$$
\begin{aligned}
& \text { University of Texas at Austin } \\
& \text { Quiz \#6 } \\
& \text { Binomial distribution. The Central Limit Theorem. }
\end{aligned}
$$

Provide your complete solution for the following problems.
Problem 6.1. (9 points) Source: "Probability" by Jim Pitman.
Let a and b be constants such that $a<b$. A random variable is said to be uniformly distributed over the interval $[a, b]$ if its probability density function is given by

$$
f(x)=\frac{1}{b-a} \quad \text { for } x \in[a, b]
$$

Consider the sample average \bar{X}_{n} of n independent random variables, each of them uniformly distributed on $[0,1]$. Find the smallest sample size n such that $\mathbb{P}\left[\bar{X}_{n}<0.51\right]$ is at least 90%. Use the Central Limit Theorem.

Solution: From the CLT we know that approximately

$$
\bar{X}_{n} \sim N(\text { mean }=1 / 2, \text { var }=1 /(12 n)), \quad \text { i.e., } \quad \frac{\bar{X}_{n}-0.5}{\frac{1}{\sqrt{12 n}}} \sim N(\text { mean }=0, \text { var }=1)
$$

So, with $Z \sim N(0,1)$, the probability we are looking for is

$$
\mathbb{P}\left[\bar{X}_{n}<0.51\right] \approx \mathbb{P}\left[Z<\frac{0.51-0.5}{\frac{1}{2 \sqrt{3 n}}}\right]=\Phi(0.02 \sqrt{3 n})
$$

Consulting the standard normal tables, we get that the sufficient condition for the above probability to be at least 0.90 is

$$
0.02 \sqrt{3 n} \geq 1.29 \quad \Rightarrow \quad 3 n \geq 4160.25
$$

Our final answer is $n \geq 1387$.

Problem 6.2. Source: "Probability" by Pitman.
Suppose that on average 1 in 100 people gave a certain genetic marker.
(i) (3 points) Suppose a simple random sample of 50 is selected and tested. What is the probability that at least one of them will have the genetic marker?
Solution: The number of people in the random sample who have the genetic marker Y has the binomial distribution with the number of trials equal to 50 and with probability of success in every trial equal to $1 / 100$.

$$
\mathbb{P}[Y \geq 1]=1-\mathbb{P}[Y=0]=1-(99 / 100)^{50}=0.395
$$

(ii) (3 points) About how many people would have to be tested so that the probability of having at least one positive result would be at least 99% ? If this number of people were tested, what is the expected number of positives?

Solution:

$$
0.99 \geq 1-0.99^{n} \quad \Leftrightarrow \quad 0.99^{n} \geq 0.01 \quad \Leftrightarrow \quad n \geq \frac{\ln (0.01)}{\ln (0.99)}=458.11
$$

Hence, $n \geq 459$. The expected number of positive results is $459 \times 0.01=4.59$.

