University of Texas at Austin
 Quiz \# 5

The binomial distribution.

Problem 5.1. (5 pts) Let X denote the number of $1^{\prime} s$ in 100 throws of a fair die. Find $\mathbb{E}\left[X^{2}\right]$.
(a) $125 / 9$
(b) $50 / 3$
(c) $875 / 3$
(d) $1585 / 9$
(e) None of the above

Solution: (c)
Evidently, $X \sim b(100,1 / 2)$. So,

$$
\mathbb{E}\left[X^{2}\right]=\operatorname{Var}[X]+(\mathbb{E}[X])^{2}=100 \cdot \frac{1}{6} \cdot \frac{5}{6}+\left(100 \cdot \frac{1}{6}\right)^{2}=\frac{500+10000}{36}=\frac{875}{3}
$$

Problem 5.2. (10 points) Source: Problem 2.1.5. from Pitman.
Given that there are 12 heads in 20 independent tosses, find the probability that at least two of the first five tosses landed heads.
Note: It is OK to leave binomial coefficients in your answer; simplify the remainder of your expression as much as you can.

Solution: The number of heads in 20 has the binomial distribution $b(20,1 / 2)$. Let
$E=\{$ there are 12 heads $\}, \quad F=\{$ at least two of the first five tosses landed heads $\}$.
Immediately $\mathbb{P}[E]=\binom{20}{12} \cdot \frac{1}{2^{20}}$. We need to find

$$
\mathbb{P}[F \mid E]=\frac{\mathbb{P}[E \cap F]}{\mathbb{P}[E]}=\frac{\mathbb{P}[E]-\mathbb{P}\left[E \cap F^{c}\right]}{\mathbb{P}[E]}=1-\frac{\mathbb{P}\left[E \cap F^{c}\right]}{\mathbb{P}[E]}
$$

Let

$$
\begin{aligned}
& H_{0}=\{\text { there are no heads in the first five tosses }\} \\
& H_{1}=\{\text { there is exactly one head in the first five tosses }\}
\end{aligned}
$$

Then, $F^{c}=H_{0} \cup H_{1}$, and H_{0} and H_{1} are mutually exclusive. Also, with

$$
\begin{aligned}
& G_{0}=\{\text { there are exactly } 12 \text { heads in last } 15 \text { tosses }\} \\
& G_{1}=\{\text { there are exactly } 11 \text { heads in last } 15 \text { tosses }\}
\end{aligned}
$$

we have, due to independence of trials,

$$
\begin{aligned}
& \mathbb{P}\left[E \cap H_{0}\right]=\mathbb{P}\left[H_{0} \cap G_{0}\right]=\mathbb{P}\left[H_{0}\right] \mathbb{P}\left[G_{0}\right] \\
& \mathbb{P}\left[E \cap H_{1}\right]=\mathbb{P}\left[H_{1} \cap G_{1}\right]=\mathbb{P}\left[H_{1}\right] \mathbb{P}\left[G_{1}\right]
\end{aligned}
$$

Moreover, the number of heads in the first five trials is $b(5,1 / 2)$, and the number of heads in the remaining 15 trials is $b(15,1 / 2)$. So,

$$
\begin{aligned}
& \mathbb{P}\left[E \cap H_{0}\right]=\binom{5}{0}\binom{15}{12} \cdot \frac{1}{2^{20}}, \\
& \mathbb{P}\left[E \cap H_{1}\right]=\binom{5}{1}\binom{15}{11} \cdot \frac{1}{2^{20}} .
\end{aligned}
$$

and

$$
\mathbb{P}[F \mid E]=1-\frac{\binom{15}{12}}{\binom{20}{12}}-5 \cdot \frac{\binom{15}{11}}{\binom{20}{12}}
$$

Note that the fact that the coin is (by default) fair is completely irrelevant in the above calculation.

