent to axiom RW.   
 
LEMMA 2:  If T and W are disjoint finite sets of maximal ideals of 
Z[X], then there is a height 1 prime p such that p is contained in every 
maximal in U but is not contained in any of the maximals in W. 
 
Proof:  Let S be a finite set of height 1 primes such that every prime in 
W contains a prime in S.  Let p be a height 1 prime satisfying axiom RW 
for that S and T.  That axiom shows p is contained in every maximal in 
T.  Now suppose p ⊂ q ∈ W.  Then since q also contains a prime in S, 
RW tells us q ∈ T.  That contradicts disjointness of T and W.  
 
 We are ready for the initial step of our induction. 
 
LEMMA 3:  For each partition J ∪ K of {1, 2}, let 

! 

M (J | K) be a finite 
set of maximal ideals of Z[X], and suppose that if J ∪ K and J′ ∪ K′ are 
two different partitions of {1, 2}, then 

! 

M (J | K) and 

! 

M (J′ | K′) are 
disjoint.  Then there are height 1 prime ideals p1 and p2 such that  

! 

M (J | K) ⊆ M(J | K), and equality holds when J = {1, 2} (the only J for 
which |J| ≥ 2). 
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Proof:   We have four finite sets of maximal ideals, 

! 

M (∅ | {1, 2}), 

! 

M ({1} | {2}), 

! 

M ({2} | {1}), and 

! 

M ({1, 2} | ∅}, and they are pairwise 
disjoint.  By Lemma 2, there is a prime p1 contained in every maximal in  

! 

M ({1} | {2}) ∪

! 

M ({1, 2} | ∅} and in no maximal in  

! 

M (∅ | {1, 2}) ∪

! 

M ({2} | {1}).  Also, there is a height 1 prime p 
contained in every maximal in 

! 

M (∅ | {1, 2}). 
 Let S = {p1, p} and let T = 

! 

M ({2} | {1}) ∪ 

! 

M ({1, 2} | ∅}.  Select 
p2 so that it satisfies axiom RW with respect to that S and T.   We need 
to show a total of five inclusions, (two of them giving an equality). 
 
i) 

! 

M (∅ | {1, 2}) ⊆ M(∅ | {1, 2}):  Let q ∈ 

! 

M (∅ | {1, 2}).  The choice of 
p1 shows p1 ⊄ q.  Since p ⊂ q ∉ T, we must have p2 ⊄ q.   
Thus q ∈ M(∅ | {1, 2}). 
 
ii) 

! 

M ({1} | {2}) ⊆ M({1} | {2}):  Let q ∈ 

! 

M ({1} | {2}).  We already 
know p1 ⊂ q.  Since q ∉ T, we must have p2 ⊄ q. 
 
iii) 

! 

M ({2} | {1}) ⊆ M({2} | {1}):  Let q ∈ 

! 

M ({2} | {1}) ⊆ T.  Thus  
p2 ⊂ q, and we already know p1 ⊄ q. 
 
iv) 

! 

M ({1, 2} | ∅) ⊆ M({1, 2} | ∅):  Let q ∈

! 

M ({1, 2} | ∅).  We already 
know p1 ⊂ q, and since we have q ∈ T, we also have p2 ⊂ q. 
 
v) M({1, 2} | ∅) ⊆ 

! 

M ({1, 2} | ∅):  Let q ∈ M({1, 2} | ∅).  Then q 
contains both p1 and p2, and so by axiom RW,  
q ∈ T = 

! 

M ({2} | {1}) ∪ 

! 

M ({1, 2} | ∅}. Since p1 ⊂ q, q cannot be in  
M({2} | {1}). 
 
 
 
 NOTATION: Let n ≥ 2, and let F be a subset of {1, 2, …, n}.   
Let F* = F ∪ {n + 1}. 
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 The next lemma is trivial, but very useful. 
 
 
LEMMA 4:  Let J ∪ K be a partition of {1, 2, …, n, n + 1}.   
Let H = J ∩ {1, 2, …, n}and G = K ∩ {1, 2, …, n}.  Then H ∪ G is a 
partition of {1, 2, …, n}, and J ∪ K is either H* ∪ G or H ∪ G*. 
 
NOTATION: H ∪ G will always represent a partition of {1, 2, …, n} 
and J ∪ K will always represent a partition of {1, 2, .., n + 1}. 
If H = J ∩ {1, 2, …, n}and G = K ∩ {1, 2, …, n}, then we will call  
H ∪ G the restriction of J ∪ K. 
 
 
 
THEOREM B:  Let p1, p2, .., pn (n ≥ 2) be a sequence of height 1 primes 
of Z[X].  For each partition J ∪ K of {1, 2, …, n, n + 1}, let  

! 

M (J | K) be a finite set of maximal ideals, and assume that if  
H ∪ G is the restriction of J ∪ K, then 

! 

M (J | K) ⊆ M(H | G) (that last set 
defined via the sequence p1, p2, …, pn).  Also assume that  

! 

M (H* | G) and 

! 

M (H | G*) are disjoint.   Finally, assume that if  
|H| ≥ 2, then M(H | G) = 

! 

M (H* | G) ∪

! 

M (H | G*).  Then there is a height 1 
prime pn+1 such that for each partition J ∪ K of {1, 2, …, n, n + 1},  

! 

M (J | K) ⊆ M(J | K), (those sets defined via p1, p2, …, pn, pn+1), and 
equality holds when |J| ≥ 2. 
 
Proof:  Let T be the union of all the sets 

! 

M (H* | G), over all partitions  
H ∪ G of {1, 2, .., n}.  Using Lemma 2, let p be a height 1 prime 
contained in each maximal in the union of all sets of the form  

! 

M (H | G*).  Let S = {p1, p2, …, pn, p}.  Pick pn+1 so as to satisfy axiom 
RW with respect to S and T.   
 Let q ∈

! 

M (J | K).  We must show that q ∈ M(J | K).  If H ∪ G is the 
restriction of J ∪ K, then by an assumption in Theorem B, we have   
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q ∈

! 

M (J | K) ⊆ M(H | G).  Therefore, we must show that pn+1 is 
contained in q if and only if J ∪ K has the form H* ∪ G (as opposed to 
H ∪ G*). 

Suppose J ∪ K has the form H* ∪ G.  Then  
q ∈

! 

M (J | K) = 

! 

M (H* | G) ⊆ T, and so that we know pn+1 ⊂ q, as required.   
Now suppose J ∪ K has the form H ∪ G*.  Suppose pn+1 ⊂ q.  Since  
q ∈ 

! 

M (H | G*), we know that p is also contained in q.  By axiom RW, 
we have q ∈ T.  Thus q is contained in some set of the form 

! 

M (H′* | G′).   
By assumption, we have 

! 

M (H | G*) ⊆ M(H | G), and  

! 

M (H′* | G′) ⊆ M(H′ | G′).  Thus q ∈ M(H | G) ∩ M(H′ | G′).  As that 
intersection is not empty, we must have H = H′ and G = G′.  Thus q is 
contained in both 

! 

M (H | G*) and 

! 

M (H* | G).  That contradicts an 
assumption of Theorem B. 
 It only remains to show that if |J| ≥ 2, then 

! 

M (J | K) = M(J | K), and 
we already have one inclusion.  For the other, suppose q ∈ M(J | K). 
First suppose J ∪ K has form H* ∪ G.  Since |J| = |H*| ≥ 2, we have  
|H| ≥ 1, and so for some i (1 ≤ i ≤ n), we have i ∈ H.  We see that q 
contains both pi and pn+1.  By axiom RW, q ∈ T. Thus q is contained in 
some set of the form 

! 

M (H′* | G′) ⊆ M(H′ | G′).  As also q ∈ M(J | K) = 
M(H* | G) ⊆ M(H | G), we must have H = H′ and G = G′, showing  
q ∈ 

! 

M (H* | G). 
 The only remaining chore is to show 

! 

M (J | K) = M(J | K) when  
J ∪ K has the form H ∪ G*, and |H| = |J| ≥ 2.   By two of the 
assumptions in Theorem B, we have a partition 
M(H | G) = 

! 

M (H* | G) ∪

! 

M (H | G*).   Now obviously  
M(H | G) = M(H* | G) ∪ M(H | G*) is also a partition.  As we just proved 
that 

! 

M (H* | G) = M(H* | G), we must have 

! 

M (H | G*) = M(H | G*). 
 
 
 
 We are ready to prove Theorem A. 
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Proof of Theorem A:  By Lemma 3, Theorem A holds when n = 2.  Now 
suppose it holds for some n ≥ 2, and assume that for every partition   
J ∪ K of {1, 2, …., n, n + 1}, there is a finite set 

! 

M (J | K) of maximal 
ideals such that the hypothesis of Theorem A holds.  Let H ∪ G be a 
partition of {1, 2, …, n}, and define 

! 

M (H | G) to be the finite set 

! 

M (H* | G) ∪ 

! 

M (H | G*).  Then we easily see that the hypothesis of 
Theorem A holds for the various 

! 

M (H | G), and so by induction, there is 
a sequence p1, p2, …, pn of height 1 primes such that when M(H | G) is 
defined via that sequence, we have 

! 

M (H | G) ⊆ M(H | G), with equality 
holding whenever |H| ≥ 2.    
 We now claim that the hypotheses of Theorem B hold.  Let H ∪ G 
be the restriction of J ∪ K, so that J ∪ K is either H* ∪ G or  
H ∪ G*.  In both cases, we have 

! 

M (J | K) ⊆ 

! 

M (H | G) ⊆ M(H | G).  
Now 

! 

M (H* | G) and 

! 

M (H | G*) are disjoint by the hypothesis of  
Theorem A.  Finally, suppose |H| ≥ 2.  Then we have  
M(H | G) = 

! 

M (H | G) = 

! 

M (H* | G) ∪ 

! 

M (H | G*).  That proves the claim.  
Theorem B now shows that Theorem A is true. 
 
 
 
 We will now give two variants of Theorem A.  In the first, we 
discuss M(J | K) where we assume J and K are disjoint subsets of  
{1, 2, …, n}, but do not assume J ∪ K is a partition of that set.  In the 
second, we consider infinite sequences of height 1 primes.  
 
 
 
 
 
 
 
 
 
 



 9 

Lemma 5: Suppose that for each pair of disjoint subsets J and K of  
{1, 2, …, n} we specify a set 

! 

M (J | K) of maximal ideals of Z[X].   
Then the following two statements are equivalent. 
 
a) If t ∈ {1, 2, .., n} - (J ∪ K), then 

! 

M (J ∪ {t} | K) ∪ 

! 

M (J | K ∪ {t}) is a 
partition of 

! 

M (J | K). 
 
b) Each 

! 

M (J | K) can be partitioned as ∪

! 

M (J′ | K′), the union over all 
sets J′ and K′ such that J′ ∪ K′ is a partition of {1, 2, …, n} with J ⊆ J′ 
and K ⊆ K′. 
 
Proof:  (a) ⇒ (b):  If J ∪ K = {1, 2, …, n}, the result is trivial.  
Otherwise, let {1, 2, …, n} – (J ∪ K) = {t1, t2, …, tm}. 
We will induct on m.  If m = 1, by (a) we have 

! 

M (J | K) can be 
partitioned as 

! 

M (J ∪ {t1} | K ∪ ∅) ∪ 

! 

M (J ∪ ∅ | K ∪ {t1}), and are 
done.  If m ≥ 1, we apply induction to both

! 

M (J ∪ {t1} | K ∪ ∅) and  

! 

M (J ∪ ∅| K ∪ {t1}), and the set {t2, t3, …, tm}, and (b) follows. 
 
(b) ⇒ (a):  Suppose t ∈ {1, 2, …, n} - (J ∪ K).   With notation as in (b), 
we have 

! 

M (J | K) = ∪

! 

M (J′ | K′) = (
  

! 

M ( " J | " K )
t# " J 
! ) ∪ (

  

! 

M ( " J | " K )
t# " J 
! ) = 

(using (b) again) 

! 

M (J ∪ {t} | K) ∪ 

! 

M (J | K ∪ {t}), and that last is clearly 
a partition. 
  
 
THEOREM AA:  Suppose n ≥ 2, and for every pair J and K of disjoint 
subsets of {1, 2, …., n}, there is a finite set 

! 

M (J | K) of maximal ideals 
of Z[X], such that the following two assumptions hold. 
 
(i) If t ∈ {1, 2, .., n} - (J ∪ K), then 

! 

M (J ∪ {t} | K) ∪ 

! 

M (J | K ∪ {t}) is a 
partition of 

! 

M (J | K). 
 
 (ii) If J′ ∪ K′ and J′′ ∪ K′′  are two different partitions of  
{1, 2, …, n}, then 

! 

M (J′  | K′) and 

! 

M (J′′ | K′′) are disjoint.   
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Then there is a sequence p1, p2, …, pn of height 1 primes in Z[X] such 
that 

! 

M (J | K) ⊆ M(J | K) for all such pairs J and K, and furthermore, 
equality holds whenever |J| ≥ 2. 
 
Proof:  If t ∈ {1, 2, .., n} - (J ∪ K), then M(J ∪ {t} | K) ∪ M(J | K ∪ {t}) 
is obviously a partition of M(J | K), and so condition (b) of Lemma 5 
holds both for sets of the form 

! 

M (J | K) and for sets of the form  
M(J | K).  It easily follows that to prove that the conclusion of the 
theorem holds for all our pairs J and K, it will suffice to show it holds 
for those pair J′, K′ for which J′ ∪ K′ is a partition of {1, 2, …, n}.  The 
truth of that fact follows from assumption (ii) and Theorem A. 
 
 
 
 
THEOREM AAA:  Suppose for every pair J and K of finite disjoint 
subsets of the positive integers, there is a finite set 

! 

M (J | K) of maximal 
ideals of Z[X], such that the following two assumptions hold. 
 
(i) If t is a positive integer with t ∉ J ∪ K, then  

! 

M (J ∪ {t} | K) ∪ 

! 

M (J | K ∪ {t}) is a partition of 

! 

M (J | K). 
 
(ii) If either J ∩ K′ ≠ ∅ or J′ ∩ K ≠ ∅, then 

! 

M (J | K) and 

! 

M (J′ | K′) are 
disjoint.  (Note that holds for M(J | K) and M(J′ | K′).) 
 
Then there is an infinite sequence p1, p2, p3, … of height 1 primes in 
Z[X] such that 

! 

M (J | K) ⊆ M(J | K) for all such pairs J and K, and 
furthermore, equality holds whenever |J| ≥ 2. 
 
Proof:  By Theorem AA, we can find p1 and p2 such that the conclusion 
holds for pairs J and K with J ∪ K ⊆ {1, 2}.  We claim that we can 
inductively extend that sequence to p1, p2, …, pn for each n ≥ 2 in such a 
way that the conclusion holds for all pairs J and K with  
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J ∪ K ⊆ {1, 2, …, n}.   
 Suppose we have done so for n, and wish to add another term, pn+1.  
We will use Theorem B.  Let J ∪ K by a partition of {1, 2, …, n, n + 1}, 
with restriction H ∪ G.  Since J ∪ K is either H* ∪ G or H ∪ G*, and 
since by assumption (i), 

! 

M (H* | G) ∪ 

! 

M (H | G*) is a partition of  

! 

M (H | G), we see that 

! 

M (J | K) ⊆ 

! 

M (H | G) ⊆ M(H | G) (the last 
inclusion by induction).  That establishes the first assumption of 
Theorem B.  The second assumption of Theorem B follows immediately 
from assumption (ii).  Finally, assume |H| ≥ 2, then by induction, we 
have M(H | G) = 

! 

M (H | G) = 

! 

M (H* | G) ∪

! 

M (H | G*), giving us the third 
assumption of Theorem B.  That theorem supplies the desired pn+1, and 
since we can repeat this process indefinitely, we are done. 
 
 
 We will show that Theorem B does not hold in Q[X, Y], by 
showing that the theorem is essentially equivalent to axiom RW.   We 
first explain the use of the adjective 'essentially'. 
 Given the five poset axioms listed at the start of this paper, it is not 
hard to prove that every maximal ideal contains at least two height 1 
primes.  However, that is not true if we delete axiom RW from the list, 
since there are rings whose spec consists of a unique minimal prime, a 
unique height 1 prime, and infinitely many height 2 primes, and such a 
spec does satisfy the first four axioms.  If we delete RW, we will have to 
add both Theorem B and that new 'two height 1 primes in each maximal' 
axiom, if we want to recover RW as a theorem.  (That new axiom does 
hold for any height 2 prime in any Noetherian ring, and so holds in  
Q[X, Y].) 
 
 
 
THEOREM C:  Suppose Spec R satisfies poset axioms (1) through (4) 
from the list at the start of this paper, and also that every maximal ideal 
contains at least two height 1 primes.  Furthermore, suppose that 
Theorem B holds for R.  Then axiom RW holds. 
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Proof:  Let T be a finite set of maximal ideals, and let S be a finite set of 
height 1 primes.  To prove that axiom RW holds, it does no harm to add 
finitely many additional height 1 primes to S, and so (by our new axiom) 
we may assume that each maximal in T contains at least two primes in S. 
 Order the primes in S as p1, p2, .., pn.  Let H ∪ G be any partition 
of {1, 2, ..., n}.   Let 

! 

M (H* | G) = M(H | G) ∩ T.  Let 

! 

M (H | G*) be ∅ 
when |H| < 2, and be M(H | G) - 

! 

M (H* | G) when |H| ≥ 2.  Thus, we have 
defined 

! 

M (J | K) for each partition J ∪ K of {1, 2, .., n, n + 1}, and it is 
straightforward to verify that the three hypotheses of Theorem B hold. 
 By that theorem, there is a height 1 prime pn+1 such that given the 
sequence p1, p2, .., pn, pn+1, we have that 

! 

M (J | K) ⊆ M(J | K), and 
equality holds whenever |J| ≥ 2. 
 We claim that pn+1 satisfies axiom RW with respect to S and T.  
First, let q ∈ T.  (We must show pn+1 ⊂ q.)  We know that there is an 
integer 1 ≤ i ≤ n such that pi is contained in q.  Thus q is contained in 
some M(H | G) with H ∪ G a partition of {1, 2, …, n}, and with  
i ∈ H.  Thus q ∈ M(H | G) ∩ T = 

! 

M (H* | G) = M(H* | G), the second 
equality since |H*| ≥ 2.  As q is in that last set, we have pn+1 ⊂ q, as 
desired. 
 Now suppose that for some 1 ≤ i ≤ n, we have both pi and pn+1  
contained in the maximal ideal q.  (We must show q ∈ T.)   By our 
added assumption, we know that there is also a j ≠ i (1 ≤ j ≤ n) such that 
pj ⊂ q.  Thus q is contained in some M(H | G) with {i, j} ⊂ H, so that  
|H| ≥ 2.  Now M(H | G) is partitioned as 

! 

M (H* | G) ∪ 

! 

M (H | G*).  As   
pn+1 ⊂ q, and as 

! 

M (H | G*) ⊆ M(H | G*), we see that q ∉ 

! 

M (H | G*), and 
so we must have q ∈ 

! 

M (H* | G).  As that last set is a subset of T, we are 
done. 
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QUESTIONS:  Note that just because Theorem B fails to hold in  
Q[X, Y], it does not necessarily follow that Theorem A fails there.  
We do not know.  Nor do we know if Lemma 3 is also true or false in  
Q[X, Y].     

A weak corollary of Theorem A says that in Z[X], if for every 
partition J ∪ K of {1, 2, …., n} such that J contains at least 2 integers, 
there is a non-negative integer N(J | K), then there a sequence  
p1, p2, …, pn of height 1 primes such that for each such J ∪ K, we have 
|M(J | K)| = N(J | K).  Does that hold in Q[X, Y]? 
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