Level Annuities with Payments More Frequent than Each Interest Period

(1) Examples
(2) Annuity-immediate
(3) Annuity-due

Level Annuities with Payments More Frequent than Each Interest Period

(1) Examples
(2) Annuity-immediate
(3) Annuity-due

An Example

- At what annual effective rate of interest is the present value of a series of payments of $\$ 1$ every six months forever, with the first payment made immediately, equal to $\$ 10$?

An Example

- At what annual effective rate of interest is the present value of a series of payments of $\$ 1$ every six months forever, with the first payment made immediately, equal to $\$ 10$?
\Rightarrow The equation of value is

$$
10=\sum_{k=0}^{\infty} v^{k / 2}=\frac{1}{1-v^{1 / 2}}
$$

Thus, $i=0.9^{-2}-1=0.2346$

An Example

- At what annual effective rate of interest is the present value of a series of payments of $\$ 1$ every six months forever, with the first payment made immediately, equal to $\$ 10$?
\Rightarrow The equation of value is

$$
10=\sum_{k=0}^{\infty} v^{k / 2}=\frac{1}{1-v^{1 / 2}}
$$

So,

$$
\sqrt{v}=\sqrt{\frac{1}{1+i}}=0.9
$$

Thus, $i=0.9^{-2}-1=0.2346$

An Example

- At what annual effective rate of interest is the present value of a series of payments of $\$ 1$ every six months forever, with the first payment made immediately, equal to $\$ 10$?
\Rightarrow The equation of value is

$$
10=\sum_{k=0}^{\infty} v^{k / 2}=\frac{1}{1-v^{1 / 2}}
$$

So,

$$
\sqrt{v}=\sqrt{\frac{1}{1+i}}=0.9
$$

Thus, $i=0.9^{-2}-1=0.2346$

An Example

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment.
$0.10 / 2=0.05$.
Let j be the equivalent rate of interest per quarter, i.e., per payment
period. Then

An Example

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment.
\Rightarrow We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.

Let the quarterly payment be denoted by R. The equation of value then reads as

An Example

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment.
\Rightarrow We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
Let j be the equivalent rate of interest per quarter, i.e., per payment period. Then

$$
j=(1.05)^{1 / 2}-1=0.024695
$$

Let the quarterly payment be denoted by R. The equation of value

An Example

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment.
\Rightarrow We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
Let j be the equivalent rate of interest per quarter, i.e., per payment period. Then

$$
j=(1.05)^{1 / 2}-1=0.024695
$$

Let the quarterly payment be denoted by R. The equation of value then reads as

$$
R a_{\overline{201} j}=3000
$$

Thus,

$$
R=\frac{3000}{15.6342}=191.89
$$

Level Annuities with Payments More Frequent than Each Interest Period

(1) Examples
(2) Annuity-immediate
(3) Annuity-due

Set-up

- Consider a annuity-immediate that lasts for n interest periods, and has m payments during each of the interest periods with each payment being equal to $1 / m$ and taking place at the end of an $m^{t h}$ of the interest period
where i denotes the interest rate per interest period
In the context where the interest period is a year ; is the annual interest rate and $i(m)$ is the nominal interest rated convertible m times per year, we have that

Set-up

- Consider a annuity-immediate that lasts for n interest periods, and has m payments during each of the interest periods with each payment being equal to $1 / m$ and taking place at the end of an $m^{\text {th }}$ of the interest period
- J ... the effective interest rate per payment period, i.e.,

$$
J=(1+i)^{1 / m}-1
$$

where i denotes the interest rate per interest period interest rate and $i^{(m)}$ is the nominal interest rated convertible m times per year, we have that

Set-up

- Consider a annuity-immediate that lasts for n interest periods, and has m payments during each of the interest periods with each payment being equal to $1 / m$ and taking place at the end of an $m^{t h}$ of the interest period
- J ... the effective interest rate per payment period, i.e.,

$$
J=(1+i)^{1 / m}-1
$$

where i denotes the interest rate per interest period

- In the context where the interest period is a year, i is the annual interest rate and $i^{(m)}$ is the nominal interest rated convertible m times per year, we have that

$$
J=\frac{i^{(m)}}{m}
$$

-

Note that in the above set-up the sum of payments made during one
interest period is equal to 1

Set-up

- Consider a annuity-immediate that lasts for n interest periods, and has m payments during each of the interest periods with each payment being equal to $1 / m$ and taking place at the end of an $m^{t h}$ of the interest period
- J ... the effective interest rate per payment period, i.e.,

$$
J=(1+i)^{1 / m}-1
$$

where i denotes the interest rate per interest period

- In the context where the interest period is a year, i is the annual interest rate and $i^{(m)}$ is the nominal interest rated convertible m times per year, we have that

$$
J=\frac{i^{(m)}}{m}
$$

- Note that in the above set-up the sum of payments made during one interest period is equal to 1

Value at issuance and accumulated value

- The present value of the annuity-immediate described above is

$$
a_{n}^{(m)}{ }_{i}=\frac{1}{m} \cdot a_{n m J} J
$$

- The accumulated value of the annuity-immediate described above

Value at issuance and accumulated value

- The present value of the annuity-immediate described above is

$$
a_{n}^{(m)}{ }_{i}=\frac{1}{m} \cdot a_{n m} J
$$

- The accumulated value of the annuity-immediate described above is

$$
s_{n=}^{(m)}{ }_{i}=\frac{1}{m} \cdot s_{n m l} J
$$

Value at issuance and accumulated value:
 Formulae

$$
a_{\bar{n}}^{(m)}{ }_{i}=\frac{1-v^{n}}{i(m)}=a_{n i} \cdot \frac{i}{i(m)}
$$

Value at issuance and accumulated value:
 Formulae

$$
\begin{gathered}
a_{\bar{n}}^{(m)}{ }_{i}=\frac{1-v^{n}}{i^{(m)}}=a_{n} i \cdot \frac{i}{i^{(m)}} \\
s_{\bar{n}}^{(m)}{ }_{i}=\frac{(1+i)^{n}-1}{i^{(m)}}=s_{\bar{n} i} \cdot \frac{i}{i^{(m)}}
\end{gathered}
$$

An Example Revisited

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment. We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.

An Example Revisited

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment. We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
\Rightarrow Our basic time unit is a half-year.

An Example Revisited

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment. We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
\Rightarrow Our basic time unit is a half-year. Since each payment is equal to R, this means that the total amount paid during one interest period is $2 R$.

An Example Revisited

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment. We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
\Rightarrow Our basic time unit is a half-year. Since each payment is equal to R, this means that the total amount paid during one interest period is $2 R$.
Using the notation we just developed, we get the following equation of value:

$$
2 R a_{10}^{(2)} 0.05=3000
$$

An Example Revisited

- A loan of $\$ 3,000$ is to be repaid with quarterly installments at the end of each quarter for five years. If the rate of interest charged on the loan is 10% convertible semiannually, find the amount of each quarterly payment. We are given that the effective interest rate per half-year equals $0.10 / 2=0.05$.
\Rightarrow Our basic time unit is a half-year.
Since each payment is equal to R, this means that the total amount paid during one interest period is $2 R$.
Using the notation we just developed, we get the following equation of value:

$$
2 R a_{10}^{(2)} 0.05=3000
$$

So,

$$
R=\frac{1500}{a_{\frac{10}{10} 0.05}^{(2)}}=\frac{1500}{\frac{i}{i^{(2)}} a_{\overline{10} 0.05}}=\frac{1500}{1.012348 \cdot 7.7217}=191.89
$$

Level Annuities with Payments More Frequent than Each Interest Period

(1) Examples
(2) Annuity-immediate
(3) Annuity-due

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has $n m$ payments

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has $n m$ payments
- This annuity has a payment at the beginning of each $m^{t h}$ of the interest periods
- Similarly, we get that the accumulated value $\ddot{s}_{n}^{(m)}$ i is

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has $n m$ payments
- This annuity has a payment at the beginning of each $m^{t h}$ of the interest periods
- Then, the value at issuance of this annuity-due is $\dddot{a}_{n}^{(m)} ;$ and

$$
\ddot{a}_{n}^{(m)}{ }_{i}=\frac{1-v^{n}}{d^{(m)}}
$$

- Assignment: See Examples 4.3.8 and 4.3.13 for the calculator recipes

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has $n m$ payments
- This annuity has a payment at the beginning of each $m^{t h}$ of the interest periods
- Then, the value at issuance of this annuity-due is $\dddot{a}_{n}^{(m)} ;$ and

$$
\ddot{a}_{\bar{n}}^{(m)}{ }_{i}=\frac{1-v^{n}}{d^{(m)}}
$$

- Similarly, we get that the accumulated value $\ddot{s}_{n}^{(m)}{ }_{i}$ is

$$
\ddot{s}_{n}^{(m)}{ }_{i}=\frac{(1+i)^{n}-1}{d^{(m)}}
$$

- Assignment: See Examples 4.3.8 and 4.3.13 for the calculator

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has $n m$ payments
- This annuity has a payment at the beginning of each $m^{t h}$ of the interest periods
- Then, the value at issuance of this annuity-due is $\dddot{a}_{n}^{(m)} ;$ and

$$
\ddot{a}_{\bar{n}}^{(m)}{ }_{i}=\frac{1-v^{n}}{d^{(m)}}
$$

- Similarly, we get that the accumulated value $\ddot{s}_{n}^{(m)}{ }_{i}$ is

$$
\ddot{s}_{n}^{(m)}{ }_{i}=\frac{(1+i)^{n}-1}{d^{(m)}}
$$

- Assignment: See Examples 4.3.8 and 4.3.13 for the calculator recipes ...

An Example

- Assume compound interest. Payments of $\$ 400$ per month are made over a ten-year period.

An Example

- Assume compound interest. Payments of $\$ 400$ per month are made over a ten-year period.
I. Find an expression for the value of these payments two years prior to the first payment.

An Example

- Assume compound interest. Payments of $\$ 400$ per month are made over a ten-year period.
I. Find an expression for the value of these payments two years prior to the first payment.
\Rightarrow The $\$ 400$ monthly amounts translate into the $\$ 4800$ annual amounts. So, the symbolic representation is

$$
4800 \cdot v^{2} \cdot \ddot{a}_{10 \mid}^{(12)}=4800 \cdot\left(\ddot{a}_{12 \mid}^{(12)}-\ddot{a}_{2 \mid}^{(12)}\right)
$$

Find an expression for the accumulated value of these payments three years after the end of the annuity's term.

An Example

- Assume compound interest. Payments of $\$ 400$ per month are made over a ten-year period.
I. Find an expression for the value of these payments two years prior to the first payment.
\Rightarrow The $\$ 400$ monthly amounts translate into the $\$ 4800$ annual amounts. So, the symbolic representation is

$$
4800 \cdot v^{2} \cdot \ddot{a}_{10}^{(12)}=4800 \cdot\left(\ddot{a}_{121}^{(12)}-\ddot{a}_{21}^{(12)}\right)
$$

II. Find an expression for the accumulated value of these payments three years after the end of the annuity's term.

An Example

- Assume compound interest. Payments of $\$ 400$ per month are made over a ten-year period.
I. Find an expression for the value of these payments two years prior to the first payment.
\Rightarrow The $\$ 400$ monthly amounts translate into the $\$ 4800$ annual amounts. So, the symbolic representation is

$$
4800 \cdot v^{2} \cdot \ddot{a}_{10}^{(12)}=4800 \cdot\left(\ddot{a}_{121}^{(12)}-\ddot{a}_{21}^{(12)}\right)
$$

II. Find an expression for the accumulated value of these payments three years after the end of the annuity's term.
\Rightarrow

$$
4800 \cdot \ddot{s}_{10}^{(12)} \cdot(1+i)^{3}=4800 \cdot\left(\ddot{s}_{13}^{(12)}-\ddot{s}_{3}^{(12)}\right)
$$

Odds and Ends

- In general, we have that

$$
\ddot{a}_{n i}>\ddot{a}_{n}^{(m)} i>a_{n}^{(m)} i>a_{n i}
$$

- For perpetuities, we have

Odds and Ends

- In general, we have that

$$
\ddot{a}_{n i}>\ddot{a}_{n}^{(m)}{ }_{i}>a_{n}^{(m)}{ }_{i}>a_{m i}
$$

- For perpetuities, we have

$$
a_{\frac{(m)}{\infty}}{ }_{i}=\frac{1}{i(m)}
$$

Odds and Ends

- In general, we have that

$$
\ddot{a}_{n i}>\ddot{a}_{n}^{(m)}{ }_{i}>a_{n}^{(m)}{ }_{i}>a_{m i}
$$

- For perpetuities, we have

$$
a_{\frac{(m)}{\infty} i}=\frac{1}{i(m)}
$$

and

$$
\ddot{a}_{\infty}^{(m)} i=\frac{1}{d^{(m)}}
$$

