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University of Texas at Austin

Problem Set # 11

Difference in two proportions.

Problem 11.1. A simple random sample of 200 students is selected from a large university. In this sample,
there are 35 minority students. A simple random sample of 80 students is selected from the community
college in the same town. In this sample, there are 28 minority students. What is the standard error of the
difference in sample proportions of minority students?

Solution:
In our usual notation, we have

p̂1 =
35

200
= 0.175, p̂2 =

28

80
= 0.35.

So, the standard error is

SE(P̂1 − P̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
=

√
0.175× 0.825

200
+

0.35× 0.65

80
= 0.0597.

Problem 11.2. Suppose that, in our usual notation, p̂1 = 0.5, p̂2 = 0.2, n1 = 20 and n2 = 30. What is the
p−value for testing

H0 : p1 = p2 vs. Ha : p1 6= p2.

Solution: Under the null hypothesis, the two proportion parameters are equal. So, the estimate for the
proportion parameter of the entire population is

p̂ =
p̂1 × n1 + p̂2 × n2

n1 + n2
=

10 + 6

50
= 0.32.

Thus, the observed value of the z−statistic under the null hypothesis is

zobs =
0.5− 0.2√

0.32× 0.68×
(

1
20 + 1

30

) ≈ 2.23

The associated p−value is

2(1− Φ(2.23)) = 0.0258.

Problem 11.3. A simple random sample of 60 households in Whoville is taken. In the sample, there are
45 households that decorate their houses with lights for the holidays.

A simple random sample of 50 households is also taken from the neighboring Whoburgh. In the sample,
there are 40 households that decorate their houses.

(i) What is a 95% confidence interval for the difference in population proportions of households that
decorate their houses with lights for the holidays?
Solution:

The sample standard error is√
(45/60)(15/60)

60
+

(40/50)(10/50)

50
= 0.0795.

So, the required 95% confidence interval is

(0.75− 0.80)± 1.96× 0.0795 = −0.05± 0.1558.
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(ii) If you want to test the hypothesis whether one of the two cities has more festive inhabitants, i.e.,
whether one of the two cities has a higher proportion of decorated domiciles or not, what p−value
would you obtain?
Solution:

Let p1 be the population proportion of decorated houses in Whoville, and let p2 be the population
proportion of decorated houses in Whoburgh. The hypothesis test we want to conduct is

H0 : p1 = p2 vs. Ha : p1 6= p2.

Under the null hypothesis of proportion equality, the estimate of the proportion of decorated
houses is

p̂ =
45 + 40

60 + 50
= 0.77.

So, the standard error under the null hypothesis equals

SE0 =

√
0.77× 0.23×

(
1

60
+

1

50

)
= 0.0806.

The observed value of the z−score under the null is, hence,

0.75− 0.80

0.0806
= −0.62.

Finally, the p−value is

2(1− Φ(0.62)) = 0.5352.

Of course, one would fail to reject the null hypothesis for any sensible choice of a significance level.

Problem 11.4. Caveat tester.

It is estimated that 780,000 surgical site infections (SSIs) occur each year. SSIs are the second most
common type of healthcare-associated infections in U.S. hospitals and account for an extra $3.5 to $10
billion in healthcare costs per year. The national SSIs rate is 1.9%. A Georgetown medical office was
interested in determining if their SSI rate were smaller than the national average. Out of a sample of 277
patients in their study, only one infection occurred.

(i) (1 point) What is the sample size n in this study?
Solution: 277

(ii) (1 point) What is the count of SSIs in this study?
Solution: 1

(iii) (1 point) What is the observed sample proportion?
Solution: 1/277

(iv) (2 points) What is the name of the approximate distribution of the the sample proportion (according
to the CLT)?
Solution: Normal.

(v) (3 points) What is the standard error for P̂?
Solution: √

(1/277)(266/277)

277
= 0.0035.

(vi) (3 points) What is the 95% confidence interval for the population proportion parameter?
Solution:

This is not necessarily an admissible procedure since there was only one occurrence of the event
of interest in our sample. Formally, we have

1

277
± 1.96× 0.0035 = 0.0036± 0.0068

Since the proportion parameter needs to be non-negative, the confidence interval is really (0, 0.0104).
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(vii) (5 points) Test the hypothesis that the Georgetown medical office SSIs rate is less than the national
average SSIs rate at the significence level 0.01.
Solution: We are testing

H0 : p = 0.019 vs. Ha : p < 0.019.

Even though 0.019 × 277 > 5, it is still simpler and more accurate to use the binomial distribution
for the counts (and not the normal approximation). The probability of observing p̂ = 0.0036 or a
smaller proportion under the null hypothesis, i.e., the p−value of the above test, is approximately

(0.019)277 + 277(0.019)276(1− 0.019) ≈ 0.

What would our p−value be if we decided to use the normal approximation? The observed z−score
is, under the null hypothesis,

0.0036− 0.019√
0.019(1−0.019)

277

= −1.88.

Therefore, the p−value would be about 0.0301.
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