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1. INTRODUCTION

In this note we describe results addressing the behavior of a certain toy
model for the equations of fluid motion, the so called “dyadic” model. Some
of the results that will be reviewed here were obtained in last few years
in collaborations with Alexey Cheskidov and Nets Katz. The authors are
thankful to their coauthors for inspiring collaborations. The review pre-
sented here is far from being exhaustive and it is beyond the scope of this
short paper to describe all the large body of work on the discretized models
for the fluid equations.

1.1. Equations of fluid motion. The partial differential equations that
describe the most crucial properties of the motion of an incompressible,
inviscid fluid are the Euler equations:

Y+ Vp=0, (1.1)
V-u=0, (1.2)

with the initial condition
’LL(J},O) = u0($)7 (13)

for the unknown velocity vector field u = wu(z,t) € R? and the pressure
p=p(z,t) € R, wherez € R? and t € [0, 00). They are derived for an incom-
pressible, inviscid fluid with constant density. Despite the fact that Euler
introduced them almost two and a half centuries ago, some basic questions
concerning Euler equations in 3 dimensions are still unsolved. For example,
it is an outstanding problem of fluid dynamics to find out if solutions of the
3D Euler equations form singularities in finite time.
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The equations that reflect the most fundamental properties of viscous, in-
compressible fluids are the Navier-Stokes equations:

% + (u-V)u+ Vp = vAu, (1.4)
V-u=0, (1.5)

and the initial condition
u(z,0) = up(z), (1.6)

and appropriate boundary conditions. As with the Euler equations the the-
ory of the Navier-Stokes equations in three dimensions is far from being
complete. The major open problems are global existence, uniqueness and
regularity of smooth solutions of the Navier-Stokes equations in 3D. For the
precise formulation of this open problem see [10]. One way of looking into
the problem is via weak solutions that were introduced in the context of
the Navier-Stokes equations by Leray [24] - [26] in 1930s. Leray [26] and
Hopf [13] showed existence of a global weak solution of the Navier-Stokes
equations. However questions addressing uniqueness and regularity of these
solutions have not been answered yet. Important contributions in under-
standing partial regularity and conditional uniqueness of weak solutions
have been made by many authors, including, Ladyzhenskaya [19], Prodi
[37], Serrin [42], Scheffer [38] - [40], Caffarelli-Kohn-Nirenberg [4], Lin [27]
and Escauriaza-Seregin-Sverak [9]. Another approach in studying behavior
of the Navier-Stokes equations is to construct solutions via a fixed point
theorem. In the context of the Navier-Stokes equations this approach was
pioneered by Kato and Fujita [14] and continued by many authors including
the result of Koch and Tataru [18]. However the existence of such solutions
to the Navier-Stokes equations has been proved only locally in time and
globally for small initial data.

Now we recall an important conserved quantity of the fluid equations. As a
consequence of skew-symmetry property of the nonlinear term

((u-V)u,u)2msy =0

and divergence free condition, the classical solutions to the Euler equations
(1.1)-(1.3) satisfy conservation of energy:

llu( D)IZ> = [uol[Z,

while classical solutions to the Navier-Stokes equations (1.4)-(1.6) satisfy
decay of energy:

T
u( T2 = [fuol2 — 2 /0 v((~ Ay ).
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1.2. A dyadic model. Many results concerning Euler and Navier-Stokes
equations in 3 space dimensions use two important properties of these equa-
tions: conservation (decay) of energy and scaling property of the nonlinear
term, see, for example, [2], [4]. In this article we review results concerning
a dyadic model of fluid equations that shares! these two properties with
actual Euler and Navier-Stokes equations in 3D. The precise formulation of
the model is in Section 2 of the paper.

Similar discretized models have been constructed and analyzed with a goal
to capture important properties of fluid equations. These models belong to a
class of “shell models” which, in general, simulate the energy cascade among
the set of velocities u,,, where u,, stands for the velocity associated to the
n'" shell. In all these models the nonlinearity of the Euler equations (u-V)u
is drastically simplified: only local neighboring interactions between certain
scales are considered. Depending on the simplification of the nonlinear term
the models differ in the number of conserved quantities and in presence of a
certain “monotonicity” property that will be discussed in Section 3 of this
paper. Among the first examples of a discretized model is the one introduced
by Gledzer [12] which was later generalized by Ohkitani and Yamada [35]
and is now known as the GOY model. There are a number of other types of
discretized models that have been studied recently: for example, the model
of Constantin et al [7] for which the authors prove global regularity and the
existence of a finite dimensional global attractor. The book of Bohr et al [3]
offers a survey of various results concerning shell models.

The dyadic model that we discuss in the present paper was introduced by
Katz, Pavlovi¢ in [15] as a test model for their study of partial regularity for
solutions to the 3D Navier-Stokes equations with hyper-dissipation. How-
ever the model was investigated further. Local in time existence of solutions
to dyadic Euler equations was obtained in [11]. Finite time blow-up was
initially proved for dyadic Euler equations in [15] by exploiting conserva-
tion of energy and a certain monotonicity present in the model. Such a
monotonicity property resembles monotonicity of certain quantities present
in so called “cooperative” systems (see for example the work of Palais [36]
and the work of Bernoff and Bertozzi [1] where singularities in a modified
Kuramoto-Sivashinsky equation were identified). Finite time blow-up was
investigated further by Waleffe [46] and sharpened by Kiselev, Zlatos [30].
The famous question of global existence of solutions to the Navier-Stokes
equations was answered in the dyadic context by Nazarov [34]. More pre-
cisely, the solution to the dyadic Navier-Stokes equations stays bounded in
a certain C* space provided that it started in the same C* space. The main
tool in Nazarov’s proof is the observation that if the system of ODEs which

1We remark that the dyadic model conserves energy, provided that the function which
mimics velocity belongs to the Sobolev space H?® with s large enough to justify a certain
summation incorporated in the expression (2.6). For details, see [6].
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describes the dyadic Navier-Stokes equations is truncated, it will scatter all
energy. A 3 dimensional vector model for the incompressible Euler equa-
tions was introduced in Friedlander, Pavlovié¢ [11], which is similar in some
features to a discretized approximate model constructed by Dinaburg and
Sinai [8] for the Navier-Stokes equations in Fourier space. It was shown in
[11] that for special initial data the evolution equations of the divergence
free vector model reduced to the scalar dyadic Euler system and finite time
blow-up occurs in this model for the 3 dimensional incompressible Euler
equations. We remark that finite time blow-up was exhibited even for a
version of the dyadic model which allows certain “small” degrees of dissi-
pation, see [15]. Recent work on finite time blow-up for dissipative dyadic
models was performed by Cheskidov in [5]. Also recently we have proved [6]
that a version of the inviscid dyadic model with forcing has a unique equi-
librium which is spectrally and nonlinearly stable. For a critical sg, finite
time blow-up occurs in H® for s > sg. In H®, s < sg, the energy actually
decays even though there is no viscosity in the model. Such a phenomenon
of “anomalous dissipation” is also observed in a linear discretized model by
Mattingly et al [33].

The above mentioned results can be divided in two categories: the results
which are obtained just for the model thanks to the drastic simplifications
that are incorporated in the model and the results obtained for the model
that can be generalized to the actual equations. In Section 3 of the present
paper we recall a finite time blow-up for the dyadic Euler equations [16]
which belongs to the first category, while in Section 4 we describe a par-
tial regularity result for the dyadic Navier-Stokes equations with hyper-
dissipation [15] which was generalized to the result for actual equations.

Acknowledgements. The authors would like to thank very much Barbara
Keyfitz, Irene Gamba and Krystyna Kuperberg for organizing a wonderful
mathematical event, the workshop “Women in Mathematics: The Legacy
of Ladyzhenskaya and Oleinik”, that took place at MSRI in May of 2006.
Also many thanks to MSRI for hosting the workshop. Both S.F. and N.P.
were honored to give a talk at the workshop celebrating careers of two great
mathematicians Ladyzhenskaya and Oleinik.

2. DYADIC MODEL

The dyadic model is introduced in the following way. Throughout the paper
we shall use the definition of a dyadic cube that say that a cube @ in R? is
called a dyadic cube if its sidelength is integer power of 2, 2¢, and the corners
of the cube are on the lattice 2!Z3. Let D denote the set of dyadic cubes
in R3. Let D; denote the subset of dyadic cubes having sidelength 277, We
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define P(), the parent of ), to be the unique dyadic cube in Dj(g)_; which

contains Q. We define C*(Q), the kth order grandchildren of @ to be the
set of those cubes in Dj ()4, which are contained in Q.

The first simplification comes by replacing vector valued function u by a
scalar valued one. We denote an orthonormal family of wavelets by {wq},
with wg the wavelet associated to the spatial dyadic cube () € D;. Then u
can be represented as:

u(z,t) = Z ug(twg(x).
Q

Note that due to spatial localization of wg

j(Q)
llwo|poe ~ 2757 (2.1)

On the other hand
IVugllzz ~ 2. (2:2)
Having in mind (2.1) and (2.2) we define a cascade down operator through

its ch coefficient as follows:

55(Q)
(Ca(u,v))q =272 upQupg-

Similarly we define a cascade up operator as the adjoint of Cy(u,v) via:

5(F(Q)+1)
Culu))o=2"7 ug Y. vg-
Q'eCH(Q)

Now we define the cascade operator
C(u,v) = Cy(u,v) — Cqlu,v).

Having defined Laplacian as A(wg) = 2% wg, we introduce the following
model equations:

e Dyadic Euler equation:

du
a + C(u,u) = 0. (2.3)

e Dyadic Navier-Stokes equation:

Z—ZL + C(u,u) + Au=0. (2.4)

e Dyadic Navier-Stokes equation with hyper-dissipation:

du o
a + C(u,u) + (A)%u = 0. (2.5)
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By construction of cascade operators,
(Cu(u, u),u) = (Ca(u, u),u),
which implies
(C(u,u),uy = 0. (2.6)

A simple consequence of (2.6) is conservation of energy for the dyadic Euler
equations and decay of energy for the dyadic Navier-Stokes equations. Hence
the model shares conserved quantities with fluid equations.

3. A “DREAM” RESULT PROVED ONLY IN THE DYADIC CONTEXT

In this section we briefly describe finite time blow-up obtained for solutions
to dyadic Euler equations in [16]. Such a result can be thought of as a result
obtained for the model equations themselves thanks to certain monotonicity
property specific for the dyadic Euler equation (2.3) which combined with
the conservation of energy implies cascade of energy into higher and higher
frequency scales.

Let ||u||z2 denote the L? norm of u. For any s > 0, we define

ull e = llullz2 + [[(A) ul] 2.

We consider functions u that satisfy the dyadic Euler equations (2.3) and
all of whose coefficients u¢ are initially positive. After writing Duhamel’s
formula

1 b osi@ o

uo(t) = e ug(0) + /0 2% 3o (r)u(r)dr ), (3.1)

where o
5 (Q)+1)
,u(t) _ €f52 P >orect(q) uqr (T)dr

)

it can be seen that this class of functions is preserved by the dyadic Euler
flow. We remark that this “positivity” is a specific characteristic of the exact
form of the dyadic Euler equations (2.3) and does not hold for the actual
Fuler equations.

Let E denote the energy E := (u,u). The energy can be seen as being
divided up among the cubes Q:

E = Z Eg, where Eg = ué

QeD
A local description of energy flow along the tree D is given by:
d
_EQ = EQ,in - EQ,outy (32)

dt
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where
55 (2Q)

Egin =2 Zu%QuQ,

and
EQ,out = Z EQ’,in-
Q'eCt(Q)
Hence energy is flowing always from larger cubes to smaller ones and indeed

it flows along the edges of the tree D. We can see this precisely after we
introduce the extended Carleson box of a cube @ by

(@) = | ch@),
k=0
and the energy of an extended Carleson box by
By = Y. FEou
Q1€Co(Q)
Then after writing (3.2) for all cubes in Co(Q) it can be shown (see [16] for
details):

Proposition 3.1. Let u be a time-varying function with initially positive
coefficients evolving according to the dyadic Euler equations. Then for any
Q, the function E¢,(q) is monotone increasing in time.

Now we combine the monotonicity property stated in Proposition 3.1 with
conservation of energy to obtain the main iterative result of the form

Lemma 3.2. Fizr jo sufficiently large. Then there is a sufficiently small
0 < e <1 so that if at time tg, we have

Ecyq) > 2~ (3+6(Q) (3.3)

with 5(Q) > jo, then there is some t with t < to + 29 and a cube
Q' € CYQ) so that at time t, we have Ecyon > 2~ (3+6)5(@")

As a corollary of the iterative Lemma 3.2 we conclude:

Theorem 3.3. Let u be a solution to the dyadic Euler equations which has
initially all positive coefficients and Eg(0) > 2-B+9i(Q) | for some Q with
J(Q) > jo with jo as in the previous lemma. Then the H3% norm of u
becomes unbounded in finite time.

We sketch the proof of the theorem.

Proof We apply Lemma 3.2. We find a cube Q1 properly contained in Q
and a time #; < 279(@) g0 that at t; we have Ecyq,) > 2~ (3+6)5(Q1)
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We iterate this procedure finding a cube ); contained in QQi_1 and a time
tr so that ¢ < tp < tp_1 + 2-€/(@-1) and at time t; we have Eecyqr) >
29— (3+6)j(Qx)

Estimating just using the coefficients of Co(Qg), we see that at time t;, we

have that
20 Y )
723 (Qr) QeD;

> 3+26 (Qk) Z Z uQ tk

723 (Qr) QED;

o(3+26)7 (@)

Y

ECO(Qk)(tk‘)
> QEJ(Qk)_

Since j(Qy) is an increasing sequence of integers, this is going to co. However
k—1
th =t — tho1) + (o1 — tog) + - + 11 < 279Q 4y " 27a(@),
=1
and the j(Q;)’s are an increasing sequence of integers, we see that the se-
quence {t;} converges to a finite limit. ]

4. THE DYADIC MODEL MOTIVATES A RESULT FOR THE FLUID EQUATIONS

As a contrast to results such as a finite time blow-up for the Euler equa-
tions there are instances where results obtained for dyadic models can be
generalized to actual fluid equations. These are results which are based on
properties that model equations share with actual equations, i.e. conser-
vation (decay) of energy and scaling property of the nonlinear term. An
example of such a result is a partial regularity result for the dyadic Navier-
Stokes equations with hyper-dissipation (2.5) obtained in [15].

The Navier-Stokes equations with hyper-dissipation (—A)® are given by
ou
ot

where u is a time-dependent divergence free vector field in R3. One sets the
initial condition

+ (u-V)u+ Vp = —(—A)%, (4.1)

u(z,0) = up(x) (4.2)
where ug(z) € C°(R3).

It has been shown [28], [29], [32] that the system (4.1) - (4.2) admits global
solutions provided that o > %. On the other hand, when o = 1 the equations
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(4.1) - (4.2) coincide with the Navier-Stokes equations. Caffarelli, Kohn, and
Nirenberg [4] showed that when av = 1, the singular set of a generalized weak
solution to the system (4.1),(4.2) has parabolic Hausdorff dimension at most
1.

In [15] it has been proved that if 7" is the time of first breakdown for the
system (4.1),(4.2), with 1 < a < 2 then the Hausdorff dimension of the
singular set at time 7 is at most 5 — 4a.

The authors in [15] could not directly generalize the proof of Caffarelli, Kohn,
and Nirenberg [4]. More precisely, the approach presented in [4] relies on
the “generalized energy inequality” which is based on the following property
of the divergence free heat equation:

0 10 10
[~ Busbudt = [ o)+ (T 6V~ (5 57 + AdJu, )
where ¢ is any bump function compactly supported in space and time and «
a divergence free vector field. To circumvent the problem of not having the
“generalized energy inequality” in [15] techniques of microlocal analysis are
used, by localizing in frequency and in space. A “quasi” version of the “gen-
eralized energy inequality” is obtained which works for certain neighboring
cubes and allows the authors to prove a critical level of regularity outside
of “bad” cubes in which, intuitively speaking, “nonlinearity dominates the
dissipation term”. Then a barrier estimate which guarantees arbitrary regu-
larity in the interior of a cube Q) is proved, if the critical regularity is known
for cubes containing it and for boundary cubes of the cube ). On the other
hand an estimate on the size of the set of bad cubes is given. Such an es-
timate on the size of the set of bad cubes has been noticed on the level of
the dyadic model first. Thus in this context the dyadic model was used as
a test model. In the rest of this section we recall the dyadic heuristic that
gives an upper bound on the set of singular points.

First let us recall the definition of Hausdorff dimension and state a lemma
which is used as a tool in proving an upper bound on the Hausdorff dimen-
sion. Given any set A C R", the d-dimensional Hausdorff measure of A,
HE(A), is given by:

HYA) = lim C(A),

p—0 *

where Cg(A) is defined as:

CYA)= inf r(B)¢,
p(4) CECP(A)BZG:C (B)

where 7(B) is the radius of ball B and C,(A) denotes the set of all coverings
of A by balls of radius less than or equal to p. The Hausdorff dimension is
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given by:

inf d.
HA(A)=0

In order to find an upper bound on the Hausdorff dimensions of the set of
singular points the following result is utilized, which intuitively speaking
gives an upper bound for the Hausdorff dimension of a set, provided that
one is able to discretize the particular set so that at level j it could be seen
as collections of not more than 27¢ balls of radius 277, i.e.

Lemma 4.1. Let Ay,..., Aj,... be a sequence of collections of balls in R™
so0 that each element of A; has radius 277 Suppose that #(A)) < 27 Define

A = limsup 4;,
Jj—

to be the set of points in infinitely many of the Upea,B’s. Then the Haus-
dorff dimension of A is at most d.

Now we consider dyadic model for the Navier-Stokes equation with hyper-

dissipation (2.5). Hausdorff dimension of the set of singular points will be

estimated at the first time of blow up, T. In order to do so, notice that
>

the cascade operator C'(u,u) on scale j looks roughly like 2?31%, while the

dissipation term gives decay like 22 ug. Hence as long as ug < 2_%(5_40‘),

the growth of ug is under control. Now let us see what happens if ug >

272(5-49)  We rewrite equation (4.1) in terms of wavelet coefficients:

dug 55(Q) 200
= D cQeen? ® ugugr — 2 Qug, (4.3)
Q.QEEQ)

where £(Q) := {PQ,Q}UC(Q), and
1, fPQ=Q"=Q
C@Qn =14 —25, Q@ =Qand Q" cC(Q)

0, otherwise

Having assumed |ug| 2 273(5=1%) for some time ¢ and assuming that at the

initial time ¢ = 0 it is much smaller, by the smoothness assumption on the
initial condition, we integrate (4.3) in time on the interval [0, 7] and obtain
for one of the choices of (Q’, Q") giving a non-vanishing coefficient:

= T )
27J / |UQ/’LLQN|dt 2 2—%(5—404)’
0
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which by Cauchy-Schwartz implies:

T T .
2%(/ ug,dt)%(/ udydt)§ 2 23010,
0 0
ie.

T T
227 ( / udydt)? ( / uddt)z 2 271071,
0 0
This is possible if either

T
9%a /0 udydt > 2796712), (4.4)
or

T
9% / ugdt 2 27964 (4.5)
0

On the other hand, having in mind conservation of energy we have

) T
g2« / > wpdt S L

0 Q at scale j

Thus we conclude that (4.4) or (4.5) could happen in at most 270~%% cubes
Q. Now we invoke Lemma 4.1 and conclude that the Hausdorff dimension
of the set of points of point at which level of regularity given by

ug < 27 2(6-10) (4.6)

fails is at most 5 — 4a.

One still needs to prove regularity on the interior of a dyadic cube @, pro-
vided that one has a little better than critical regularity (4.6) at a cube Q,
however we skip details here. The above heuristic was generalized to actual
Navier-Stokes equations with hyper-dissipation via localization tools such
as Littlewood-Paley operators and pseudo-differential calculus. Although
certain technical difficulties needed to be resolved in the transition process
from the result addressing model equations to the result for actual equa-
tions, the model itself was useful as a device in detecting dimension of the
singular set.

We remark that versions of the Navier-Stokes equations with nonlinear mod-
ifications in the dissipation term, were proposed and studied too. In 1960s,
a few years after Smagorinsky’s initial work [43], [44], [45], a general nonlin-
ear viscosity model was introduced by Ladyzhenskaya [20], [21], [22]. The
physical motivation for this model came from Kolmogorov’s theory of tur-
bulence. The Ladyzhenskaya modified Navier-Stokes equations have the



12 SUSAN FRIEDLANDER AND NATASA PAVLOVIC

following form:

9 (0o = —Vp + div(T(D)) + f, (4.7)

ot
V-v=0, (4.8)

for z € Q C R", where the stress tensor 7' is a function of the n-dimensional
version of the velocity gradient

D =D(w) = %[(Vu) + (Vo)T].

It is assumed that T satisfies the following properties:
(i) |Tir(D)| < e1(1 +|D[*)| DI, (4.9)

ov;
(i3) Tin(D)( a;’k) > 1o D? + vy D*2, (4.10)

(#41) for arbitrary smooth divergence free vectors v’ and v” which are equal
on the boundary 6¢2 the following inequality holds:

[ @) - a5 - / S (2 P2y,
Q Q.

Oy, axk - lﬁxk Oxy,

where ¢1, vy, 11, Vo are constants and T;, denotes in entries of the tensor T'
which are assumed to be continuous

For p > 1/4, Ladyzhenskaya [22] proved global unique solvability of the
boundary value problem for (4.7) - (4.8) in 3 dimensions with 7" satisfying
(), (i1), and (#i7). Following the seminal work of Ladyzhenskaya, further
properties of (4.7) - (4.8) with a more general 7" have been established, see,
for example, [31], [41]. In the context of the dyadic models discussed in this
article, partial regularity result for a dyadic model reflecting a nonlinear
modification in the dissipation term corresponding to pu < 1/2 was studied
n [11]. It would be desirable to extend the heuristic dyadic result to the
result concerning (4.7) - (4.8).

5. CONCLUSION

We conclude this note by observing that the dyadic models can, in some
instances, be used to detect results which are valid for the Euler and the
Navier-Stokes equations, if the results are based on conservation (decay)
of energy and scaling. However due to its construction, the dyadic model
discussed throughout this paper has the positivity property (which comes
as a consequence of (3.1)) that, in turn, implies behavior of the model itself,
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such as blow-up phenomena, which has not to date been detected in the
actual equations for the motion of an incompressible fluid.
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