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COMMON MISTAKES IN REGRESSION

RELATED TO MODEL ASSUMPTIONS

A. Over-fitting

B. Using Confidence Intervals when Prediction Intervals Are Needed

C. Over-interpreting High R2
D. Mistakes in Interpretation of Coefficients

E. Mistakes in Selecting Terms
 


A. OVER-FITTING

With four parameters I can fit an elephant and with five I can make him wiggle his trunk.

John von Neumann

If we have n distinct x values and corresponding y values for each, it is possible to find a curve going exactly through all n resulting points (x, y); this can be done by setting up a system of equations and solving simultaneously. 

· But this is not what regression methods typically are designed to do. 

· Most regression methods (e.g., least squares) estimate conditional means of the response variable given the explanatory variables.  

· They are not expected to go through all the data points.



For example, with one explanatory variable X (e.g., height) and response variable Y (e.g., weight), if we fix a value x of X, we have a conditional distribution of Y given X = x (e.g., the conditional distribution of weight for people with height x). 

· This conditional distribution has an expected value (population mean), which we will denote E(Y|X = x) (e.g., the mean weight of people with height x). 

· This is the conditional mean of Y given X = x. It depends on x -- in other words, E(Y|X = x) is a mathematical function of x. 

In least squares regression (and most other kinds of regression), one of the model assumptions is that the conditional mean function has a specified form. 
· Then we use the data to find a function of x that approximates the function E(Y|X = x). 

· This is different from, and subtler (and harder) than, finding a curve that goes through all the data points.


Example: To illustrate, I have used simulated data: 

· Five points were sampled from a joint distribution where the conditional mean E(Y|X = x) is known to be x2, and where each conditional distribution Y|(X = x) is normal with standard deviation 1. 

· I used least squares regression to estimate the conditional means by a quadratic curve y = a +bx + cx2. That is, I used least squares regression, with 
    E(Y|X=x) = α +βx + γx2
as one of the model assumptions, to obtain estimates a, b, and c of α, β, and γ (respectively), based on the data.

· There are other ways of expressing this model assumption, for example, 



y = α +βx + γx2 + ε,


or



yi = α +βxi + γxi2 + εi

The graph below shows:

· The five data points in red (one at the left is mostly hidden by the green curve)

· The curve y = x2 of conditional means (black)

· The graph of the calculated regression equation (in green). 
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Note that:

· The points sampled from the distribution do not lie on the curve of means (black). 

· The green curve is not exactly the same as the black curve, but is close. 

· In this example, the sampled points were mostly below the curve of means. 

· Since the regression curve (green) was calculated using just the five sampled points (red), the red points are more evenly distributed above and below it (green curve) than they are in relation to the real curve of means (black). 

Note: In a real world example, we would not know the conditional mean function (black curve) -- and in most problems, would not even know in advance whether it is linear, quadratic, or something else. 

· Thus, part of the problem of finding an appropriate regression curve is figuring out what kind of function it should be.

Continuing with this example, if we (naively) try to get a "good fit" by trying a quartic (fourth degree) regression curve -- that is, using a model assumption of the form 


E(Y|X=x) = α +β1x + β2x2 +  β3x3 +  β4x4, 

we get the following picture:
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You can barely see any of the red points in this picture. 

· That’s because they’re all on the calculated regression curve (green). 

· We have found a regression curve that fits all the data! 

· But it is not a good regression curve -- because what we are really trying to estimate by regression is the black curve (curve of conditional means). 

· We have done a rotten job of that; we have made the mistake of over-fitting. We have fit an elephant, so to speak.



If we had instead tried to fit a cubic (third degree) regression curve -- that is, using a model assumption of the form 


E(Y|X=x) = α +β1x + β2x2 +  β3x3, 

we would get something more wiggly than the quadratic fit and less wiggly than the quartic fit. 

· However, it would still be over-fitting, since (by construction) the correct model assumption for these data would be a quadratic mean function. 

How can over-fitting be avoided?

As with most things in statistics, there are no hard and fast rules that guarantee success. 

· However, here some guidelines. 

· They apply to many other types of statistical models (e.g., multilinear, mixed models, general linear models, hierarchical models) as well as least squares regression.

1. Validate your model (for the mean function, or whatever else you are modeling) if at all possible. Good and Hardin (2006, p. 188) list three general types of validation methods:

i. Independent validation (e.g., wait till the future and see if predictions are accurate)

· This of course is not always possible.

ii. Split the sample. 

· Use one part for model building, the other for validation.

· See item II(c) of Data Snooping for more discussion.)


iii. Resampling methods.


· See Chapter 13 of Good and Hardin (2006), and the further references provided there, for more information.

2. Gather plenty of (ideally, well-sampled) data. 

· If you are gathering data (especially through an experiment), be sure to consult the literature on optimal design to plan the data collection to get the tightest possible estimates from the least amount of data.

· For regression, the values of the explanatory variable (x values, in the above example) do not usually need to be randomly sampled; choosing them carefully can minimize variances and thus give tighter estimates. 

· Unfortunately, there is not much known about sample sizes needed for good modeling. 

· Ryan (2009, p. 20) quotes Draper and Smith (1998) as suggesting that the number of observations should be at least ten times the number of terms. 

· Good and Hardin (2006, p. 183) offer the following conjecturally:

"If m points are required to determine a univariate regression line with sufficient precision, then it will take at least mn observations and perhaps n!mn observations to appropriately characterize and evaluate a regression model with n variables."


3. Pay particular attention to transparency and avoiding over-interpretation in reporting your results. 

· For example, be sure to state carefully what assumptions you made, what decisions you made, your basis for making these decisions, and what validation procedures you used. 

· Provide (in supplementary online material if necessary) enough detail so that another researcher could replicate your methods.

B. USING CONFIDENCE INTERVALS WHEN PREDICTION INTERVALS ARE NEEDED

Recall from the discussion of over-fitting:

· The model assumptions for least squares regression assume that the conditional mean function E(Y|X = x) has a certain form. 
· The regression estimation procedure then produces a function of the specified form that estimates the true conditional mean function. 
For example, if the model assumption is that 


    E(Y|X=x) = α +βx, 


then least squares regression will produce an equation of the form


    y = a +bx,


where a is an estimate of the true value α and b is an estimate of the true value β. Thus for a particular value of x,

ŷ = a +bx 

is the estimate of E(Y|X = x).



But now suppose we want to estimate an actual value of Y when X = x, rather than just the conditional mean E(Y|X = x).  

· The only estimate available for an actual value of Y is ŷ = a +bx, the same thing we used to estimate E(Y|X = x). 

· But since Y is a random variable (whereas E(Y|X = x) is a single number, not a random variable), we cannot expect to estimate Y as precisely as we can estimate the conditional mean E(Y|X=x).

· i.e., even if ŷ is a good estimate of the conditional mean E(Y|X = x), it might be a very a crude estimate of an actual value of Y. 


The graph below illustrates this. 

· The blue line is the actual line of conditional means.

· The yellow line is the calculated regression line.

· The brown x's show some values of Y when x = 3.

· The black square shows the value of the conditional mean of Y when x = 3.
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In this example, the estimate ŷ for x = 3 is virtually indistinguishable from the conditional mean when x = 3, so ŷ is a very good estimate of the conditional mean. 

· But if we are trying to estimate Y when x = 3, our estimate ŷ (black square) might be way off -- for example, the value of Y might turn out to be at the highest brown x or at the lowest.

· This illustrates how the uncertainty of ŷ as an estimate of Y is much greater than the uncertainty of ŷ as an estimate of the conditional mean of Y.  

To estimate the uncertainty in our estimate of the conditional mean E(Y|X = x), we can construct a confidence interval for the conditional mean. 

· But, as we’ve just seen, the uncertainty in our estimate of Y when X = x is greater than our uncertainty of E(Y|X = x).

· Thus, the confidence interval for the conditional mean underestimates the uncertainty in our use of ŷ as an estimate of a value of Y|(X = x). 

· Instead, we need what is called a prediction interval, which takes into account the variability in the conditional distribution Y|(X = x) as well as the uncertainty in our estimate of the conditional mean E(Y|(X = x).

Example: With the data used to create the above plot: 

· The 95% confidence interval for the conditional mean when x = 3 is (6.634, 7.568) (giving a margin of error of about 0.5). 

· But the 95% prediction interval for Y when x = 3 is (5.139, 9.062) (giving a margin of error of about 2). 

· Note that the prediction interval includes all of the y-values associated with x = 3 in the data used, except for the highest one, which it misses by a hair.

Comments: 


1. For large enough sample size, the least squares estimate of the conditional mean is fairly robust to departures from the model assumption of normality of errors. 

· This depends on the Central Limit theorem and the fact that the formula for ŷ can be expressed as a linear combination of the y-values for the data. 

· However, since the t-statistic used in calculating the prediction interval also involves the conditional distribution directly, prediction is less robust to departures from normality.

2. The distinction between variability and uncertainty is useful in understanding the distinction between confidence intervals for the conditional mean and prediction intervals: 

· The confidence interval for the conditional mean measures our degree of uncertainty in our estimate of the conditional mean. 

· But the prediction interval must also take into account the variability in the conditional distribution.

· In fact, for least squares simple linear regression, 
· The width of the confidence interval depends on the variance of ŷ = ax + b as an estimator of E(Y|X = x).
· But the width of the prediction interval depends on the variance of ŷ as an estimator of Y|(X = x). 
· The variance of ŷ as an estimator of Y|(X = x) is the sum of the conditional variance of Y (usually denoted σ2) and the variance of ŷ as an estimator of E(Y|X = x).
· The first term (σ2) is a measure of the variability in the conditional distribution.
· The second term (the variance of ŷ as an estimator of E(Y|X = x)) is a measure of the uncertainty in the estimate of the conditional mean. 
· The conditional variance σ2 typically is the larger of these two terms. 
   
C. Over-interpreting High R2

1. Just what is considered high R2 varies from field to field. 

· In many areas of the social and biological sciences, an R2 of 0.50 or 0.60 is considered high. 

· However, Cook and Weisberg (1999) give an example of a simulated data set with 50 predictors and 100 observations, where R2 = 0.59, even though the response is independent of all the predictors (so all regressors have coefficient zero in the true mean function). 

· However, the p-value of the F-statistic for significance of the overall regression was 0.13. 

· Nonetheless, six of the terms were individually significant at the .05 level, providing an example of why adjusting for multiple inferences is important.

2. High R2 can also occur as a result over-fitting. 

· The R2 for the example of over-fitting by a quartic curve was 1.00, since the curve went through all the points.

3. A regression model giving apparently high R2 may not be as good a fit as might be obtained by a transformation. 

· For example, for the data pictured below, fitting a linear regression (red line) to the data (blue -- DC output of a windmill vs. wind speed) will give R2 = 0.87. 
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· For some purposes this might be a good enough fit. 

· However, since the data indicate a clear curved trend, it is likely that a better fit can be found by a suitable transformation.  

· Since the predictor wind speed is a rate (miles per hour), one possibility is that the reciprocal (hours per mile) might be a natural choice of transformation. 

· Trying this gives R2  = 0.98, and the plot below shows that indeed a linear fit for the transformed data makes more sense than for the untransformed data. 
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D. Mistakes in Interpretation of Coefficients

1. Interpreting a coefficient as a rate of change in Y instead of as a rate of change in the conditional mean of Y.

As pointed out in the discussion of over-fitting, the computed regression equation estimates the true conditional mean function.

· How well it estimates the behavior of actual values of the random variable depends on the variability of the response variable Y. 

· Thus, interpreting the computed coefficients in terms of the response variable is often misleading.
Illustration: In the graph shown below: 

· The data are marked as green x’s, 

· The true line of conditional means, E(Y|X = x) = 1 + 2x, is in violet, and

· The fitted (computed) regression line is in blue. 
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· Note that the fitted regression line is close to the true line of conditional means. 

· The equation of the fitted regression line is (with coefficients rounded to a reasonable degree) ŷ = 0.56 + 2.18x. 

· Thus it is accurate to say, "For each change of one unit in x, the average change in the mean of Y is about 2.18 units." 

· It is not accurate to say, "For each change of one unit in x, Y changes about 2.18 units." 

· For example, we can see from the graph that when x is 2, Y might be anywhere between a little below 4 to a little above 5.5; when x is 3, Y might be anywhere from a little more than 5.5 to a little more than 9. 

· So when going from x = 2 to x = 3, the change in Y might be almost zero, or it might be as large as 5.5 units. 

2. Not taking confidence intervals for coefficients into account. 

Even when a regression coefficient is (correctly) interpreted as a rate of change of a conditional mean (rather than a rate of change of the response variable), it is important to take into account the uncertainty in the estimation of the regression coefficient. 

· To illustrate, in the example used in item 1 above, the computed regression line has equation ŷ = 0.56 + 2.18x. 

· However, a 95% confidence interval for the slope is (1.80, 2.56). 

· So saying, "The rate of change of the conditional mean of Y with respect to x is estimated to be between 1.80 and 2.56" is usually preferable to saying, "The rate of change of the conditional mean Y with respect to x is about 2.18."

· However, the decision needs to be made on the basis of what difference is practically important. 

· For example, if the width of the confidence interval is less than the precision of measurement, there is no harm in neglecting the range. 

· Another factor that is also important in deciding what level of accuracy to use is what level of accuracy your audience can handle; this, however, needs to be balanced with the possible consequences of not communicating the uncertainty in the results of the analysis.



  
3. Interpreting a coefficient that is not statistically significant.

Interpretations of results that are not statistically significant are made surprisingly often. 

· If the t-test for a regression coefficient is not statistically significant, it is not appropriate to interpret the coefficient. 

· A better alternative might be to say, "No statistically significant linear dependence of the mean of Y on x was detected”.

(This is really just a special case of the mistake in item 2. However, it is frequent enough to deserve explicit mention.)

4. Interpreting coefficients in multiple regression with the same language used for a slope in simple linear regression.

Even when there is an exact linear dependence of one variable on two others, the interpretation of coefficients is not as simple as for a slope with one dependent variable.

Example: If y = 1 + 2x​1 + 3x2, it is not accurate to say, "For each change of 1 unit in x1, y changes 2 units". 

· What is correct is to say, "If x2 is fixed, then for each change of 1 unit in x1, y changes 2 units."

Similarly, if the computed regression line is ŷ = 1 + 2x1 + 3x2, with confidence interval (1.5, 2.5), then a correct interpretation would be, "The estimated rate of change of the conditional mean of Y with respect to x1, when x2 is fixed, is between 1.5 and 2.5 units."


For more on interpreting coefficients in multiple regression, see Section 4.3 (pp 161-175) of Ryan (2009).

5. Multiple inference on coefficients.


· When interpreting more than one coefficient in a regression equation, it is important to use appropriate methods for multiple inference, rather than using just the individual confidence intervals that are automatically given by most software. 
· One technique for multiple inference in regression is using confidence regions. See, for example, Weisberg (2005, Section 5.5, pp. 108 - 110) or Cook and Weisberg (1999, Section 10.8, pp. 250 - 255).
E. Mistakes in Selecting Terms

When trying to form a regression model, it is usually desirable to include as few terms as possible while still giving a good model. 

· Various procedures have been developed to help try to decide which explanatory variables can be dropped without important loss of information. 

· However, these procedures are often used inappropriately. 

Here are some common mistakes that may occur in variable selection.


1. Assuming linearity is preserved when variables are dropped

One common mistake in using "variable selection" methods is to assume that if one or more variables are dropped, then the appropriate model using the remaining variables can be obtained simply by deleting the dropped variables from the "full model" (i.e., the model with all the explanatory variables).  This assumption is in general false.

Example:  If the true model is E(Y|X1, X2) = 1 + 2X1 +3X2 , then a linear model fits when Y is regressed on both X1and X2. 

· But if in addition, E(X2| X1) = log(X1), then it can be calculated that E(Y|X1) = 1 +2X1 + 3log(X1), which shows that a linear model does not fit when Y is regressed on X1 alone (and, in particular, that the model E(Y|X1) = 1 +2X1 is incorrect.)

One method that sometimes works to get around this problem is to transform the variables to have a multivariate normal distribution, and then work with the transformed variables. 

· This will ensure that the conditional means are a linear function of the transformed explanatory variables, no matter which subset of explanatory variables is chosen. 

· Such a transformation is sometimes possible with some variant of a Box-Cox transformation procedure. 

· See, e.g., Cook and Weisberg (1999, pp. 236 and 324 – 329) for more details. 

2. Problems with Stepwise Model Selection Procedures

"... perhaps the most serious source of error lies in letting statistical procedures make decisions for you."

"Don't be too quick to turn on the computer. Bypassing the brain to compute by reflex is a sure recipe for disaster."

Good and Hardin (2006, p. 3, p. 152)


Various computer algorithms have been developed for aiding in model selection. 

· Many of them are "automatic", in the sense that they have a "stopping rule" (which it might be possible for the researcher to set or change from a default value) based on criteria such as the value of a t-statistic or an F-statistic. 

· Others might be better termed "semi-automatic," in the sense that they automatically list various options and values of measures that might be used to help evaluate them. 

Caution: Different regression software may use the same name to designate different algorithms. 

· “Forward Selection" and "Backward Elimination" are two examples

· Be sure to read the documentation to know find out just what the algorithm does in the software you are using -- in particular, whether it has a stopping rule or is of the "semi-automatic" variety.

Cook and Weisberg (1999, p. 280) comment, 

"We do not recommend such stopping rules for routine use since they can reject perfectly reasonable submodels from further consideration. Stepwise procedures are easy to explain, inexpensive to compute, and widely used. The comparative simplicity of the results from stepwise regression with model selection rules appeals to many analysts. But, such algorithmic model selection methods must be used with caution." 

They give an example (2006, pp. 280 - 281) illustrating how stepwise regression algorithms will generally result in models suggesting that the remaining terms are more important than they really are, and that the R2 values of the submodels obtained may be misleadingly large. 

Ryan (2009, pp.269- 273 and 284 - 286) elaborates on these points.

One underlying problem with methods based on t or F statistics is that they ignore problems of multiple inference. 

Alternatives to Stepwise Selection Methods

There are various criteria that may be considered in evaluating models. 

· One that has intuitive appeal is Mallow's C-statistic. 

· It is an estimate of Mean Square Error, and can also be regarded as a measure that accounts for both bias and variance.3 

· See, e.g., Cook and Weisberg (1999, pp. 272 - 280), Ryan (2009, pp. 273 - 277 and 279 - 283), R. Berk (2004, pp. 130 - 135), Smith (2008) 

· Other aids include Akaike's Information Criterion (and variations) and Added Variable Plots. 

· And, of course, context can be important to consider in deciding on a model. 

· For example, the questions of interest can dictate that certain variables need to remain in the model; or quality of data can help decide which of two variables to retain. Several considerations may come into play in deciding on a model. 

· Also, other regression methods (e.g., Ridge Regression) may be useful instead of Least Squares Regression.

· For more discussion of model selection methods, see Cook and Weisberg (1999, Chapters 10, 11 and 17 - 20); Ryan (2009, Chapters 7, 11, 12 and references therein); Berk (2004, pp. 126 - 135); Good and Hardin (2006, Chapters 10, 11, Appendix A); and Harrell (2001)

DIVIDING A CONTINUOUS VARIABLE

INTO CATEGORIES

This is not really a matter of ignoring model assumptions, but of using a method that 

· at best can be expected to give less information than a more appropriate method, 

· and at worst can give misleading results. 

It is also known by other names such as 

· "discretizing," "chopping data," or "binning". 

· Specific methods sometimes used include "median split" or "extreme third tails". 


Whatever you call it, it’s usually a bad idea. Exceptions:

· Comparing new data with existing data where only the categories are known, not the values of the continuous variable. 

· Here, it’s a necessarily evil; see item 3 below.

· Explaining an idea to an audience that lacks the sophistication for the full analysis. 

· However, this should only be done when the full analysis has been done and justifies the result that is illustrated by the simpler technique using categorizing. 

· See Gelman and Park (2008) for an example.

· See also item 5 below. 

Instead of chopping the data, use a technique (such as regression) that can work with the continuous variable. 

· The basic reason is intuitive: If you chop the data, you are tossing away information. 

· The loss of information can occur in various ways with various consequences. Here are some:

1. When doing hypothesis tests, the loss of information when dividing continuous variables into categories typically translates into losing power. 

· See Van Belle (2008, pp. 139 - 140 for more discussion and references.

· See McLelland (2002) for an online computer demonstration.

2. The loss of information involved in choosing bins to make a histogram can result in a misleading histogram.

· Example: The following three graphs are all histograms of the same data (the times between successive eruptions of the Old Faithful geyser in Yellowstone National Park). 

· The first has five bins, the second seven bins, and the third 14 bins.
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· Note that that histogram with only five bins does not pick up the bimodality of the data; the histogram with seven bins hints at it; and the histogram with 14 bins shows it more clearly.

· The problem with bins in a histogram is the reason why histograms are not good for checking models assumptions such as normality. 

· Some software has a "kernel density" feature that can give a “smoothed” visual estimate of the distribution of data. This is usually better than a histogram for getting a sense of the distribution. 

· Here’s an example for the data above: the histogram on the left has five bins, the histogram on the right 14; note that the smoothed estimate of the distribution is the same in both cases.
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· Although using such a smoother is better than a histogram for giving the shape of the data, the result is only as good at the data; a small data set may give a misleading idea of the underlying distribution.


3. Collecting continuous data by categories can also cause headaches later on. Good and Hardin (2006, pp. 28 – 29) give an example of a long-term study involving incomes. 

· The data were collected in categories of ten thousand dollars.

·  Because of inflation, purchasing power decreased noticeably from the beginning to the end of the study. 

· The categorization of income made it virtually impossible to correct for inflation. 

4. Wainer, Gessaroli, and Verdi (2006 pp. 49 -52; or Wainer, 2009 Chapter 14) argue that if a large enough sample is drawn from two uncorrelated variables, it is possible to group the variables one way so that the binned means show an increasing trend, and another way so that they show a decreasing trend. 

· They conclude that if the original data are available, one should look at the scatterplot rather than at binned data.

· Moral: If there is a good justification for binning data in an analysis, it should be "before the fact" -- you could otherwise be accused of manipulating the data to get the results you want!

5. There are times when continuous data must be dichotomized, for example in deciding a cut-off for diagnostic criteria. 

· When this is the case, it’s important to choose the cut-off carefully, and to consider the sensitivity, specificity, and positive predictive value.

· For definitions and further references, see http://www.ma.utexas.edu/users/mks/statmistakes/misundcond.html and references therein.

· For an example of how iffy making such cut-offs can be, see Ott,  (2008).  
SUGGESTIONS

Suggestions for Researchers

The most common error in statistics is to assume that statistical procedures can take the pace of sustained effort.
Good and Hardin (2006, p. 186)


Throughout: Look for, take into account, and report sources of uncertainty. 

Specific suggestions for planning research:

· Decide what questions you will be studying. 

· Trying to study too many things at once is likely to create problems with multiple testing, so it may be wise to limit your study.

· If you will be gathering data, think about how you will gather and analyze it before you start to gather the data.

· Read reports on related research, focusing on problems that were encountered and how you might get around them and/or how you might plan your research to fill in gaps in current knowledge in the area.

· If you are planning an experiment, look for all possible sources of variability and design your experiment to take these into account as much as possible. 

· The design will depend on the particular situation.

· The literature on design of experiments is extensive; consult it. 

· Remember that the design affects what method of analysis is appropriate. 

· If you are gathering observational data, think about possible confounding factors and plan your data gathering to reduce confounding. 

· Be sure to record any time and spatial variables, or any other variables that might influence outcome, whether or not you initially plan to use them in your analysis.

· Also think about any factors that might make the sample biased. 

· You may need to limit your study to a smaller population than originally intended.

· Think carefully about what measures you will use. 

· If your data gathering involves asking questions, put careful thought into choosing and phrasing them. Then check them out with a test-run and revise as needed. 

· Think carefully about how you will randomize (for an experiment) or sample (for an observational study).

· Think carefully about whether or not the model assumptions of your intended method of analysis are likely to be reasonable. 

· If not, revise either your plan for data gathering or your plan for analysis, or both.

· Conduct a pilot study to trouble shoot and obtain variance estimates for a power analysis.

· Revise plans as needed.

· Do a power analysis to estimate what sample size you need to detect meaningful differences. 

· Revise plans as needed.

· Plan how to deal with multiple inferences, including “data snooping” questions that might arise later.

· If you plan to use existing data, modify the suggestions above, as in the suggestions under Data Snooping (Part III)

· For additional suggestions, see van Belle (2008, Chapter 8).

Specific suggestions for analyzing data:

· Before doing any formal analysis, ask whether or not the model assumptions of the procedure are plausible in the context of the data.

· Plot the data (or residuals, as appropriate) as possible to get additional checks on whether or not model assumptions hold. 

· If model assumptions appear to be violated, consider transformations of the data or using alternate methods of analysis as appropriate.

· If more than one statistical inference is used, be sure to take that into account by using appropriate methodology for multiple inference.

· If you use hypothesis tests, be sure to calculate confidence intervals as well. 

· But be aware that there might also be other sources of uncertainty not captured by confidence intervals.

Specific suggestions for writing up research:

Critics may complain that we advocate interpreting reports not merely with a grain of salt but with an entire shaker; so be it. ... Neither society nor we can afford to be led down false pathways.

Good and Hardin (2006, p. 119)

Until a happier future arrives, imperfections in models require further thought, and routine disclosure of imperfections would be helpful.

David Freedman (2008, p. 61)
· Aim for transparency. 

· Include enough detail so the reader can critique both the data gathering and the analysis.

· Look for and report possible sources of bias or other sources of additional uncertainty in results.

· For more detailed suggestions on recognizing and reporting bias, see Chapter 1 and pp. 113 - 115 of Good and Hardin (2006). All of Chapter 7 of that book is a good supplement to the suggestions here. 

· Consider including a "limitations" section, but be sure to reiterate or summarize the limitations in stating conclusions -- including in the abstract.

· Include enough detail so that another researcher could replicate both the data gathering and the analysis.

· For example, "SAS Proc Mixed was used" is not adequate detail. You also need to explain which factors were fixed, which random, which nested, etc. 

· If space limitations do not permit all the detail needed to be included in the actual paper, provide them in a website to accompany the article. 

· Some journals now include websites for supplementary information; publish in these them when possible.

· When citing sources, give explicit page numbers, especially for books. 

· Include discussion of why the analyses used are appropriate

· i.e., why model assumptions are well enough satisfied for the robustness criteria for the specific technique, or whether they are iffy. 

· This might go in a supplementary information website.

· If you do hypothesis testing, be sure to report p-values (rather than just phrases such as "significant at the .05 level") and also give confidence intervals.
· In some situations, other measures such as "number to treat" would be appropriate. See pp. 151 - 153 of van Belle (2008) for more discussion.

· Be careful to use language (both in the abstract and in the body of the article) that expresses any uncertainty and limitations.

· If you have built a model, be sure to explain the decisions that went into the selection of that model

· See Good and Hardin (2006, pp. 181 – 182) for more suggestions 

· For more suggestions and details, see 

· Chapters 8 and 9 of van Belle (2008) 

· Chapters 7 and 9 of Good and Hardin (2006)

· Harris et al (2009)

· Miller (2004)

· Robbins (2004)

· Strasak et al (2007)

Suggestions for Reading Research Involving Statistics

"Some experts think peer review validates published research. For those of us who have been editors, associate editors, reviewers, or the targets of peer review, this argument may ring hollow. Even for careful readers of journal articles, the argument may seem a little farfetched.”
David Freedman, Chance 2008, v. 21 No 1, p. 61

Overarching Guideline: Look for sources of uncertainty.


Specific suggestions:

· Do not just read the abstract. 

· Abstracts sometimes focus on conclusions that are more speculative than the data warrant.

· Identify the exact research question(s) the researchers are asking. 

· Decide if this is a question that you are interested in.

· For example, if you are interested in the effect of a medication on hip fractures, is this the endpoint that the researchers have studied, or have they just studied a proxy such as bone density?

· Determine the type of study: observational or experimental; exploratory or confirmatory. 

· This will influence the strength of the conclusions that can be drawn.

· Identify the measures the researchers are using. 

· Decide how well they fit what you are looking for from the study. 

· For example, if your interest is in how well a medication or lifestyle change will reduce your chances of having a hip fracture, a study with outcome based on hip fractures will be more informative that one with outcome bone density.

· Pay attention to how the sample(s) were chosen. 

· Think about any factors that might make the sample biased. 

· Results from a biased sample are unreliable, although sometimes they might give some information about a smaller population than intended. 

· Remember that voluntary response samples are usually biased.

· Have the researchers explained why the statistical procedures they have used are appropriate for the data they are analyzing? 

· In particular, have they given good reasons why the model assumptions fit the context? 

· If not, their results should have less credibility than if the model has been shown to fit the context well.

· If there is multiple inference on the same data, have the authors taken that into account in deciding significance or confidence levels?

· If hypothesis tests are used, are confidence intervals also given? 

· The confidence intervals can give a better idea of the range of uncertainty due to sampling variability. 

· But be aware that there might also be other sources of uncertainty not captured by confidence intervals (e.g., bias or lack of fit of model assumptions).

· Have claims been limited to the population from which the data are actually gathered?

· Have the authors taken practical significance as well as statistical significance?

· Is the power of statistical tests large enough to warrant claims of no difference?

· See Good (2006, Chapter 8) for more suggestions and detail.

· See van Belle (2008, Chapter 7) for items specific to Evidence Based Medicine.

Suggestions for Reviewers, Referees, Editors, and Members of Institutional Review Boards

· Base acceptance on the quality of the design, implementation, analysis, and writing of the research, not on the results of analysis 

· See “Suggestions for Researchers” and “Suggestions for Reading Research” above.

· Check to be sure power calculations are prospective, not retrospective.

· Advocate for changing policies if necessary to promote best practices.

· For more suggestions, see Coyne (2009, p. 51)

Suggestions for Teachers of Statistics

· Emphasize that uncertainty is often unavoidable; we can best deal with it by seeking to know where it may occur and trying to estimate how large it is.

· Be willing to say, "I don't know" when appropriate.

· Point out the differences between ordinary and technical uses of words.

· Be sure to include some discussion of skewed distributions.

· Emphasize that every statistical technique depends on model assumptions.

· Form the habit of checking if the model assumptions are reasonable before applying a procedure.

· Expect your students to do the same.

· Give assessment questions that ask the student to decide which techniques are appropriate.

· Discuss robustness.

· When a test fails to reject the null hypothesis, do not accept the null hypothesis unless a power calculation has shown that the test will detect a practically significant difference, or unless there is some other carefully thought out decision criterion that has been met. 

· Expect your students to do the same.

· Remember, and emphasize, that one study does not prove anything. 

· In particular, do not use strong language such as "We conclude that ...", "This proves that ...", 'This shows that ... is ...." 

· Instead, use more honest language such as, "These data support the claim that ..." or "This experiment suggests that ..." 

· Expect your students to do the same.

· For more suggestions for introductory courses, see American Statistical Association (2005).

· In introductory courses, try to caution your students about the problems with multiple inference, even if you can't go into detail.

· In advanced courses, be sure to discuss the problems of multiple inference.
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