University of Texas at Austin

Problem Set \# 4

Bernoulli. Binomial.

Provide your complete solutions for the following problems.
Problem 4.1. Based on the traveling salesman's experience, he makes a same on any visit with probability of 15%. We assume that the individual customer's decisions are independent.

If he makes 10 visits in a certain day, what is the chance that he makes at least five sales?
Solution: Let Y denote the number of sales he makes. Then $Y \sim \operatorname{Binomial}(n=10, p=0.15)$.
Note

$$
\mathbb{P}[Y \geq 5]=1-\mathbb{P}[Y \leq 4]
$$

So,

$$
\begin{aligned}
\mathbb{P}[Y \leq 4] & =\mathbb{P}[Y=0]+\cdots+\mathbb{P}[Y=4] \\
& =\binom{10}{0}(0.15)^{0}(0.85)^{10}+\binom{10}{1}(0.15)^{1}(0.85)^{9}+\binom{10}{2}(0.15)^{2}(0.85)^{8}+\binom{10}{3}(0.15)^{3}(0.85)^{7}+\binom{10}{4}(0.15)^{4}(0.85)^{6} \\
& =\cdots=0.99012 .
\end{aligned}
$$

The answer is $\mathbb{P}[Y \geq 5]=0.0099$.

Problem 4.2. Expected frequency

Suppose you are going to roll a fair die 60 times and record the proportion of times that a 1 or a 2 is showing. The sampling distribution of the said proportion should be centered about which value?

Solution: $1 / 3$
We model every roll in the repeated n-tuple of trials as a single Bernoulli trial. So, in this particular problem, we have $X_{i}, i=1, \ldots, n$ to be independent, identically distributed with

$$
X_{i} \sim \operatorname{Bernoulli}(p=1 / 3)
$$

Note that $\mathbb{E}\left[X_{i}\right]=p=1 / 3$ for all i.
The statistics denoting the proportion of "successes" in the repeated trials is defined as

$$
\hat{p}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

The center of the sampling distribution of \hat{p} is exactly its expected value. So, in the present problem,

$$
\mathbb{E}[\hat{p}]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{n \mathbb{E}\left[X_{1}\right]}{n}=\mathbb{E}\left[X_{1}\right]=p=1 / 3
$$

