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SUMMARY

In this thesis, we study a partial regularity result for a modified version of the Navier-Stokes
equations. In the standard Navier-Stokes equations the Laplacian of the velocity field appears to the
power one, which reflects amount of energy dissipation. The deepest regularity result for the Navier-
Stokes equations to date is the result of Caffarelli, Kohn and Nirenberg which states that the Hausdorff
dimension of the singular set is at most one. We consider a modification of the Navier-Stokes equations
in order to investigate how system reacts to changes caused by different amount of energy dissipation.
More precisely, we study the Navier-Stokes equations with hyper-dissipation, where the Laplacian is
raised to a power. We get an estimate for the dimension of the set of singular points at the first time
of blow-up depending on the degree of dissipation.

In chapter 1 we describe the equations of fluid motion and some of unsolved questions concerning
them. Also in chapter 1 we state our main result about the Navier-Stokes equations with hyper-
dissipation. In chapter 2 we review Littlewood-Paley theory which will be used in the rest of the
thesis. In such a way we describe techniques needed for localization in frequency. In chapter 3 we use
Littlewood-Paley operators to present some classical results of fluid dynamics such as (1), which gives
a criterion for loss of regularity for the solutions of the Euler equations in 3D. In chapter 4 we introduce
a dyadic model for the equations of fluid motion. The dyadic model possesses an important feature
of the equations, which is conservation (or decay) of energy. For such a model we prove partial regu-
larity results for the Navier-Stokes equations with hyper-dissipation and also for the Ladyzhenskaya’s

modification of the Navier-Stokes equations, in which case the dissipation term is nonlinear.
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SUMMARY (Continued)

The goal of chapters 5, 6 and 7 is to generalize the ideas of partial regularity result from the dyadic
Navier-Stokes equations with hyper-dissipation presented in chapter 4 to the actual Navier-Stokes
equations with hyper-dissipation. We do that by combining techniques of Littlewood-Paley operators
and the theory of pseudodifferential operators. In chapter 5 we describe pseudodifferential operators
which help us to localize in space, and we develop calculus needed to localize our equations in both
frequency and space. We define a bad set in this chapter and show how one can cover such a bad set
and estimate its Hausdorff dimension. In chapter 6 we figure out a balance between the nonlinear term
and the dissipation term for a localized equation, and outside of the bad set we prove a certain level of
regularity called critical regularity. Then in chapter 7 we finish the proof of partial regularity result for
the Navier-Stokes equations with hyper-dissipation by proving an arbitrary level of regularity inside a
cube for which one has a little bit better regularity then critical one.

In chapter 8 we revisit dyadic models introduced in chapter 4, and for the dyadic Euler equations
we prove finite time blow-up, which we prove for the Navier-Stokes equations with sufficiently small
degree of dissipation too. However these results are built on a lower bound for the nonlinear term, and
are valid only for the dyadic models.

Motivation for this thesis and invaluable contributions came from joint projects with Nets Hawk
Katz (Katz, N., and Pavlovié¢, N.: A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes
equation with hyper-dissipation. To appear in Geometric and Functional analysis, 2002), (Katz, N.,
and Pavlovié¢, N.: Finite-time blow-up for a dyadic model of the Euler equations. In preparation, 2002),
and from a joint work with Susan Friedlander (Friedlander, S., and Pavlovié¢, N.: Remarks concerning

modified Navier-Stokes equations. To appear in Discrete and Continuous Dynamical Systems, 2002).

ix



CHAPTER 1

INTRODUCTION

1.1 The Euler and Navier-Stokes equations

The partial differential equations that describe the most crucial properties of the fluid motion are
the Euler equations. They are derived for an ideal fluid, by which one means:
e incompressible (fluid whose particle do not change volume as the fluid moves)
e inviscid (fluid without internal friction between particles)
e fluid with constant density.
Let = (21, %2, ..., ) denote a point in R"”. Let the vector u = u(z,t) = (u1(z,t), ..., up(z,1)) € R*

be the velocity field, and p = p(x,t) € R the pressure. Then the Euler equations are:

Du
—_— = - 1.1.1
D Vp, (1.1.1)
V-u=0, (1.1.2)
with the initial condition
u(z,0) = up(z). (1.1.3)



Here we used the notation % which is defined for some fluid quantity f = f(z,t) by

Df _d

Dr = %f(il}l(t),%?(t); i (1), 1),

and it represents a rate of change of f. The symbol D% is often called “material derivative” or “con-
vective derivative”.

By chain rule we have

Dy _of

Dt~ ot TV
and in particular

Du  Ou

i g TV

Notice that the equation (1.1.1) expresses Newton’s second law F' = ma. Indeed the right-hand side
of (1.1.1) represents the force which is in this case the force of internal pressure, while the left-hand
side of (1.1.1) is the acceleration. The mass is 1, since the density is constant and taken to be 1. On
the other hand, the equation (1.1.2) reveals conservation of mass.

When the Euler equations are considered in R" one would like to avoid the situation in which the
velocity field u(z,t) becomes unbounded as |z| — co. Usually one restricts behavior of the velocity

field at infinity by imposing the bounded energy condition:

/ |u(x,t)|*dx < constant, (1.1.4)



for all time ¢ > 0. This is a natural condition to assume, because from the first look at the equation
(1.1.1) we see neither obvious dissipative effects nor an effect of an external force. In this thesis
whenever we consider either the Euler equations or a model for the Euler equations we shall assume
the bounded energy (1.1.4).

Despite the fact that Euler introduced the equations (1.1.1) - (1.1.3) in 1755, some basic questions
concerning them are still unsolved. For example, it is an outstanding problem of fluid dynamics to find
out if solutions of the Euler equations satisfying (1.1.4) form singularities in finite time. The answer
is “no” in the case of Euler equations in dimension two. But in three-dimensional space the question
is still open. However the local existence theorem for Euler’s equations is known (27), (28) as well as
(15), (16), (17), and we will state a version of the theorem in Chapter 2 where we discuss some classical
results about Euler equations. For details on local existence of smooth solutions of the Euler equations
see, for example, (19) or (48).

The equations that describe the most fundamental properties of viscous fluids are the Navier-Stokes

equations which are given with the following equations:

)
B—Q:—i—(u-V)u—i—szyAu—l—f, (1.1.5)

V.u=0, (1.1.6)



and the initial condition
u(z,0) = ug(z). (1.1.7)

When the Navier-Stokes equations are considered in R” one imposes the restriction that the energy
is bounded (1.1.4).

As with the Euler equations the theory of the Navier-Stokes equations in three dimensions is far
from being complete. The major open problem is the question of global existence of smooth solutions
of the Navier-Stokes equations satisfying (1.1.4) in 3D, where by a smooth solution in R" one means a
solution to the Navier-Stokes equations such that u(z,t) € C*®°[R" x R"]. For the precise formulation
of this open problem see (12).

The existence of smooth solutions of the Navier-Stokes equations initial boundary value problem
in 3D has been proved locally in time, see, for example, (19), (22), (11), (13), (21), (46), (6). Also
global existence of smooth solutions of the Navier-Stokes equations in 3D has been proved provided
small initial data. This was addressed by various authors in different function spaces, see, for example,
(20), (13), (46), (5), (35), (23).

In 1930s Leray (24) - (26) introduced a notion of weak solutions of the Navier-Stokes equations. A
weak solution of the Navier-Stokes equations is introduced as a function u which satisfies the following

equation:

(O 9) + (- Vot ) + (Y, ) = (D ) + (1. 6), (1.18)



for all smooth functions ¢ compactly supported in R? x (0, oc), where (-, -) stands for the scalar product
on L?(R? x R). Obviously if functions u and p satisfy the Navier-Stokes equations (1.1.5) - (1.1.6) in
a strong sense then they satisfy (1.1.8). On the other hand, an advantage of having (1.1.8) is that by
using integration by parts on (1.1.8), one can move derivatives to fall on the test function ¢.

Leray (26) and Hopf (18) showed existence of a weak solution of the Navier-Stokes equations

satisfying the following energy inequality:

t t
/ |ul? + 2/ / |Vu?dzdt < / u(x,0)|?ds + 2/ / f-u, (1.1.9)
Qx{t} 0 Ja Q 0 Ja

where Q is a bounded domain in R?. The inequality (1.1.9) is obtained by pairing in L?(R? x R) the
equation (1.1.5) with 2u¢, then integrating by parts and taking ¢ = 1.

Regularity of weak solutions was investigated by many authors, for example, Serrin (41), (42),
Scheffer (36) - (40), Caffarelli-Kohn-Nirenberg (4), Lin (29). We shall discuss a particular type of
regularity results known as partial regularity results which give an upper bound on the Hausdorff
dimension of the singular set for an equation, see for example (4), (29).

In (4) Caffarelli, Kohn and Nirenberg introduced a particular class of weak solutions of the Navier-
Stokes equations called suitable weak solutions. By a suitable weak solution they mean a weak solution
of the Navier-Stokes equations such that for each bump function ¢ compactly supported in space and

time the following inequality is valid:

2 2 2
2 [ [19uPo< [ [UuP e+ 80)+ (ul? + 200 V64 20 D). (1.1.10)



The inequality (1.1.10) is known as generalized energy inequality. It is important to notice that the first
term on the right-hand side can be made small by choosing ¢ to satisfy the backwards heat equation,
and this was used in (4). Caffarelli, Kohn and Nirenberg (4) proved that for the Navier-Stokes equations
(1.1.5) - (1.1.7) the singular set of a suitable weak solution has parabolic Hausdorff dimension at most
1. Here parabolic Hausdorff dimension is defined in an analogous way to Hausdorff dimension, just by

using parabolic cylinders ), instead of Euclidean balls, where

Qr(z,t) = {(y,7) t ly —z| <r t—r? <7 <t}

In order to prove a partial regularity result for the class of suitable weak solutions they first proved a
local dimensionless result which states that if 4, p and f are small enough on the parabolic cylinder
Q- then u is regular on the smaller cylinder ), /5. As a consequence of this they obtained an estimate
of the minimum rate at which a singularity could develop and they proved a sufficient condition for
a point to be a regular point. By covering the singular set they obtained that for any suitable weak
solution, the singular set has one-dimensional parabolic Hausdorff measure zero. A new proof of this
result was recently given by Lin (29). Lin also uses the generalized energy inequality (1.1.10). Our

motivation came partly from (4) and we explain that in the next section.

1.2 Partial regularity results for the Navier-Stokes equations with hyper-dissipation

The Navier Stokes equation with dissipation (—A)® is given by

%—l—u-Vu—i—Vp: —(=A)%u, (1.2.1)



where u is a time-dependent divergence free vector field in R?. One sets the initial condition
u(z,0) = ug(z) (1.2.2)

where ug(z) € C°(R3).
If we pair (in L?(R?® x R) ) the equation (1.2.1) with u and then integrate by parts, we see that

classical solutions to this equation on a time interval [0, T] satisfy conservation of energy, namely that

T
u( T2 = [luoll2: - / (=), ).

The second term on the right is called the dissipation term.

Caffarelli, Kohn, and Nirenberg (4) showed that when a = 1, the singular set of a generalized
weak solution to the system (1.2.1),(1.2.2) has parabolic Hausdorff dimension at most 1. This could
be considered a first step towards showing global strong solvability. Any improvement in this upper
bound on the dimension would be genuine progress towards solution of the global solvability problem.

Another well known fact is the following. We learned the proof which we present in the chapter 2
from Diego Cordoba. J.L. Lions gave a version of the proof in (30), (31). Also Mattingly and Sinai

(32) recently gave a different proof.

Proposition 1.2.1 If a > %, one has global strong solvability for the system (1.2.1),(1.2.2).

Indeed proposition 1.2.1 could be also viewed as a first step towards the solution of the global strong

solvability for @« = 1 and any improvement in the exponent % could be viewed as genuine progress.



We (Katz, N., and Pavlovié, N.: A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes
equation with hyper-dissipation. To appear in Geometric and Functional analysis, 2002) interpolate

the two results so that these two paths to progress are unified. We prove

Theorem 1.2.2 If T is the time of first breakdown for the system (1.2.1),(1.2.2), with 1 < a < % then

the Hausdorff dimension of the singular set at time T is at most 5 — 4a.

Heuristically, the theorem ought to be a mild generalization of Proposition 1.2.1. We think about
the microlocal analysis of a solution v in terms of coefficients ug associated to cubes (). Very roughly
speaking, the coefficient ug should be viewed as a generalized wavelet coefficient. The proof of Propo-
sition 1.2.1 goes wrong for a < % only because of a small number of cubes with large coefficients. At
any time, the set of points contained in arbitrarily small such cubes has dimension at most 5 — 4a.

We were also unable to directly generalize the proof of Caffarelli, Kohn, and Nirenberg. They rely
on the “generalized energy inequality” which is built on an amusing property of the divergence free

heat equation. Let ¢ be any compactly bump function in space and time and u a divergence free vector

field, then

10¢

5 It + A¢)u,u))dt.

[ = At = [ G5 () + (T, 670 = (

The first term represents a change in local energy. The second term represents local dissipation. The
third term is an error which can be made insignificant by choosing ¢ to satisfy the backwards heat

equation. It is this method of controlling the error which we are unable to generalize.



To circumvent the problem of not having the “generalized energy inequality” we utilize techniques
of Littlewood-Paley theory which was developed by Bony (see e.g. (3)), and Coifman and Meyer (see
e.g.(9)), and pseudodifferential operators of type (1,1 — €), which are described in, for example, (47).
In such a way we localize in frequency and in space. We have a “quasi” version of the “generalized
energy inequality” which works for certain neighboring cubes and allows us to prove a critical level
of regularity outside of “bad” cubes in which too much dissipation occurs. Then we prove a barrier
estimate which guarantees arbitrary regularity in the interior of a cube @), if the critical regularity is
known for cubes containing it and for boundary cubes of the cube (). This barrier estimate can be
thought of as a localized version of global existence with small data. (One can compare this estimate
with results in (23) and (5) in which local well posedness is established with hypotheses slightly more
relaxed than ours.) But in order for this to work, it is important that there not be too many small
dissipating cubes on the boundary of our cube. This combinatorial issue is an ingredient which seems
not to have appeared before and which restricts us to the case @ > 1. On the other hand we cover the
“bad” set and from the covering we can estimate an upper bound for the Hausdorff dimension of the
singular set.

Remark on notation

Throughout the thesis the expression A < B means A < ¢B where c is a constant. Such a constant
¢ may depend on the time of first blow-up and on the initial conditions on the velocity. It does not

depend on a particular scale or on a cube where we are estimating.



CHAPTER 2

LITTLEWOOD-PALEY OPERATORS

Here we present a review of Littlewood-Paley operators by following the lecture-notes of Terence
Tao (45) and the book of Stein (43). Our presentation is brief and suits the purposes of the thesis. For
details see, for example, elegant expositions in (10), (43), (45).

In section 2.1 we introduce Littlewood-Paley operators and prove Bernstein’s and the “cheap
Littlewood-Paley” inequalities. Then in section 2.2 by using Littlewood-Paley operators we present
a proof of a version of the Sobolev embedding theorem in R?. In section 2.3 we show how one can

decompose a product of two functions by looking at pieces localized in frequencies.

2.1 Introduction to Littlewood-Paley operators

We shall use a standard Littlewood-Paley partition of frequency space in R?. Let og be a smooth

bump function supported on |£| < 2, and such that o¢(§) =1 for |{| < 1. Then we define the function
po(§) by

po(§) = 00(§) — 00(28).

Therefore the function py(€) is smooth and supported on % <l¢l <2

Let us introduce functions p;(§) and o;(§) by:

p;(€) = po(2779¢),

10
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and

7€) = 00(277¢).

An immediate consequence of this construction is that

Y opi) =1, (2.1.1)
i

i.e. we have a partition of unity into functions p;(¢).
We define Fourier multipliers P; and S; (on L?(R?)) with their symbols p;(¢) and o;(£) respectively,

i.e.

The operators P; and S; are usually called Littlewood-Paley operators. We see that P; = S; — S; 1
by this construction. In other words, the S;’s could be thought of as the partial sums of the P;’s.

As a consequence of (2.1.1) we have the Littlewood-Paley decomposition

f=> P,
J

for all f € L%(R?).
Intuitively speaking, we see that P; is like a projection onto frequencies in the annulus |£| ~ 27,

and S; is like a projection onto frequencies in the ball [¢] < 27. However we remark that P;’s and S;’s



12

are not exactly projection operators. More precisely, it is not true that (P;)?> = P;, nor it is true that

(S;)? = S;. However we observe that

Sj+2Pj = Pj. (2.1.2)

On the other hand, we have

S; oPj = 0. (2.1.3)

Thus (2.1.2) and (2.1.3) motivates the definition of operators P; = Zi:_Q Pj . We can analogously

define the symbols p; = Zz:_ﬂ’ﬂk- We observe that

PP = P;, (2.1.4)

since Isj is the sum of all Littlewood-Paley projections the support of whose symbols intersects the
support of p;(£). We shall use (2.1.4) often to manipulate Littlewood-Paley operators. As an illustration

of such a technique let us prove the Bernstein’s inequality for Littlewood-Paley operators in R3:

Proposition 2.1.1

3]
1P fllree S 27 ||P; fll L2

Proof Let ®; = Eﬁj). Then (since we are working in R3?) we have

@j (:B) = 23j<b0(2j$).
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Now ]5]- f = ®; x f so by Young’s inequality, we have
1P fllzee = 1P P fllzes < (1] 12]1 P fl| 2,
which is finite since ®; is a Schwartz function. But by the relation between ®; and ®(, we have
19172 = 2% || o]l 2.

which proves the proposition. [ |

Now we go to the “space-side” representation for the Littlewood-Paley operator P;. Let ¢; = Epj).

Then ¢;(z) = 23 ¢o(2/x), and we have:

Pif(x) = (¢j* f)(z)
= [ flz—y)¢;(y)dy

= /f(w —277y) o (y)dy. (2.1.5)

We see that (2.1.5) and Minkowski’s inequality imply:

1Piflle < / 1f (& = 279y) oo (4) dy

S 1l
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for 1 < p < oco. This together with the triangle inequality implies

sup| P f |e S |If e S D 1P fllns. (2.1.6)
] .
J

The inequality (2.1.6) is called a cheap Littlewood-Paley inequality. We will use it throughout the
thesis. Material concerning the strong Littlewood-Paley inequality could be found in, for example,
(10), (43), (45). We will not go in details of the strong Littlewood-Paley inequality, since we are not
using it in this current work.

For writing the “space-side” representation of the Littlewood-Paley operator 15]- we use the notation

introduced in the proof of Proposition 2.1.1. Then we can write ]5]- as follows:

Pif(z) = (®j*f)(z)

- / Fl@ — 279) By (y)dy. (2.1.7)

From (2.1.4) and (2.1.7) we obtain the following formula which relates the Littlewood-Paley piece

P;f to itself:

Pyf(x) = / Py f (e — 27y) @0 (y)dy. (2.1.8)

Now we are ready to see how differentiation acts on a Littlewood-Paley piece. Before formulating
lemma precisely, we think a little bit what it means to take a derivative of a Littlewood-Paley piece.

Informally speaking, if we look at the Fourier side we take derivative of a Littlewood-Paley piece P;f
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by multiplying its symbol by 27wi{. However the symbol of the operator P;, p;(§), is supported on
|¢| ~ 2J. Therefore taking derivative of a Littlewood-Paley piece P; f should be related to multiplying

P; f with 27. More precisely:

Lemma 2.1.2 Let j be an integer. Then
IV P fl[zs ~ 27[| P fl| o,

for all 1 <p < o0.

Proof We present the proof following (45). By differentiating (2.1.8) we obtain:
VPif = /Vxij(w —277y)®o(y)dy,
which by integration by parts implies
VP;f =2 /ij(g: — 277y Vdo(y)dy. (2.1.9)
Now we apply Minkowski’s inequality on (2.1.9) and obtain
IVP;iflle < 2| Pif||1s,

since V@ is a Schwartz function.



Now we are left to prove

2||Pifllte S IV P;f|1e.

In order to do that we recall the following property of the Fourier transform

VP;f(€) = 2mic Py 1 (6),

i.e.

Pi(©) = 5 VBT (©)

and therefore

A - B ﬂvgjf(&)

Now by taking the inverse Fourier transform of (2.1.11) we have

= [0 YR -y

W NEAES
[ 5 ) ors -y

2mi| 5 |2

By changing a variable, (2.1.12) implies

2P;f = /Eﬁw(iflég)(y) VP f(z =2 Ty)dy.

2

16

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)
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0
i

We notice that Eg (%g) itself is a Schwartz function. Therefore we obtain (2.1.10) from applying

Minkowski’s inequality to (2.1.13). ]

2.2 Sobolev embedding theorem

Let k = (ky, k2, ..., k) be a multi-index, where k;, i = 1,...,n are non-negative integers and |k| =

ki 4+ ko + ... + ky. Then for f : R" — C we define

k
vk . ol f
Coahighe gk
1 T2 n

For 1 < p < oo and s > 0 an integer, we define the Sobolev space W*P(R") as a space of all
functions f such that f and its derivatives up to order s are in LP(R™). The norm in this space is

introduced by

S

1 fllwen@ny == DIV fllzo(gn)- (2.2.1)
k=1

We see that p stands for integrability, while s stands for differentiability. In particular when p = 2 the
space W*? is denoted by H?®, and it is a Hilbert space.
The above definition of the Sobolev space W*P can be extended so that it is valid for s € R. Before

we do that, let us recall the notion of a fractional derivative. A property of the Fourier transform gives

(CA)F() = 4m2[e2f (€).
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This gives motivation to define the operator |V| as the square root of the operator —A by

V[ (€) = 2xle] £ (6).

Also for any real s, we define the fractional derivative operator |V|* by

VI F(&) := (2mlel) £ (©).

In a similar way we define the modified fractional derivative operator (V)* by

(V)s1(8) == (2m)* £ (£),

where the symbol (-) is known as the Japanese bracket and is defined by (¢) := (1 + [£[2)'/2. Notice
that for higher frequencies the operator (V)* behaves the same as the operator |V|*, while for the

S

frequencies || < 1 the operator (V)* acts as an identity.
Now we are ready to introduce the Sobolev space W*P for s € R and 1 < p < o¢ as a space of

functions f such that (14 [¢])*/2f(¢) € L. In particular, when p = 2 the norm in the space H® is

introduced by

Wy = ([ €1 F€ Pag)t.

Here we shall state and prove a version of Sobolev embedding theorem in R3.



Theorem 2.2.1 Let p > 2. There exist an € > 0 and a constant C(p,€) such that:

HfHLP < C(pa E)HfHHg(%—%)+6'

Proof We decompose f using Littlewood-Paley operators as f = >0 P;f.

j=—00

From the definition of H%*-norm we see that

1P fllze ~2 | P flge,

and therefore

1Pifll1z S 27| fme-

On the other hand, Bernstein’s inequality guarantees

3]
1P fllLe S 22 |1P fll L2,

which by (2.2.2) implies

3
P fllree S 2227 f]| e

19

(2.2.2)

(2.2.3)
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However by Holder’s inequality we have

p=2 2
A e < 1 f 1l pee [1F11725
and in particular
p=2 2
1P fllee < (1251l 5 1P Fl 2 (2.2.4)

Notice that (2.2.4) together with bounds obtained in (2.2.2) and (2.2.3) implies

p—2

3 5—aj —aj
1Pifllee S (2227 fl[me) 7 (27| e)

LSRN

S b—

3 ayp=2 2
— oillz-a) p}HfHHa_ (2.2.5)

Now for o > 3( ) we can sum (2.2.5) over j, and the theorem is proved. ]

1_1
2 p

2.3 Frequency trichotomy

Here we shall use the Littlewood-Paley operators to analyze the pointwise product of two functions
f and g. Let us see what we can say about P;(fg).

First we shall represent f and g using Littlewood-Paley operators as follows

f:ZPlﬂfa
k1
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9= Prg.
ko

and therefore

Pi(fg) = > Pi(Py, fPr,9). (2.3.1)

k1,k2

Since ]gkz\f(i) is supported in the annulus Ay, := {¢: 2k~1 < |¢] < 2kF1} for i = 1,2 we know that
the product Py, f Px,g has Fourier support in the sum of the annuli A;, and Ag,. On the other hand,

in order that the double sum in (2.3.1) is nonzero the sum Ay, + A, should intersect the support of

—

P; (&), which is the annulus {¢: 2771 < |¢] < 2771},

Thus (2.3.1) can be rewritten as follows:

Pi(fg) =Hjn+ Hjp+ Hju+ Hjphs

where the low-high part is given by
Hjin = Pj( Z (Pef) - Pg),
k<j—4

the high-low part is given by

Hijw="Pj( > (Pif)-Pg),
k<j4



22

the low-low part is given by

Hiy=Pi( Y. (Pf) Peg)+P( Y. (Pef): Prg),

j—4<k<j+4 i—4<k<j+4

and the high-high part is given

Hipn=Pi( > (Pef) - Preg) + Pi( Y (Pief) - Prg).

k>j+4 k>j+4

Therefore there are four interactions which are nonzero. However the low-low part is usually in-
cluded either in the high-low part, or in the low-high part, and such a decomposition of P;(fg) is known
as the Littlewood-Paley trichotomy. The four sums H;y, Hjpi, Hjy, Hjpp are called paraproducts

too. For more details on paraproducts see, for example, (47).



CHAPTER 3

CLASSICAL EXAMPLES

3.1 Introduction

In this chapter we present some classical examples of fluid dynamics by discussing how they could
be seen from the perspective of Littlewood-Paley operators. First we give a summary of the famous
paper of Beale-Kato-Majda (1) which gives a criterion for loss of regularity for solutions of the Euler
equations. After recalling main ideas of (1), we use Littlewood-Paley operators to prove a logarithmic
inequality playing an important role in (1).

Then we revisit (1) again. We employ Littlewood-Paley operators to prove a theorem similar to one
of Beale-Kato-Majda. The proof of such a theorem illustrates specific roles of high and low frequencies.

We also show how Sobolev embedding theorem (which was proved in chapter 1 by using Littlewood-
Paley operators too) could be applied to prove global strong solvability for the Navier-Stokes equations
with enough dissipation.

The ideas in the use of Littlewood-Paley operators combined with pseudodifferential operators
were developed by Bony (3) and Meyer (33). The method of (3) found various applications in styding
nonlinear PDEs, since according to paraproduct representation, the method is sensitive to describing
behavior of the nonlinear term. In the context of applications of Littlewood-Paley operators to studying

equations of fluid motion, see for example, (8), (7), (6), (49), (50).

23
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In this chapter we illustrate some aspects of using Littlewood-Paley operators in studying the Euler
and the Navier-Stokes equations. In particular, by applying Littlewood-Paley operators P; onto the
velocity field u(z,t), we localize the velocity field to range of frequencies around 2/. The question
which arises is why it is enough to localize to frequency ranges. In the present work we estimate
Lebesgue and Sobolev norms of some fluid quantities. The cheap Littlewood-Paley inequality, which
was discussed in the previous chapter, tells us that we can reveal information about certain Lebesgue
or Sobolev norms of a function just by knowing the norms of Littlewood-Paley pieces, rather then
calculating Fourier coefficients for each different frequency. This is only one advantage of Littlewood-
Paley operators. However more important reason for their succesfull applications for studying the Euler
and the Navier-Stokes equations is that the method is well suited for analysing the nonlinear term.
The worst term in both the Euler and the Navier-Stokes equations is the nonlinear term v - Vu, which
by using Littlewood-Paley operators can be represented using paraproducts. In such a way one isolates
certain frequency ranges and their interactions which are responsible for possible growth of solutions
to the equations of fluid motion.

The chapter is organized as follows. In section 3.2 we recall the work of Beale-Kato-Majda (1). In
section 3.3 we use Littlewood-Paley operators to prove a theorem similar to one in (1). In section 3.4

we prove a global strong solvability for the Navier-Stokes equations with enough dissipation.

3.2 Theorem of Beale-Kato-Majda

Let u = u(z,t) be the velocity field, and p = p(z,t) the pressure. Then the Euler equations are:

%—i—u-Vu—i—Vp:O, (3.2.1)
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V-u=0. (3.2.2)

It is an outstanding problem of fluid dynamics to find out if solutions of the Euler equations form
singularities in finite time. The answer is “no” in the case of Euler equations in dimension two. But
in three-dimensional space the question is still open.

However the local existence theorem for Euler’s equations is known, and we will state it here

according to the statement given in (1):

Theorem 3.2.1 Suppose an initial velocity field ug is specified in H*(R?), s > 3, with |[uol| fra(msy <
Ny, for some Ny > 0. Then there exists Ty > 0, depending only on Ny, so that (3.2.1), (3.2.2) have a

solution in the class

u € C([0,T]; H¥(R*)) n C'([0,T]; H* =1 (R?)) (3.2.3)

at least for T = Ty(Np).

This theorem does not say if solutions actually lose their regularity.

Analytical and numerical results suggest the connection between the accumulation of vorticity
w = V X u and development of finite time singularities for the three-dimensional Euler equations.
Beale, Kato and Majda in (1) made this connection mathematically rigorous by proving the following

theorem:
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Theorem 3.2.2 Let u be a solution of Euler’s equations (3.2.1), (3.2.2), and suppose there is a time
T, such that the solution cannot be continued in the class (3.2.3) to T = T.. Assume that T, is the

first such time. Then

T*
/ o (8)]| e dt = oo,
0

and in particular

lim sup ||w(t)||ge = o0.
t—T

Thus Theorem 3.2.2 gives a criterion for loss of regularity in the sense that if the solution fails to
be regular past a certain time, then the vorticity must be unbounded.

Here we will present main ideas of the proof of Theorem 3.2.2 following (1). The proof is by
contradiction. Restricted to this chapter H*(R?) is denoted by H?®, and LP(R?), with 1 < p < oo is
denoted by LP.

Let us assume
T
/ lw(®)| e dt < oo. (3.2.4)
0
Then we will show that

Nu(®)||gs < Cy, for all t < T. (3.2.5)
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However (3.2.5) leads to contradiction, because if (3.2.5) could be true then by the local existence

theorem, Theorem 3.2.1, we would be able to extend the original solution past time 7 contrary to the

choice of T,.
The main ingredients of the proof are the following three steps:

Step 1 We bound ||w(t)||z2 by ||w(t)||ze<. In order to to that we start from the vorticity equation:

ow
— . =w- . 3.2.6
5 4+u-Vw=w-Vu ( )

Then we pair in L?(R?) the equation (3.2.6) with w and obtain:

1d
5 g7lwlliz = (w- Vu,w). (3.2.7)

To simplify notation we define m(t) by m(t) = ||w(t)||r~. Now from (3.2.7) by using Cauchy-

Schwartz inequality, Holder inequality and a relation between u and w we obtain the following estimate:
S llwll7: < Cm(D)]|wl]|7.,
which by Gronwall’s inequality implies
AT 1z < llw(O)] 26 fo ™%, (3.28)

Step 2 Now we bound ||u||gs by ||Vu||re~. In particular, we apply the operator D* to equations

(3.2.1), (3.2.2), where « is a multi-index with |a| < s.
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Having introduced

v = D%,
q = D%p,

and

F =D%u-Vu) —u-D*Vu),
we obtain:

% +u-Vo+Vg=—F. (3.2.9)

Then we pair the equation (3.2.9) with v and obtain:

1d
§£mﬁ):—wmy (3.2.10)

By using Gagliardo-Nirenberg inequality we obtain a bound on ||F||;2. Then after summing over

a in (3.2.10) and applying Gronwall’s inequality we have:
lull3re < [1a(0)| e i 119 lzocet (3.2.11)
Step 3 We state the inequality:

IVullree < C{1 + (1 +log||uf[g2)l|w||ze + [lw]lz2}, (3.2.12)
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which gives bound on ||Vu||r~ in terms of ||w||r~ and ||w||z2. The proof of (3.2.12) presented in (1)
uses the Biot-Savart Law and singular integrals approach.

Now we combine (3.2.8), (3.2.11), and (3.2.12) and in such a way we prove (3.2.5).

Here we point out the the inequality (3.2.12) could be proved using Littlewood-Paley operators too.

We present that proof in the following lemma:

Lemma 3.2.3 Under above conditions we have:
[[Vul[pee < C{1+ (1 + log|lul|gs)||w|[re + [lw][z2}-

Proof From the Biot-Savart Law

1 -y

u(r) = “in ) m—yP x w(y)dy,

we conclude that Vu is a singular integral operator of w, and we will denote that operator by Tw.

Now we shall use Littlewood-Paley operators to decompose T'w as

(o0}
Tw= Y PTw.

k=—00

However notice that P;Tw is no more singular and we have:

1P Tw| |1 < || Petw]|10e. (3.2.13)
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Now we develop three different upper bounds on || Pyw||z,. At the end we will compare them and
use each when it is most efficient.

First let us notice that by using (3.2.13), Bernstein’s inequality and definition of H? norm we have:

|PeTwl|re < [|Prw|[ree
3k
< 2% (| P2 (3.2.14)
k
< 27| Pwl|g»
< 275 ||wl| e, (3.2.15)

where the last inequality comes from the cheap Littlewood-Paley inequality.

However for k’s such that

_k
273 |w|[g2 < |lwl|ze, (3.2.16)

(3.2.15) implies:

k
| PuTw|| 1o < 275 [|w]] 100 (3.2.17)

On the other hand for k’s such that

_k
2 3 Jwll gz > [lw]|zee,
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we simple notice that (3.2.13) together with the cheap Littlewood-Paley inequality implies the bound:
| PeTwl||ro < ||w||ree. (3.2.18)

For negative k's we will use the following consequence of (3.2.14) and the cheap Littlewood-Paley

inequality:
| P Tw| |z < 2% [|w]|12. (3.2.19)

Notice that (3.2.16) means k > log 1“#2  Now we combine bounds (3.2.17), (3.2.18) and (3.2.19).
< log

[wl]poo

More precisely we sum over k and use:

o (3.2.17) for k > log 12l

lw[[oe?

e (3.2.18) for k < log a2 and

lwl| oo

e (3.2.19) for negative k’s. Thus we obtain:

w 2
|Tw|[zee < (1 + log ||w||fm Mewl|ze + [|wl]| 2 (3.2.20)

If ||w|/ e > 1 then (3.2.20) implies

[ Twllree < (1 +log [[w]|g2)[|w|[ree + [lwl[L2, (3.2.21)
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while if ||w||z~ < 1 then

(g 112

og
[lwllpes

) - Nwllzee < 1+ (log |lw]|p2)[|wl] =,

which together with (3.2.20) implies the claim of the lemma. ]

3.3 Theorem of Beale-Kato-Majda from Littlewood-Paley perspective

Here we state a theorem which gives a criterion for loss of regularity for the solutions of the Euler

equations. We prove the theorem using Littlewood-Paley operators. More specifically we prove:

Theorem 3.3.1 Let u be a solution of Euler’s equations (3.2.1), (3.2.2), and suppose there is a time
T, such that the solution cannot be continued in the class (3.2.3) to T = T.. Assume that Ty is the
first such time. Then

(L) [ = oo.

Proof Let us assume

l|w(t)||reedt < oo, for all t € [0,T,]. (3.3.1)

Then we will show that

Nu(®)||gs < Cyp, for all t < T. (3.3.2)
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However (3.3.2) leads to contradiction, because if (3.3.2) could be true then by the local existence
theorem, Theorem 3.2.1, we would be able to extend the original solution past time 7 contrary to the
choice of T,.

Let us consider the vorticity equation.

%—L: +u-Vw=w-Vu. (3.3.3)

Now we compute the L2(R?) pairing of the equation (3.3.3) with P]-Qw. We obtain:

1d

5 771 Fiwllis = =(Pj(u- Vw), Piw) + (Pj(w - Vu), Pjw) (3.3.4)

We shall estimate the terms on the right hand side of (3.3.4).

Lemma 3.3.2 Under above conditions we have:

34
1Pj(w - V)2 S [Pjwllr2( Y [[Pwlliee) + D 272 ||Pewl[72.
k<j+4 k>j+4

Proof We rewrite Pj(w - Vu) using “trichotomy”:

Pj(w-Vu) =Hjn+ Hjp + Hju + Hjpn,
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where the low-high part is given by

Hjun = Pj( j{: (Prw) - P V),
k<j—4

the high-low part is given by

Hjp=Pj( Y (Pjw)-PVu),
k<j—4

the low-low part is given by

Hin=P( Y (Pw) BVu)+F( Y (Bw) BVu),
J—4<k<j+4 J—4<k<j+4

and the high-high part is given

Hipn=P;( Y (Pw) - PVu) + Pi( Y (Prw) - PyVu).
k>j+4 k>j+4

We bound the low-high part by using a cheap Littlewood-Paley inequality, triangle inequality and

Holder inequality:

|Hjmllze < |l Y (Pew) - PyVullpe
k<j—4
< 0 [[(Pew) - PjVul| g2
k<j 4
< Y (Pew)llpe - | P Vul |2
k<j4
< NPl (Y [[Prwl|zee).

k<j—4
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In a similar spirit, by using a cheap Littlewood-Paley inequality, triangle inequality and Hoélder

inequality, we bound the high-low term as:

[Hjmllre < 1 Y (Pw) - PiVull

k<j—4

< Y (Pw) - PeVul|p
k<j4

< 0 @)l - 1PVl |
k<j4

< NPl (Y [[Prwllzee).

k<j—4

Also by using a cheap Littlewood-Paley inequality, triangle inequality and Holder inequality, we

obtain the following bound for the low-low part:

[Hjull: S IIPwllr2( D |[Pewlee)-
j—4<k<j+4

In order to bound the high-high part we will first recall that for any functions f, g:
Pi(Pyf - Prg)||lr2 = (P;j(Pyf - Pyg), h)|, where ||h||;2 = 1. Thus by using Cauchy-Schwartz inequality
J J

and Proposition 2.1.1 we obtain:

1P (Prf - Prg)llrz < [(Prf - Prg, Pih)

IN

|| P;h||roe || Py f | £2 || Prgl| 2

IN

3j
22 [[hf| 2 (| P f | 2] Prgll 2

3
= 22|[Pef|lr2l|Pegllre- (3.3.5)



36

Now we apply (3.3.5) with f and g equal to w and Vu respectively. In such a way we obtain a

bound for the high-high part as:

N
| Hjmnllre S 27 || Pl 2.
k>j+4

Combining bounds for Hj 5, Hjp and Hjpp, the claim is proved. [ ]

In a similar way we obtain the following type of bound for the first term of the right hand side of

(3.3.4):

Lemma 3.3.3 Under above conditions we have:

35
(P (u- Vw), Piw)lr2 S [Pjwllre( Y [[Pwllre) + Y 27 ||Pewl|35.
k<j+4 k>j+4

Thus by Lemma 3.3.2 and Lemma 3.3.3, the expression (3.3.4) implies:

d 35
S IPiwllzz S 1Pl S Pwllre) + > 27| Pewl|3s. (3.3.6)
k<j+4 k>j+4

By using Proposition 2.1.1 (Bernstein’s inequality), we see that (3.3.6) implies:

d 3k 3
g [Piwllie S 1Pl > 27 ||Pwllr2) + Y 27 || Puwl[7. (3.3.7)
k<j+4 k>j+4

Now we multiply the inequality (3.3.7) by 9% and we choose a sequence {wy} in such a way that

Z%HPkaLz < wg, as long as wy < 1.
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Then our system (3.3.7) is majorized by the system:

dw;
— =wj2wk+zw,%, when w; < 1, (3.3.8)
k<j k>j
and
wj = 1 once w; reaches 1, (3.3.9)
with the initial condition
w;(0) = 27%. (3.3.10)

Now we will prove a simple lemma which will enable us to majorize the system (3.3.8)-(3.3.10).

Lemma 3.3.4 If {w;} is a sequence of solutions to the system (3.3.8)-(3.3.10) then

wg < Wy,

when k > j, i.e. the sequence {w;} is a decreasing sequence.

Proof It suffices to prove wjy1 < wj.

Note that initially we have:

wj+1(0) = 2ia(j+1) < 27 = wj([)).
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Thus it is enough to prove:

dwj_|_1 dwj

dt dt
Since wj and wj41 are solutions to the system (3.3.8)-(3.3.10) we can calculate dwdjt“ — % and we

obtain:

d(wj — wjt1)

s = 95 _ (5200 - w00,

k<j
and therefore
(w7 = wj)(t) = () = wjs1) (0) e sy x4,
which implies
(wj = wj1)(8) >0,

and the lemma is proved. u

Now from Lemma 3.3.4 we see that the system (3.3.8)-(3.3.10) can be majorized by the system:

% = (3w (3.3.11)

and

wj = 1 once w; reaches 1, (3.3.12)



39

with the initial condition

w;(0) =27, (3.3.13)

Notice that for the system (3.3.11) - (3.3.13) we always have

wjt1 = 27 %wj as long as wj is not yet 1. (3.3.14)

Thus at the time ¢y when wy becomes 1, by shifting the index we are almost in the situation we had at

t = 0 because ws(t;) = 27%. From this point on w; is fixed at 1, so

W, = 1
dw; >
— = 1+ > wiw;.
k=2
At the m! step we have:

dw]' >

—L=(m+ > wp)w;. (3.3.15)
k=m+1

Now we prove the following statement:

Lemma 3.3.5 Let {w;} be a sequence of solution to the system (3.3.11) - (3.3.13). If w1, wo, ..., wm

have already become equal to 1, then wy41 will go from 27% to 1 in time like %
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Proof Since

w1 = 1,
wm = 1,
by recalling (3.3.14) we have
oo
Z Wy = Wngl +2 %Wmat + 27 W + .

k=m+1
< 1427%497% 4

= C. (3.3.16)

Since wp,+1 satisfies (3.3.15) we have

o0

% = (m + Z Wk ) Win 1,
k=m+1
which together with (3.3.16) implies
d
Yl < (e C) w1 (3.3.17)

dt
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We denote the time when w,, becomes equal to 1 by t,,, and similarly we denote by ¢,,1 the time

when wy,+1 becomes equal to 1. Now we integrate (3.3.17) on the time interval [¢,, t;,+1] and conclude

that t,,41 — i is of order % [ ]

Now from Lemma 3.3.5 we conclude that w,,;; will have gone from 2-%(™+1 to 1 in time like

1 1 1
l+-+-+..+— =log m,
2 3 m

and therefore for all ¢ < log m we have
Wiy < 222t (3.3.18)
In the other words for all & > 2! we have
wy, < 22270k, (3.3.19)

We are almost ready to conclude the proof of Theorem 3.3.1. In order to do that we will use the

following two inequalities. The first inequality comes from the conservation of energy for the Euler

equation and can be formulated as:

|Prw||2 < 2F, (3.3.20)



and we will use it for & < 2. However for k > 2! we will use the inequality

2% || Pow| |2 < 2227,

which follows from (3.3.19) by recalling the definition of wy.

Now we notice that (3.3.20) in terms of H®-norm implies

|| Powl| s < 2°F2F for k < 2,

while (3.3.21) implies

|| Pow|| s < 20-0k92'0= % for | > 2t

42

(3.3.21)

(3.3.22)

(3.3.23)

We sum ||Pyw|| s over k and by using (3.3.22), (3.3.23) and a cheap Littlewood-Paley inequality

we obtain:

||wl[fs < 2lo(B+12" 4 Z g(ﬁ—a)k2212_%’
k>2t

and therefore for 8 < o + %

||u|| o1 < constant,

and the theorem is proved.
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3.4 Global strong solvability for the Navier-Stokes equations with enough dissipation

In this section we present a proof of global strong solvability for the Navier-Stokes equations with
enough dissipation. We could think about this proof as about an application of the Sobolev embedding
theorem.

The Navier-Stokes equation with dissipation (—A)® is given by

% +u-Vu+Vp=—(-A)%, (3.4.1)

where u is a time-dependent divergence free vector field in R®. One sets the initial condition
u(z,0) = ug(z) (3.4.2)

where ug(z) € C°(R3).
The well known fact about this is expressed in Proposition 3.4.1. We learned the proof which we

present in this section from Diego Cordoba.
Proposition 3.4.1 If a > %, one has global strong solvability for the system (3.4.1), (3.4.2).

Proof We will use the standard notation that H? denotes the L? Sobolev space over R3 with £
derivatives.

We first recall the energy inequality obtained by pairing the equation (3.4.1) with

1 O(|ull7.) g
5 = AT ullge < llullfe + llullZ.. (34.3)
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From this, we obtain by integrating over time (and observing that the L? norm is always positive),

that if the solution u remains smooth up to time 7', we have the estimate

T
/|m;ﬁ5u+ﬂ.
0

o 2
We now pair (3.4.1) with (—A)wu in order to estimate (H%‘l”l). We obtain

19(/l(=2)7ul2,)
2 ot

Clearly, we must estimate the nonlinear problem term

(u- Vu, (—A)u).

Using Holder’s inequality we have the following estimate

[{u - Vu, (=A)u)| < Jul|ze[[Vull 2 [[(=A)ul[ Lo,

1,1 _ 1
where - 4+ = = =.
p-l-q 5

Now we apply Sobolev embedding theorem to the right-hand side of (3.4.6) and obtain

[{w - Vu, (=A)u)| < ull sy 1) llellmllullacg- 150

+(u- Vu, (=A)u) = —[[(=4) % ul 7.

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)
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Since we are assuming o > 2, we obtain from (3.4.7)
[{u - Vu, (=A)u)| < [ul [ [[ul g [[u][ o (3.4.8)
Applying Cauchy-Schwartz, we get immediately
2 L2 2
lullge llullm [[ull g < dl[ullgrar + Sllullza lull

Combining this with (3.4.5), we get

Olul 7

o S Hullfral[ullfr + [lul72-

In turn, combining this with (3.4.4) and with Gronwall’s inequality gives global solvability. [



CHAPTER 4

DYADIC MODELS AND PARTIAL REGULARITY RESULTS

4.1 Introduction

In this chapter we introduce dyadic models for the equations of fluid motion. We prove partial reg-
ularity result for the dyadic Navier-Stokes equations with hyper-dissipation. In the chapters following
this chapter we will prove the same result for the actual Navier-Stokes equations with hyper-dissipation.
The dyadic model illustrates main ideas used in subsequent chapters in proving an estimate for the
Hausdorff dimension of the set of singular points for the Navier-Stokes equation with hyper-dissipation
at the first time of blow-up.

Also we prove partial regularity result for the dyadic version of the Ladyzhenkaya’s modification
of the Navier-Stokes equation. This proof is slightly different from one for the dyadic Navier-Stokes
equations with hyper-dissipation and requires a more genuine consideration of energy decay.

The dyadic model presented here is an infinite system of ODEs. Each ODE is given in terms of a
wavelet coefficient which describes behavior of the velocity that is localized to a certain frequency range.
Therefore the dyadic model could be understood in a general context of Littelwood-Paley theory. Also
each ODE reflects behavior of the velocity localized in space on a dyadic cube. For such an ODE we
figure out scaling balance between the nonlinear term and the dissipation term. When the dissipation
term dominates the nonlinear term we are in a subcritical situation, and the growth of a solution to

the ODE is controlled. That is all we need, because in the opposite situation, when the nonlinear
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term dominates the dissipation term we use a lemma which gives an upper bound for the Hausdorff
dimension of a “bad” set, provided that we are able to discretize that set in a certain way.

Dyadic models introduced in this chapter have the property of conserved energy, or in the case of
the Navier-Stokes equations the property of energy decay. On the other hand the dyadic models have
the nonlinear term with a built-in dispersive feature. Thus as models they could be useful in studying
global properties of the Navier-Stokes equations.

We note that those models go into a general class of shell models introduced by Gledzer (14) and
Ohkitani-Yamada (34). For a survey of mathematical developments in connection with shell models
see for example Bohr et al (2).

The chapter is organized as follows. In section 4.2 we present preliminaries. In section 4.3 we
introduce dyadic models. Then in sections 4.4 and 4.5 we prove partial regularity results for the dyadic
Navier-Stokes equations with hyper-dissipation and for the dyadic version of the Ladyzhenskaya’s

modification of the Navier-Stokes equations, respectively.

4.2 Preliminaries

Here we will recall the definition of Hausdorff dimension and present a lemma which can be used
as a tool in the process of proving an upper bound on the Hausdorff dimension.
Given any set A C R”, the d-dimensional Hausdorff measure of A, H%(A), is given by:

H(A) = lim C(A),
p—0
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where Cg(A) is defined as:

CYUA) = inf r(B)?.
2 (A) CGCP(A)];C (B)

Here r(B) is the radius of ball B and C,(A) stands for the set of all coverings of A by balls of radius
less than or equal to p.

Having defined Hausdorff measure we can speak about the Hausdorff dimension which is given by:

inf d.
H(4)=0

Our goal is to be able to find an upper bound on the Hausdorff dimension of a certain set. In order
to do that we will use Lemma 4.2.1. Intuitively speaking the lemma gives an upper bound for the
Hausdorff dimension of a certain set, if we are able to discretize the particular set so that at level j it

could be seen as collections of not more than 27¢ balls of radius 277. More precisely:
Lemma 4.2.1 Let Aq,..., Aj,... be a sequence of collections of balls in R" so that each element of

A; has radius 277. Suppose that #(A;) < 274 Define

A =limsup A;,

Jj—00

to be the set of points in infinitely many of the Upca; B’s. Then the Hausdorff dimension of A is at

most d.
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Proof From the definition of the Hausdorff dimension of A we see that is suffices to prove:

HT(A) =0, for all v > d.

Choose j such that 277 < p. Then A can be covered by the Uk>; UBea, B.

Thus
HY(A) <Y 2k H),
k>j
and the limit as j goes to oo of the right hand side is zero whenever vy > d. [ |

4.3 Dyadic model

Here we shall introduce a dyadic model for the equations of fluid motion in three dimensions.

We define a dyadic cube in a standard way. A cube @ in R? is a dyadic cube if its sidelength is an
integer power of 2, 2, and the corners of the cube are on the lattice 2!7Z3.

We let D denote the set of dyadic cubes in R3. We let D; denote the subset of dyadic cubes having

sidelength 277. Abusing notation slightly we define the function

j:D—Z,

by letting j(Q) = j if Q@ € D;. We define Q, the parent of Q, to be the unique dyadic cube in Dj@y—1
which contains Q. For m > 1 we define C™(Q), the mth order grandchildren of @ to be the set of those
cubes in Dj(g)4+m Which are contained in (). We sometimes refer to the first order grandchildren of @

as the children of Q).
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In our dyadic model we consider a scalar valued function u. It is represented by a wavelet expansion:

U = ZquQ,
Q

where {wg} is an orthonormal family of wavelets such that the wavelet w¢ is associated to the spatial
dyadic cube € D;. The wavelet coefficient corresponding to the cube @ is denoted by ug. We will
refer to the values ug as the coefficients of the function w.

We define the dyadic Laplacian A by:
Awg) = 2V wg.
We define ||u||;2 to denote the L? norm of u and for any a > 0, we define
lullg2e = [lullz2 + [[(A) ][>

We define (u,v) to denote the L? pairing of u and v.
We would like to have an operator which will mimic the behavior of the nonlinear term u - Vu.

Note that

1 (Q)
Jwgl[ge= ~ 277, (4.3.1)
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On the other hand

[ Vug|lp2 ~ 27, (4.3.2)

since our wavelets wg’s are orthonormal and localized to the frequencies around 27.

With respect to (4.3.1) and (4.3.2) we define a bilinear operator, the cascade operator, by defining

two pieces from which it is built. The cascade down operator is defined by

5i(Q)
(Cd(u,v))Q:2 2 UQ’UQ

We define the cascade up operator by

G@)+1)
(Culu,v))g =27 ug

Vg’ -
Q'eC(Q)
We define the cascade operator

C(u,v) = Cy(u,v) — Cy(u,v).

Obviously,

(Cu(u,u),u) = (Cy(u,u),u),

which implies

<C(u7u)au> =0. (4.3.3)
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Having defined operator C(u,v) we can speak about dyadic version of the Euler as well as the

Navier-Stokes equations. More precisely by the dyadic Euler equations we mean:

du
7 + C(u,u) = 0.

Now we introduce the dyadic Navier-Stokes equations as:

du
7 + C(u,u) + Au = 0.

Also we could speak about the dyadic Navier-Stokes equations with hyper-dissipation by which we

mean:

du o
n + C(u,u) + (A)*u = 0. (4.3.4)

In a similar fashion we define a dyadic model for the Ladyzhenskaya’s modification of the Navier-

Stokes equations:

— +C(u,u) — div T(D) =0, (4.3.5)

where
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and the stress tensor T satisfies conditions:

(i) [Tiw(D)] < ex(1+[DP*)| D], (4.3.6)

') > yyD? + 1 D*H2H, (4.3.7)

A simple consequence of (4.3.3) is conservation of energy for all four equations, which is an important

feature of the actual equations preserved in the dyadic model.

4.4 Partial regularity for the dyadic Navier-Stokes equations with hyper-dissipation

In this section we will investigate partial regularity results for the equation (4.3.4).

We consider the dyadic Navier-Stokes equation with hyper-dissipation (4.3.4). We would like to
estimate Hausdorff dimension of the set of singular points at the first time of blow up, 7. The nonlinear
term C'(u,u) on scale j looks like 257Ju2Q (if we imagine for a moment that all neighboring cubes have
coefficients of roughly the same size), while the dissipation term gives decay like 22/ ug. This means
that as long as

jug| < 27 5(5—4a),

the growth of ug is under control. We shall call this bound on the coefficients “critical regularity”.

But let us check what happens if |ug| > 9~ 3(5—4a)
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We can rewrite equation (4.3.4) in terms of wavelets coefficients as follows:

dug 5i(Q) oo
a Y caen? ? ugugr — 29 @ug, (4.4.1)
QI’QIIGS(Q)

where £(Q) := {Q,Q} UC'(Q), and

\
(1 fe-0=0
€. =Y -2, Q' =QandQ"€C(Q)
{ 0, otherwise
Vs

L(5—4a)

Having assumed |ug| 2 273l for some time ¢ and assuming that at the initial time ¢ = 0 it is

much smaller, by the smoothness assumption on the initial condition, we integrate (4.4.1) in time on

the interval [0, 7] and obtain for one of the choices of (Q', Q") giving a non-vanishing coefficient:
g (" 454
272 / ‘UQIUQH‘dtZQ_?( - a),
0

which by Cauchy-Schwartz implies:

T 2 (T 2 ! I(5-4
22(/ UQldt)Z(/ UQudt)§ ZJ 27‘7( N a).
0 0
The last expression can be rewritten as:

T T
g2ic( / w2y dt) / wZd)§ 2 2790,
0 0
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This can happen if either
. T .
221‘1/ uddt > 2716749), (4.4.2)
0
or
2290‘/ undt > 2710674, (4.4.3)
0

However having in mind conservation of energy we have

T
e[S wpa s

0 Q at scale j

Thus we conclude that (4.4.2) or (4.4.3) could happen in at most < 2/(°=%®) cubes Q. Now we invoke
Lemma 4.2.1 and conclude that the Hausdorff dimension of the set of points of the equation (4.3.4) at
which critical regularity fails is at most 5 — 4a.

We still need to prove regularity on the interior of a dyadic cube @, provided that one has a little
better than critical regularity at a cube ). Before formulating a lemma which proves such a statement

let us define the graph distance as follows:

Definition 4.4.1 Let Q be a dyadic cube and let Q1 be a cube in C™(Q). We define d(Q1), the graph

distance of Q1 to the boundary of Q by d(Q1) = m.

Then we prove the statement:
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Lemma 4.4.2 Fiz an € > 0. Let ) be a dyadic cube in D;. Suppose we know that for all t < T we

have

lug(t) < 275010,

then for any dyadic cube Q1 C Q of length 2%, we have the estimate

ug, (1) S 27H @, (4.4.4)

where

5 —4a Ed(Ql)
2 + 2

p(Q1) =

Proof The proof we present is by contradiction.

Notice that for all cubes Q; of sidelength 2% we have

lug, (0)] < 271000k, (4.4.5)

i.e. the lemma is satisfied at time ¢ = 0.
Now let #; be the first time at which lemma fails, and let ()1 be one of the cubes at which the

lemma fails. Thus

uo, (t1)| > 27kp(@Q1), 4.4.6
Ql ~
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Having in mind (4.4.5), we can find the time ¢(, being the last time before ¢; when

Jug, (to)| < 2+ 7@+, (4.4.7)

Thus

UQQl (t) > 2k(=20(QU+29)  for all time ¢ such that to < ¢ < #. (4.4.8)

But the lemma is satisfied on the time interval (g, t1).
We multiply the equation (4.4.1) by ug,. We observe that for any time ¢ between t and ¢;, the

dissipation term at the cube () satisfies:

22aku2Q1 z 2(20—20(Q1)+26)k. (4.4.9)

Therefore to reach contradiction it suffices to prove that for any time ¢ on the interval (¢, 1), the

nonlinear term cannot reach the dissipation term, i.e.

5’9(‘@1) 202 26)k
Y cauanan? ? uguugugy S 200 QIR (4.4.10)
1LQIEE(Qr)

where
r ~ \
L, if Q) = QY = Q1

CQ1,Q1,@0) = —22, @, =Q, and Q" € C(Qy)

{ 0, otherwise
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In the rest of the proof we shall use the advantage of the fact that the lemma is satisfied on the
time interval (fg, ;). First notice that by (4.4.4) we have |ug,| < 27#7(QV) for all t € (tg, t1).

Now for any Q2 € £(Q1) we have

d(Q2) > d(Qy) — 1. (4.4.11)

This follows from the definition of £(Q1).
Using (4.4.4) and (4.4.11), we observe that for any Q9 in £(Q1) such that Q2 C @ and for all

t € (to,t1) we have

2*’%’(@2)

N

UQ,

— ed .
_ 2—k(5 24o¢_|_ (QQZ))

— e(d —1
—k(5 24o¢_|_ ( (Q21) ))

IA

2

Q*kﬂ(Ql)Jr%’

and therefore

ug, S 2(7PQ1F3E, (4.4.12)
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Here we remark that in special case when 2, an element of £(Q1), coincides with the cube @Q itself,
we can still obtain (4.4.12). In this case it must be that Q; € C'(Q), and therefore the sidelength of

Q1 is k:=j+ 1, and d(Q1) = 1. Thus by using the assumption of the lemma we obtain

N
B
=

UQ,

X
)
=

—da e(d €
i R St

_ 27’€P(Q1)+k.76 .

On the other hand for any Q2 in £(Q1) we have

(4a—5)k

uQ, S27 7, (4.4.13)

by the lower bound on p.

Thus by using (4.4.12) and (4.4.13) we bound the nonlinear term in the following way:

5k(Q1) 204 € 9 k
Y cquanan? 7 ugugugy S 200t @0k, (4.4.14)
QY EE(Q)

Therefore the nonlinear term cannot contribute to the growth of ug,, and ug, could not have grown

which is a contradiction. [ ]



60

4.5 Partial regularity for a dyadic version of the Ladyzhenskaya’s modification of the

Navier-Stokes equations

Now let us present partial regularity results for a dyadic model of type (4.3.5). Before introducing

our model equation, let us consider the equation (4.3.5) where the stress tensor T is given by:

T(D) = v|D|**D. (4.5.1)

In order to analyze the dissipation term div T'(D) on scale j, we imagine that all neighboring cubes
have wavelet coefficients of approximately the same size. Since L* is an algebra, and our wavelets

wg’s are orthonormal and localized to the frequencies around 27, by recalling (4.3.1) we have:

j(Q) .
| [Vwel™ || < (275 - 20)%, (4.5.2)

and

|| Vawgl|2 ~ 27. (4.5.3)

Thus the maximum dissipation on scale j arising from a dyadic model of the type (4.3.5) with the

stress tensor (4.5.1) gives decay like 27#+2)|yg|2Hug.
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Now we construct the dyadic model for the modified Navier-Stokes equations with dissipative term
of the order 2/(54+2) \uQ|2“uQ at scale j. More precisely, we consider the following equation:

d 5
d—: + c(u,u) — div T(D) = 0, (4.5.4)

where

D = Vu,

and the stress tensor T is such that (div T(D),wgq) = —2/C#+2)|ug|?ug, for all dyadic cubes Q € D;.

We would like to estimate the Hausdorff dimension of the set of singular points for (4.5.4) at the
time 7y of first blow up. In order to introduce a certain critical level of regularity we will imagine that
all neighboring cubes have wavelet coefficients of approximately the same size. Then the nonlinear term
¢(u,u) on scale j looks like 2%1;2@, while the dissipation term on scale j gives decay like 27(54+2) lug | ug.
We note that in terms of scaling the nonlinear term is controlled by the dissipation term on level j as

long as:
215 +2) |y 2041 5 9% 42 (4.5.5)

In order to simplify our notation we denote 1(1-10u) by 7(j). Thus for 0 < u < i+ we can rewrite (4.5.5
( J <3

1-2u)

as:

lug| < 2770).

We call this level of regularity “critical regularity”.
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Here we will investigate what happens if

ugl 2 2770) at the first time 7. (4.5.6)

Thus 77 is introduced as

7 =1inf{7 > 0: Jug(r)| > 2"}

Let 79 be defined as:

10 = sup{7 € [0,71) : lug(7)] < 27", with ¢ < 1}.

Such time 7( exists, because otherwise we would contradict initial condition on ug(0). Thus we have:

lug(t)| 2 27", for all time t € (79, 71). (4.5.7)

We can rewrite equation given with (4.5.4) in terms of wavelets coefficients as an infinite system of

ODEs:

dug _

51(Q) j(5u+2 2
dt Z C(Q’QI’QH)2 2 UQIUQN — 23( pt )‘UQ| “UQ, (458)

Q,Q"EE(Q)



where ( .
1, Q=@ =0
CQ@.en =y 23, Q' =Qand Q"€ CY(Q)
0, otherwise
\ )

A simple consequence of (4.3.3) is conservation of energy for (4.5.8),

T1
97 (51+2) Z / |uQ\2”u2th <L
Q at scale j 0

which is an important feature of this equation that we will use here.

By using our assumption (4.5.7) we have
\UQ|2“U?Q 2 2*2’“"112@ for all time ¢, 7o <t < 7y,

and therefore

9= 2ur h 2dt < h 22 dt < h 2,2 dt
uQal ug|Hugdt < . lug|*ugdt.

70 70

Hence the energy integral (4.5.9) implies:

-
94 (5u+2) 9—2pur Z / ' uédt <1,
7o

Q at scale j
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(4.5.9)

(4.5.10)

(4.5.11)

(4.5.12)
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Having assumed |ug| 2 27" for time ¢, 79 < ¢t < 71, we integrate (4.5.8) in time on the interval

[70, 71]. By recalling the meaning of the symbols < and 2 and by noticing that

, m m 5i(Q)
|23(5u+2)/ UQ|2HUQ5/ Y coeon2  ugugrl. (4.5.13)
70 70 (Q",Q")

we obtain for one of the choices of (Q’', Q") giving a non-vanishing coefficient:

. T1
2"’5/ lugrugn|dt > 277 (4.5.14)
T

0

which by Cauchy-Schwartz implies:

s, (™ o L™ i —r
272 ( 7_ UQ(dt)Q( 7_ UQlldt)2 2 2 . (4515)

0 0

After we multiply both sides of (4.5.15) with 2/(#+2)2-267 it becomes:

2j(5#+2)22lﬂ'(/7—1 UQQ,dt)é(/Tl ué,/dt)% z 27r7%+j(5#+2)*2w“_ (4_5_16)

70 70
With respect to the definition of r, (4.5.16) becomes

T1

s [ ik [ vyt 318 o
70 70
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This can happen if either

s B Ty _1-10p
93(5u+2)9 2;“”/ u%,dt > 9 URETI (4.5.18)
70
or
. T1 _sl-10p
2](5u+2)2—2ur/ UQQ”dt >9 Uy (4.5.19)
70

-1-10
Thus by recalling (4.5.12) we conclude that (4.5.18) or (4.5.19) could happen in at most < 2’ o

cubes (). Now we invoke Lemma 4.2.1 and conclude that the Hausdorff dimension of the set of singular

1—-10p
1-2up

points of (4.3.5) at which critical regularity fails is at most
In order to complete the dyadic heuristic we still need to prove regularity on the interior of a dyadic
cube Q, provided that one has critical regularity for cubes containing it. This could be done in a similar

way as in the case of the equation (4.3.4) and we omit the proof.



CHAPTER 5

LOCALIZED NAVIER-STOKES EQUATIONS WITH HYPER-DISSIPATION

5.1 Introduction

In Chapter 4 we presented the dyadic heuristic which gave an upper bound on the Hausdorff
dimension of the singular set for the dyadic Navier-Stokes equations with hyper-dissipation. Now we

would like to generalize such a result for the actual Navier-Stokes equation with hyper-dissipation:

%—l—u-Vu—i—Vp: —(=A)%u, (5.1.1)

where u is a time-dependent divergence free vector field in R?. One sets the initial condition

u(z,0) = ug(z) (5.1.2)

where ug(z) € C°(R3).

First we need to localize the equation (5.1.1) in frequency and space. We do that in this chapter. In
particular to deal with localization we combine the theory of paramultiplication presented in chapter
2 with the theory of pseudodifferential operators. Once equation (5.1.1) is in a localized form we
analyze the nonlinear term and the dissipation term separately. We obtain an upper bound for the
nonlinear term, and a lower bound for the dissipation term. Then we figure out a balance between

these two terms. For each localization scale we introduce a bad cube as a cube where the nonlinear
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term dominates the dissipation term. However by using covering lemma of Vitali we are able to count
number of bad cubes at each scale, which is enough to obtain an estimate on the Hausdorff dimension
of the singular set. We do all that in this chapter. Then in chapters 6 and 7 we prove regularity outside
of the bad set.

This chapter is organized as follows. In section 5.2 we employ Littlewood-Paley operators and
pseudodifferential operators to localize the equation (5.1.1) in frequency and space. In section 5.3 we
analyze the dissipation term. In section 5.4 we obtain an upper bound on the nonlinear term. In

section 5.5 we describe the singular set and its covering.

5.2 Littlewood Paley theory and Pseudodifferential operators

Here we localize the equation (5.1.1) in frequency and space.

We shall use a standard Littlewood Paley partition of frequency space as introduced in chapter 1.
The idea of Littlewood-Paley theory is that P;f is like a combination of wavelets supported on cubes
of length 277, Bernstein’s inequality is sharp only when a large proportion of the L? energy of P;f is
concentrated in a single one of these cubes. Hence one is led to try to localize P;f in space on such
cubes. However by Heisenberg uncertainty principle we cannot achieve perfect localization both in
frequency and space. It is important to notice that we have some room for error since our goal is a
Hausdorff dimension estimate which is a closed condition. Therefore we fix an € > 0 and never try to
localize better than within 2-7(1=€),

Our localization is nearly perfect if we ignore negligible quantities. More precisely, whenever we are
at scale j, we neglect quantities of size < 27190 gince they will not affect our estimates. Similarly we

neglect operators whose norms are smaller than 2719% provided they will only be applied to functions
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whose norms are < 1. The choice of 100 is arbitrary. It is large enough so that it does not affect the L>°
norm of u. But in fact our techniques for showing quantities are negligible rely on Schwartz function
properties and could give an arbitrary exponent with loss in the constant. The current approach works
well principally because of conservation of energy, since the L2 norm of u is certainly < 1.

Now let us localize in space. For any cube ) with sidelength greater than 9 (1=2¢)

, we define
a bump function ¢g ; which is positive, is bounded above by 1, equals 1 on @ and is 0 outside of

(14 277¢)Q. Further, we require for each multiindex « that there is a constant C, independent of @

so that
|D%pg 5| < Co21*0079), (5.2.1)

We say that any bump function which satisfies estimates (5.2.1) is of type j.

The map ¢q ;P; acts much like a projection, and we shall treat ||¢g ;P;f||r2 as if it were a wavelet
coefficient. When we deal with a cube @ of sidelength 277(1-26) e shall define j(Q) = 7 and we shall
denote ||¢g j)Pjfllr> by fq- Further if j(Q) = j, we say that @ is at level j.

Here we note that ¢ ;P; is a pseudodifferential operator. In order to see that we recall definition

of a pseudodifferential operator according to Taylor (47) .

Definition 5.2.1 We say that the operator

p(z, D) () := / p(,€)f () e
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with a symbol p(x, &) is in class OPS;}}(; if there is a constant C,y such that:
DyDEp(x,€)| < Cap(€)™ P11,

for all a, b, where (£) = (1+\§|2)%, and p,§ € [0,1]. Herem stands for the order of the pseudodifferential

operator, and (p,d) for its type.

Thus ¢¢ ; Pj, with the symbol ¢ j(x)p;(£), is a pseudodifferential operator in class OPS?J_G.

Now we will show that ¢q ;P; is localized in frequency, up to negligible terms.

Proposition 5.2.2 Given f with ||f||;2 < 1, and ¢ a bump function of type j, the quantity
|$P;f — PigP;if||12

s negligible.

Proof Let us define ¢ = ¢ + ¢, where () = X{\§\>ﬁ21}‘£(£)- We have
$P;f — PiPif = 1 Pif — Pigi Pif + ¢oPif — PigaPif.
By our estimates on the derivatives of ¢, we can get

|2 (€)]| = = negligible,
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while, because of the Fourier transform supports,

Pi¢1Pjf = ¢ P;f.

Thus the proposition is proved. [ |

We would like to have a Bernstein’s type inequality for ¢g ;jP; too, i.e. an inequality which allows
us to move from ||¢q ;Pjl|r2 to ||¢q,; Pjl|r~. Combining Bernstein’s inequality itself and Proposition
5.2.2, we get the following extremely useful lemma, which we could think of as “super Bernstein’s

inequality”.

Lemma 5.2.3 Let ¢ be a bump function of type j. Then

)
|¢P;f|l1oe <27 || $P; fl] 12 + negligible.

Proof We neglect negligible terms. Then we have ¢P; f = 15j¢ij, by proposition 5.2.2. We estimate

||P;¢P; f||z~ by Bernstein’s inequality. |

Before formulating the proposition which shows that ¢¢ ;P; is localized in space let us recall asymp-
totic formula for product of two pseudodifferential operators that will be useful in the proof of Propo-
sition 5.2.4. We state the product rule according to (47). More precisely, if p;(z,§) € OPSZ;j(;j, and

0 < dy < p <1 with p = min(py, p2), then

pl(maD)pQ(q}aD) = q(.ﬁC,D) € OPS:}(;+m2’
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with § = max(dy,d2), and

418l
q(z,6) ~ ﬁDfpl(:v,f)Dfpa(xf)- (5.2.2)

B>0
Now we show that ¢g ;P; is localized in space too, up to negligible terms.

Proposition 5.2.4 For any cube Q, we have that for any f with ||f||gs <1 with B < 10 that

1-¢ o )Pi¢q.i@f

(142 )Q.:3(Q)

s negligible.

Proof

(1—-¢ ~6(Q)

(142 )Pid,(Q);

)Q,3(Q)

is a composition of type (1,1 — ¢€) pseudodifferential operators whose symbols have disjoint support.
Thus when we apply formula (5.2.2) the term of order zero is equal to zero, and we are left with higher

order derivatives, which is smoothing. [ |

Notice that the above proposition really says that we can move bump functions across Littlewood
Paley projections as long as the bump functions proliferate and increase in support. In other words,

the proposition can be rewritten as

e P, Sy = P, 0y + negligible.
¢(1+2 J2(Q))Q,j(Q) J¢Q,](Q) J¢Q,J(Q) ghg
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Similarly, this can be used to remove inconvenient bump functions, provided there is a smaller bump

function already present in the expression.

(1-2¢

Proposition 5.2.5 Let C be a covering of a set E by cubes of sidelength 277 ) for some fized j.

Then for any f € L?, we have

IxePiflli < fa.

Qec

Proof We simply observe that

S = /(Z PP > /XEijF.

QecC QecC

Essentially what we have done up to now is to use approximations to projections which are uniformly
pseudodifferential operators of type (1,1 — ¢€). The negligible interaction of distant squares can be just
as well derived from the asymptotic formula for composition of such operators. The composition of two
(1,1 — €) operators whose symbols have disjoint support is infinitely smoothing and hence negligible.

Now we are ready to write a localized form of the Navier-Stokes equations with hyper-dissipation.
Let u be a solution to the equation (5.1.1).

In light of divergence-free condition V - u = 0, we can rewrite (5.1.1) as

e +T(u-Vu) = —(—A)%, (5.2.3)
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where T is the projection into divergence free vector fields. The operator T' is a singular integral

operator and is also a Fourier multiplier. We pick a cube @ of side length 9i(1-2¢)

L? pairing of the equation with PjngQQ’iju. We obtain the energy estimate

We shall estimate the two terms on the right hand side of (5.2.4) separately.

5.3 Dissipation

In this section we analyze the dissipation term

((=A)%u, Piggy ; Pyu).

As before we use the notation

This has the advantage that

and compute the

(5.2.4)

We make some definitions. We define for each cube @, the set N''(Q), the nuclear family of Q to

be a union of sets Ag, Bg, Cg, Dg, Eg, where Ag, Bg,Cq, Dq, Eq are covers of Q= (1+ 2_TEJ)Q by
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fewer than 1024 cubes each at levels respectively j — 2,57 — 1,4,7 + 1, and j 4+ 2. We define recursively

N Q) to be the union of all N'1(Q') for all Q' € N'~(Q). Thus in particular, we have

#N'(Q)) < 2",

since 5(210) < 213,

Now we are ready to state and prove the lower bound on the dissipation term:

Proposition 5.3.1 Let Q be a cube and j = j(Q). Then
((—A)o‘u,PjﬁQ’iju) > c22°‘ju2Q — 229 Z UQQ/ — negligible (5.3.1)
Q'eEN'(Q)

Proof Note that

(=A)*u, Py jPju) = (i Pj(—A)%u, g, Pju)
= ((=A)%¢q.;Pju, pq,j Piu) + ([¢q,;i P (—A)%u, ¢q,; Pju)

= X+Y.



75

Note that

X = ((—A)%¢q,;Pju, pq.;Pju)
= [[(-A)2¢q,Pull}.
> 2°||Pipq i Pull;e

= 22aju2Q — negligible,

where the last equality follows from Proposition 5.2.2.
To estimate Y we shall use (5.2.2). Let py(z,&) be a symbol of (—A)?%, let ps(x,£) be a symbol of

$q.;Pj, and q(z,&) be a symbol of [(—=A)?%, ¢g,;P;]. Then we have:

\5\ ;1B \
q(z,§) ~ ZZ plef D py(z,€) — ZZ ;02335 Dipi(z.¢)

6>0 5>o

[pl (:E, £)p2 (:E, 5) - pQ(xa £)p1 (:E, 5)]

[%ng(%é’)D:pm(%f) - %DﬁpQ(%f)Dmpl(x’g)]

+ (5 PP @, Dipa(,) ~ (5 Dl ) D2 2. ).

22)

Since ¢ ; P; is a pseudodifferential operator in the class OPS?J_G, and (—A)® is a pseudodifferential

operator in the class OPS?% - the asymptotic formula for g(z, {) implies:

(o, )] < 5= + (o

211

)2<£>(2a—26) + .
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Thus we observe that [¢g ;Pj, (—A)?] is of order 2« — e. Further by Proposition 5.2.2, we have

(60, P, (=A)*1P; — [$q,;P;, (—A)*] = negligible.

Even further, applying Proposition 5.2.4, we get

Y = ([¢q.; P (—A)akﬁ@’jpju, $q,j Pju) + negligible.

Now applying the mapping properties of operators of order 2« — € we get
Y| <2009 gg Piull12|l$q,; Prul 2
which for any number K, by Cauchy Schwartz implies
Y| S 2% + K202 Pyl

Now applying Proposition 5.2.5, we get the desired result.

Let us define for every I,

2 _ 2
Unig) = DL Uy
Q' eNHQ)

Then we have

(5.3.2)
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Corollary 5.8.2 Let Q be a cube and j = j(Q). Then for anyl,

Z ((—A)Yu, Pj(]SQQ/’ijU) > CQQQjU?\fl(Q) — 02(204726)]‘“3\/”1(@) — negligible

Q'eN(Q)
(5.3.3)
Proof Simply sum proposition 5.3.1 over N (Q). [ |
We want to use Proposition 5.3.1 to fight against the growth of ug. Thus the term 2(20‘_25)7112@
would appear to be a serious nuisance. However heuristically speaking if the term 2(20‘_25)7u2Q, is

too large compared to the first term on the right-hand side of Proposition 5.3.1 we can extend our

consideration from a cube Q' to its nuclear family AV'(Q’). Then if the term 2(20‘_25)7uj2\/(Q,) is still to

large we go from N (Q') to its nuclear family and so on up to N*(Q'). However we will have to stop at
some point because of conservation of energy. We make this precise by the following lemma, which we

call “good neighbors”.

Lemma 5.3.3 For any interval of time .J C [0,T] and any cube Q we may find an 1 < %L so that

€

/J“i/l(Q)dt + negligible 2> 9—€j /JuiﬂH(Q)dt. (5.3.4)

< 400
—_— €

Proof By conservation of energy, for every [ and every ¢ we have,

wyng) S 1
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Since our constants can depend on T' this means

2
u dt < 1.
/J NTH(@)

400

Now suppose the lemma is false. Applying the opposite of (5.3.4), for [ =1... 5>, we get
/Juim(Q)dt + negligible < 27399 = negligible,
which implies that (5.3.4) holds for [ = 1. ]

We will be able to apply Lemma 5.3.3 together with Corollary 5.3.2 to show that for any cube and

any interval in time, there is an /th iterated nuclear family for small [ which is undergoing dissipation.

5.4 An upper bound on the nonlinear term

Now we turn our attention to the term

GQ = <—T(U : VU), P](]SQQJPJ’U)

We rewrite it as

Gq = (—¢q, PjTP;(u- Vu), ¢g,; Pju).

Now we use the “trichotomy”. We can write

Pj(u-Vu) = Hj, + Hjp + Hjpp + Hige,



79

where the low-high part is given by

Hjin = Z Py((Pgu) - P;Vu),

k<j71°€°0

the high-low part is given by

Hj= Y, Pi((Pju): PVu),

k<j710€00

the high-high part is given

Hipn= Y. Pi((Pu) PVu)+ Y. Pi(Pu)- PVu),
k>j+1800 k> 1000

(technically that was the end of the trichotomy) and the local part is given by

Hpo = Y P(Bw) - BVu) + > Pi(Pw)- BVu).
1990 g4 1900 1900 4 1900

Now we break up G in the obvious way:

Gqo = Gqun + G + Gonn + GQloc

where

Gon = (—$qiPyTHjun, bq.;Piu),

Gom = (—$qiPyTHjn, bq.;Piu),
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Gonn = (=00, PyTH; pnoq,; Pyu),

G Qo = (~$Q i PyT Hjtoc; . Piu).

Our goal is to find an upper bound on Gg. Now fixing @ and j we would like to estimate each of
Goun Gonis Gg,hh, and Gg joc. Before going into details let us intuitively explain how we obtain these
bounds. For example let us heuristically discuss how we obtain a bound on G 5. We remark that we
are on the level of pieces localized in frequency, i.e. on the level of Littlewood-Paley operators. Then

we need to estimate L?-norm of the product:

| Py - PjVul|zs, (5.4.1)

where k stands for a low frequency part, and j for a high frequency part. First we apply the Holder
inequality,

1f - gl < Wl z2lgllze,

having in mind that we shall choose a function g to be one of Pu, IsjVu so that we can apply
Bernstein’s inequality on ||g||z~ in the most efficient way. Since Bernstein’s inequality is more efficient
when applied on low-frequency part we choose a function g to be Pyu, while we choose ﬁjVu to be f
in Hoélder’s inequality. All this is on the level of Littlewood-Paley operators only. Indeed we deal with
pieces localized in frequency and space too, and instead of P,u we shall be able to deal with ¢;Pju.

However thanks to the calculus developed in section 5.2, we are able to use the idea just described. In
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such a way by employing Holder and “super-Bernstein’s” inequalities we obtain an upper bound for

the actual Gg.

We take a moment to be careful about how we localize. For any k < j, define Qj = 20~F(1-26) ()

—ek

For any k > j (including j) define Qx = (1 +272 )Q.

Then we have

Lemma 5.4.1 For any 6 >0

. 1000
j— =

‘GQ,lh‘ + |GQ,hl| 5 Z Q%JrjUQku/\ﬂ(Q)UQ + 2j(1+%)uN1(Q)uQ + negligible.
k=0j

Proof We consider for k < j — @, the relevant expression

Gounk = (—¢0,; PiT(PyuP;Vu), ¢q;Pju).

We divide this into two cases which are k < 67 and & > dj. In the second case, we use the idea of

Proposition 5.2.4 (we just have to use a higher degree of smoothing than is used in that proposition)

to observe

Gk = (00 PT (¢, xPr)u - V(da, ;Pu)), ¢o,;Pju) + negligible.

(This is because V acts on ¢q,,; only where it has a negligible effect on the whole quantity by Propo-

sition 5.2.4.) Now we simply observe by Proposition 5.2.3 that

3k
b,k Prul| = < 272 ug, + negligible,
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and by Proposition 5.2.4, the proof of Proposition 5.2.2 (to control the action of V) and Proposition
5.2.5 that

|W¢Qj,j15ju\|L2 S 2jUN1(Q) + negligible.

On the other hand for the first case, there is no point in localizing to Q) because k is too small and

so the error is too big. Thus in in this case, we simply estimate

355 344
| Peul| e S 277 ug, S2°7
This last application of conservation of energy accounts for the peculiar homogeneity of our result. We
are pleased to control the energy in very large scales by 1.
Summing these estimates gives the desired bound for G ;5. The bound for G 5; proceeds likewise

(and gives a better estimate since the derivative falls on the level k term.)

Lemma 5.4.2

57‘]. . .
‘GQ,loc| S22 UQU;@(Q) + negligible.

Proof From the definition of G j,. we have:

., 1000 ., 1000
2 It A

Garoe= Y [ D>, (bQiPiT(Peyiu-VPu),dgPiu)+ Y (BT (Peu- VPiiuw), do,;Piu)l.

l==2 f—j— 1000 =g — 1000
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Since the above sum has only < 1 many terms by applying Proposition 5.2.4, we observe that for

some particular values of k, |
G quocl S D@ PiT(dq; i Pru - 6q; 5V Prtiv). ¢o,;Pju)| + negligible.
Now we apply Proposition 5.2.3 together with Cauchy Schwartz to obtain
0,5 Psullre < 2% ||bq, ;Peull 2 + negligible.
Using Proposition 5.2.5, we observe that

HQSQ]',]'PkUHm ,S uNmeoo @

Finally direct calculation shows

1bq, .V Prtrullze < |\V¢(1+27361 )Qj’ijHUH S Puy 100 o) + negligible,

where the first inequality comes from the fact that ¢(1+2$)Q =1 on the support of ¢q; ; and the
jsJ
second inequality comes again from Proposition 5.2.5. Combining all these estimates proves the lemma.

Lemma 5.4.3

U4k
Goml S Y. ug2? lgq; , Peull7s-
k>j+1020
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Proof We begin similarly to before by estimating
<¢QJP]'T(P]€U . Vﬁku), (ZSQJ‘PJ‘U).

With the other terms one can proceed likewise. Now, similarly to what we have already done, we

observe that we can write this as,

<¢Q’ijT(¢Qj ,iju . V¢Qj,j]5ku), ¢Q’iju) + negligible.

Now we estimate
¢, Pjullre < 27 ug + negligible,
. 2
IVéq,.iPrullr: S 2k Z 1$q, i Peyiul|r2 + negligible.
[=—2

Combining these estimates gives the desired inequality. [ |

In fact, we get a slightly better estimate, for instance by the div-curl lemma, but it does not seem
to be necessary.

The previous three lemmas are somewhat wasteful, particularly in the definition of the local part.
We are using more squares than we need to cover. For the result of the chapter 6 we need a somewhat
more efficient decomposition, which is proved in exactly the same way. We formulate it here.

For Q a cube at level j, we define the ancestors of @),

A(Q) = {Qr}ejckcj—a-
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For k > j — 4, we define the collection Si(Q) to be a covering (with overlap < 1) of the cube Q;_4 by

cubes at level k. We define the strict extended family

- 1000
I+

Q= J S,

k=j—4
and we define F(Q), the followers of @) by
FQ= U s@-
k>j+ 100
Then applying the same estimates as in the proofs of lemmas 5.4.1, 5.4.2 and 5.4.3, to a slightly

different decomposition we obtain

Corollary 5.4.4 For any § > 0 we can estimate
(143
Gq S Zqmn + Zqoc + Zawm + 22D uquan g,

where

iy 3k
ZQ,lhhl = Z Z 2]+ 2 UQ,uQ uQ,
k<j—4Q'eN(Q)

and

5]
ZQue=2% ), uqQuguqr,
Q'QeE(Q)
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and finally

33
ZQ,hh = Z 272 +kUQ UQQ/.
k> 1800 Q'eSk(Q)

Proof This time we define:

H;,hh = Z PJ((I-N’ku) PkVu) + Z PJ((Pku) 'kau)n

k> j+1000 k>4 1000
and
Hlloc: Z PJ((PkU) 'kau)+ Z PJ((Pku) PkVu),
J-A<k<j+2020 j—4<k<j+1000

Now we break up G¢ in the obvious way:

Go = Gou+Gonm+Gonn+ Gooc

where

GIQ,lh = <_¢Q,ijTH]",lha ¢Q,ijU>a
GIQ,hl = <_¢Q,ijTH]",hla ¢Q,ijU>a

G’Q,hh = <_¢Q,ijTH]",hh¢Q,iju>a
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G joc = (—¢Qi PiTH; o0s bq,j Pjut).

Now we simply estimate each of the G"’s as before.

5.5 Singular set

In this section for each scale j we introduce notion of a bad cube, and a bad set. Intuitively bad
cube is a cube on which the nonlinear term dominates the dissipation term, while bad set is a certain
union of bad cubes at scale 7. On each scale j we shall use Vitali’s lemma to cover the corresponding
bad set. We shall be able to count elements of these coverings, and that will imply the bound on
Hausdorff dimension of our singular set.

Now we are ready to describe our singular set. We will say that a cube Q of sidelength 2-7(1-2) jg

bad if

T
/ /Z22&k|¢Q,kPkU|2 2 2—(5—4&)j—100€j. (5.5.1)
0

k>j

Let E; be the union of 2@62 for all cubes @) of sidelength 2-9(1=2¢) which are bad.

We will need the following well known covering lemma of Vitali (see (44)):

Lemma 5.5.1 Let C be any collection of cubes, then there is a subcollection C' so that any two cubes

in C' are pairwise disjoint and so that

UJec lse

Qec Qec’
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Proposition 5.5.2 There is covering Q; of Ej by cubes of sidelength 2-3(1-2) 50 that
#(Qg) < 2(574a)j+10(]ej.

Proof Let C be the collection of cubes 2Q) where () is a bad cube at level 5. ;From Lemma 5.5.1 we
know that there are disjoint cubes {2Q),},cz such that the collection consisting of {10Q),} covers the
set E;. Any cube of sidelength 10 - 2-3(1-2) can be covered by 1000 cubes of sidelength 277(1=2¢) (and
1000 is a constant.) We will define Q; to be the covering formed by the union of the thousandths of

the elements of {10Q,} .

In order to count cubes in Q; it is enough to count the disjoint cubes used in the construction of
Qj.

However we know since the 2Q),’s are disjoint that

T T
SY [ 2tbo,unal < [ [1anpP s (55.2)
14 k

by conservation of energy, while we know

T
ZZ/H 22ak‘¢Qp,kPjU‘2 > #(Qj)27(574a)y710053 (5.5.3)
Pk

by the badness of the cubes.

Combining the inequalities (5.5.2) and (5.5.3) implies the claim. ]

We pause for a moment to apply Lemma 4.2.1.
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Corollary 5.5.3 The dimension of E = limsup,__,, Fj is bounded by 5 — 4o + O(e).

If we could show that if x ¢ F then z is a regular point of u at time T - in other words that

lim sup |u(z,t)] < .
t—sT

(Indeed if we could show it is a regular point for a derivative of u of any fixed order) this would

immediately imply Theorem 1.2.2.



CHAPTER 6

CRITICAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS WITH

HYPER-DISSIPATION

6.1 Introduction

We continue to consider the Navier-Stokes equations with hyper-dissipation. In this chapter for
each scale of frequency localization j, we prove a certain level of regularity, which is valid away from
the corresponding bad set. This level of regularity shall express a balance between the nonlinear and
the dissipation terms as in the case of the dyadic Navier-Stokes equations with hyper-dissipation.

Let E be defined as in the previous chapter, i.e.

E = limsup Ej,
j—00
where E; stands for the bad set at scale j.

First we investigate what are the immediate consequences of z ¢ E. Saying that x ¢ E is the same
as saying that there exists a j so that so that for any k > j, we have z ¢ Ej. Denote F; as the set
of points with this property. To prove a regularity statement about F, it suffices to show that that
statement holds for any jo, provided z € F},. However fixing j, we may change our constants in the
definition of bad square so that z is not contained in any bad squares. Thus we may as well assume =z
is contained in no bad squares. This will be our hypothesis in this chapter. (And, the constants will

now depend on jj.)

90
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Now we would like to introduce a level of regularity which intuitively separates the bad set from its
complement. As in the dyadic heuristic as long as the dissipation term dominates the nonlinear term
the growth of ug should be under control. Heuristically, the worst part of the nonlinear part G is
G Q,10c Which looks at scale j like 257Ju?é On the other hand, dissipation gives decay like 22aju2Q. This
should mean that as long as ug < 22(0‘7%)j, the growth of ugp ought to be under control. It is this

estimate which we will show in the following section for any () not contained in Ej, for any k& > jg.

6.2  Critical regularity theorem

Theorem 6.2.1 Let ) be as above, then there is a constant C, depending only on T, the initial

conditions for u, the constant in the definition of badness, and jo so that

ug(t) < C22=1-5)i(Q),

Proof We proceed by contradiction. Suppose the theorem is false. We let Ty be the first time and @

be the largest cube so that

ug(Ty) > €220~ 1-5)i

Now since our initial data is smooth, at the initial time, (since j is chosen sufficiently large), we

have

uq(0) S 2710, (6.2.1)
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Recall that in chapter 5 we wrote a localized version of the energy equation for the Navier-Stokes

equation in the form:

ugy = (=T(u-Vu), Pjd jPju) — ((=A)u, P} ;Pju),

N | —
SN

which was by introducing Gg rewritten as

1d N
Eﬁuz =Gg — ((—4) u,Pjgz%’iju).

Therefore having in mind the lower bound on the dissipation term

(—A)u, Pjg jPju) > c2°®ugy — 207297 3" 2, — negligible
Q'EN(Q)

as well as (6.2.1), it must be the case that

Ty ' , N
/ (GQ(t) . C22a]U2Q + C2(20-2¢)] Z U2Q/)dt > 24(047%75)].
’ Q'eEN(Q)

By using the “good neighbors” proposition, we can replace @ by an extended nuclear family N'(Q),
with I < 42 for which

T T
/0 (—e2u(g) + O2 sy )t S _/0 2 gy

For the current theorem, this is all we need. Since upri(@) also begins < 2710007 we must have
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NN

7o 4( £); T oaj. 2
i G () (t)dt 2 27 2’+/0 2% U )

where we define

Gri)() = Y. Gg (1)
QIENH(Q)

Since there are only < 1 cubes in A(Q), for this to be the case, there must be a Q so that

~

7o 5 €V, T .
GQ“(t)dt > 24(04_2_5)9 + / 22aju2
0 0

We contradict this by using Lemmas 5.4.1, 5.4.2, and 5.4.3 to estimate GQ. By our definition of

Ej, the cube Q is contained in no larger bad squares.

< 92(a=5-5)j

Each estimate contains a factor of ug which we take out using the estimate |uQ ,

which we get from the definition of Tj.

First let Q; be a nuclear family member of Q and Q, be a distant ancestor at level k. Suppose
k < 07, we see that 2(1+%)qu1 < 22ajuNl(Q). Thus we need not worry about this term.

Suppose k > d7. We must estimate

T .
/0 27+JUQ1UQ2dt.

Note that both @)1 and Q9 are good squares. Thus we have the estimates

T
3k, 2 2a—2)k—10¢ek
/02 ud, < 20 Dh-10ck
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and

T
A 227’“2@1 < 2(2&—3)]—1067.

Applying Cauchy-Schwartz, we get (using o > 1)

T
/ 2%+jUQ1UQ2dt < 2(4a2_5)j_10€j.
0

Summing over (there are only j terms) provides the desired estimate on GQ’M + GQ,lh' We can estimate

1000.)

€

GQ,loc in the same way (by allowing k as large as j +
We are left to estimate GQ nhe We fix a scale k > j and pick ks within 2 of k. Now we are left to

estimate

To 3
/0 2%+ |, Pt |2 |95, Petl |12

However since Q is a good square, we have
20k 2 4a—5)j—10€j
[ 250, Pl < 2910,

Thus

/2k+%i|¢é kPkU|2 < 2(40‘2*5)3'7106]'7(20471)(1973‘)’

which is an estimate that decays geometrically in £ when o > % By using the similar estimate for ks,

applying Cauchy Schwartz and summing over k, we get the desired result. [ |



CHAPTER 7

BARRIER ESTIMATE FOR THE NAVIER-STOKES EQUATIONS WITH

HYPER-DISSIPATION

7.1 Introduction

In this chapter we finish the proof of the main theorem by proving that a solution of the Navier-
Stokes equations with hyper-dissipation is regular outside of a certain bad set. Ideally we would like
to prove that if z ¢ E then

lim sup |u(z,t)| < oo.
t—sT

However due to a combinatorial issue we shall prove the same statement for a somewhat larger collection
than one which covers the set F.

We shall prove regularity far inside a cube ) provided that one has a little better than critical
regularity for the cube @) as well as smooth initial data. By “a little better than critical regularity for
the cube )7 we mean:

e critical regularity for all cubes containing our cube @), and

e critical regularity for all boundary cubes of the cube Q.

The last one which we could think of as a “safe boundary condition” imposes the restriction on a which
isa>1.

Now we shall prove a statement which verifies the “safe boundary condition”. We do that in section

7.2. Then in section 7.3 we prove a barrier estimate which guarantees regularity far inside the cube Q.

95



96

7.2 Combinatorics

Here we shall verify that we can replace our cube ) with a slightly smaller cube whose boundary is
away from the singular set. Let us think heuristically about the boundary of our cube ). Since we are
in R? the boundary of the cube @ is 2-dimensional. However the dimension of the singular set is 5 — 4«
and this number is smaller than 1, provided that @ > 1. Now we need to assure that 2-dimensional
boundary does not intersect the singular set whose dimension is less than 1. We can do that because
we are in 3 dimensions. In other words we will replace our cube @) with slightly smaller cube with
safe boundary. More precisely, we prove the theorem which guarantees the existence of a number r,
% < r < 1 such that the cube r@ would have a nice boundary, i.e. boundary which is away from a
certain bad set.

We begin with the set E; which is the union of a collection Q; of cubes with sidelength 9~ (1-20)j

having cardinality < 20-4e+10097  (We assume 4a — 4 > 200¢.)

Theorem 7.2.1 There exists a sequence of collections Q;- of cubes of sidelength 2~ (1=26)7 wjth #(Q'J) <
2(5-4a+1006)j g that for any Q of length 2= (=297 which does not intersect any element Q; there exists

a number % < r < 1 with the following property: For no k > j is there Q € Q; so that

100Q N A(rQ) # 0 (7.2.1)

Proof We refer to the elements of Q; as the bad cubes. We say that a cube of sidelength 2-(1=2¢)j jq
very bad if either it intersects a bad cube of the same length or it intersects more than ¢2(5—4a+150€)(k—j)

elements of 1009, for some k > 5 with ¢ a small constant to be specified later. Let E; be the union
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(1-29)j  then by the estimates on the cardinality of the Q;’s and by

of all very bad cubes of length 2~
the Vitali lemma, we can see that that E; can be covered by < 200-4a+1009)j cybes of length 2~ (1267,
We refer to these cubes as Q). Now we need only prove (7.2.1).

Let Q be a cube of length 2-(1=26)7 which does not intersect E; Let D*(Q) be the set of elements

of 100Q;, which intersect (). Then we have the estimate
#(Dk(Q)) < c2(5—4a+1505)(k—j)_

Let fi(r) be the function defined from 1 to 1 which counts how many elements of D*((Q)) intersect
d(rQ). For each Q' € D¥(Q) define rg to be that number so that the center of Q' lies on d(r¢g Q).

Then

Jr(r) < Z X(rgr—100(200=2)G=k)) r oy +100(2(1 260G —F))) -
Q'eDH(Q)

Thus

/()1 < 200c2(4a—4-1520(—k),

Since 4a — 4 > 200¢, this estimate decays geometrically with k. By choosing ¢ sufficiently small, we

may arrange that

1
HkaHLl <7

k>j

Thus by Tchebychev’s inequality,

=

{r 1D fulr)) > 1)

k>j

IN
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Therefore having in mind that fi(r) is integer valued, we conclude that there must be a value of r

between % and 1 so that fi(r) = 0 for all £ > j. This is the value of r that we choose. [

7.3 Barrier estimate

In this section, we prove regularity on the interior of a cube @, provided that one has critical
regularity for cubes containing it and cubes @’ for which 0Q N 100Q" # 0.
If Q is a cube and Q1 C @, we define d(Q), the graph distance of @1 to the boundary of @ by

d(Q1) =k — 1, where k is the smallest positive integer so that

2kQ1 NoQ # 0.

Lemma 7.3.1 Let QQ be a cube. Suppose we know that for all t < T we have that for any cube Q' so

that Q C Q' with sidelength of Q' being 2~'1729  we have that

574a+2s)

ugr () S 27107,

and suppose further that for any Q' so that 100Q' N AQ # O with sidelength of Q' being 2-'1=2€) and

I > 7 —2, we have that

574a+2s)

ugr () S 27107,

then for any Q1 C Q of length 27%0=29) we have the estimate

ug, ()] 2749V, (7.3.1)
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where

5—4da+ 2 N e(d(@Q1) — 5)

).

Proof The proof we present is by contradiction.

Notice that for all cubes Q; of sidelength 2~ (1=20% we have
lug, (0)] < 271, (7.3.2)

i.e. the lemma is satisfied at time ¢ = 0.
Let t1 be the first time at which the lemma fails and ;1 be one of the cubes for which it fails. Tt

must be the case by hypothesis that 32Q); does not intersect Q. Then we have
UQ1(t1) ~ 27kP(QV),
Having in mind (7.3.2), we can find the time %y, being the last time before ¢; when
ug, (to) < 9k(=p(Q1)+15)
Then we have
hd ~2kp(Q1)
/ ) 227, (7.3.3)
to

However on the time interval (¢p,¢;) the lemma is satisfied.
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We will invoke Corollary 5.4.4. Now for any Qs € £(Q1) we have

d(Qs) > d(Q1) — 5. (7.3.4)

This is because Qy C 32Q;. Further for any ancestor Q3 € A(Q;) with Q3 having sidelength 2-(1=2)!,

with ek <1 <k —4,
d(Q3) > d(Q1) — 5(k —1). (7.3.5)

Further for any follower Q4 € F(Q1) (that is a cube which contributes to Gg, ps and is in particular

contained in %Ql) of Q; with Q4 having sidelength 2-(=29! with | > k + @, we have

I -k

d(Q4) > d(Q1) + (T) (7.3.6)

Applying (7.3.6), we conclude that p(Q4) = 10. Thus we conclude
ZQihh S Z 2%23(17,6)272012(*P(Q1)+ﬁ)k’
>k

by counting the elements of S;(Q) by 23(¢~*). Calculating, we find

Zag, i S 27 (FHQDK,

which since p(Q1) < 10, cannot possibly account for (7.3.3).
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Now applying (7.3.4) to Proposition 5.3.1, we observe that for any ¢ between ty and t;, we have

dissipation at () of

z 22aku2Ql(t) z 2(2‘1—29(@1)+§)k.

Thus to reach a contradiction, it suffices to show that on this time interval

ZQl,hllh + ZQ1,loc S 2(2a—2p(Q1)+§)k.

For this reason we can also ignore the ultra-low term 2j(1+%5)quuN1(Ql) in Corollary 5.4.4.
In the rest of the proof we shall use the advantage of the fact that the lemma is satisfied on the
time interval (tg, ;). First notice that by (7.3.1) we have |ug,| < 27#°(@1), for all ¢ € [tg, t1].

Using (7.3.1) and (7.3.4), we observe that for any Q2 in £(Q1) and for all ¢ € [tg, 1] we have

—kp(Q
UQo 5 2 (@)
—4a42¢ , €(d —
_ 2719(5 42+z + ( (QS%) 5))
—4 e €(d(Q1)-5) ke
< 9RO ST+

_ 27kﬂ(Q1)+11%’

and therefore

ug, $ 2P @R, (7.3.7)
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On the other hand for any Q2 in £(Q1) we have

(da—5—2¢)k
ug, S 2 2 , (7.3.8)
by the lower bound on p.

Thus by using (7.3.7) and (7.3.8) we bound Zg, jo¢

ZQ1,loc 5 Z Q%UQQUQIQUQl 5 2(2(174?6*29(@1))’6‘
Q2,Q5€£(Q1)

Thus Zg, joc cannot contribute to the growth.
Now to estimate Zg, nin, we observe that for Q) € N''(Q;) we have the estimate
un < 2(=p(Q1)+5)k
Ql ~ b
while for ancestor Q3 of sidelength 2=(1=29! we apply (7.3.5) (as well as the hypotheses of the lemma
for squares larger than Q)

(da—5—2¢e)k 3_ _
UQs S D E— +(5—100¢)(k l)’

since of course % > 5_24a + 200e. Now we just estimate

3L _de
ZQuhith S Z Z 22 JrkuQ’1uQ3uQ1 S p(2a=5 —20(Qu)k,
l

Thus ug, could not have grown which is a contradiction. [
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But now we have in fact proven the main theorem. We define E'; as in section 7.2. We need to show
that u is regular at any = not contained in any E'; with j larger than some integer j,. By changing our
constants, we can say x is not in any E; Now by theorems 6.2.1 and 7.2.1, for any cube @) centered
at z, we can find a cube almost half as large which satisfies the hypotheses of Lemma 7.3.1. But the
conclusion of the lemma implies that x is a regular point. Thus any singular point must be contained
in £ = limsup E}. By lemma 4.2.1, we have dim(E) < 5 — 4a + 20¢. Letting € tend towards 0, we get

Theorem 1.2.2.



CHAPTER 8

DYADIC MODELS AND BLOW-UP RESULTS

8.1 Introduction

In this chapter we revisit the dyadic model for the Euler equations and the Navier-Stokes equations
with hyper-dissipation in three dimenison. For the dyadic Euler equations we prove finite time blow-
up. In the context of the dyadic Navier-Stokes equations with hyper-dissipation we prove finite time
blow-up in case when the dissipation degree is sufficiently small.

For both the dyadic Euler and the dyadic Navier-Stokes equations with hyper-dissipation we prove
an estimate which gives a lower bound on the nonlinear term. Notice that in the context of partial
regularity results presented in previous chapters we always used an upper bound on the nonlinear term.
Then we calculated a balance betwwen the nonlinear and the dissipation term. However for the blow-
up results one needs a lower bound on the nonlinear term. Such a bound describes concentration of
energy sufficient to produce a blow-up. We prove for the dyadic model that a lower bound guarantees
blow-up, provided that the dissipation degree is small. However we are not able to produce such a
lower bound for the actual equations themselves.

Before going into details let us recall the model. Following the notation introduced in chapter 4, we

use the bilinear operator C(u,v), which is built from two pieces, C,(u,v) and Cy(u,v), and we have:

104
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@)+
(Culuu)g=2""""ug 3 ug,
Q'eCl(Q)

C(u,u) = Cy(u,u) — Cq(u,u).

Clearly we always have antisymmetry in the sense that
(C(u,u), u) = 0.

We shall say that a time varying “function” wu satisfies the dyadic Euler equation provided that

du
— = 0. d.1
7 + C(u,u) =0 (8.1.1)

Also we shall say that u satisfies the dyadic Navier-Stokes equations with hyper-dissipation if

du a
E-I—C(u,u)-i—(A) u = 0. (8.1.2)

We will restrict our attention to “functions” u all of whose coefficients ug are initially positive.
This class of functions is preserved by both flows (8.1.1) and (8.1.2). Let us verify that for the flow

(8.1.1). Fix a dyadic cube Q). We rewrite the equation (8.1.1) in terms of wavelet coefficients as follows:

duq(t) i@ 2
2 ug > ug(t) = uj(t). (8.1.3)

Q'eCH(Q)
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Now we remark that the equation (8.1.3) is a first order linear ordinary differential equation in

ug(t) and its solution is:

= L U tu2~ \u(7)dr
uo(t) = i ugl0) + [ ub(ru(r)in) (8.1.4)

where

, . 50(Q)
u(t) = o7 Tareor@ v (1),

Since p(t) > 0 for all ¢, (8.1.4) implies that ug(t) > 0 for all ¢ > 0, provided that ug(0) is positive.
The chapter is organized as follows. In section 8.2 we give a blow-up result for the dyadic Euler
equation. Then in section 8.3 we present a proof of finite time blow-up for the dyadic Navier-Stokes

equations with small dissipation.

8.2 The dyadic Euler equation

8.2.1 Energy flow

One of the most important features of the flow (8.1.1) is that it conserves energy. To be more

precise

d

%((u,u» =0 (8.2.1)

This can be obtained by pairing (8.1.1) with u. Energy can be thought of as divided up amongst the
nodes (. To be more precise, if we write

E = (u,u),



then
E=)" Eq,
QeED
where
Eqg = u2Q

The flow (8.1.1) gives rise to an extremely local description of energy flow along the tree D.

To be precise

d
%EQ = Eg,in — EQ,out,

where

5i(@)
Egin=2"7 (Egv/Eq),

and

EQ,out = Z EQ’,in-
Q'eCc(Q)
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(8.2.2)

Thus energy is flowing always from larger squares to smaller ones and indeed it flows along the edges

of the tree D.

We define a Carleson box by
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and the energy of a Carleson box by

Q'eC(Q)

Also we shall introduce an extended Carleson box by

Co(Q) = QUC(Q).

Then we define the energy of Cy(Q) by

ECO(Q) = Z EQ’a
Q'€Co(Q)

We immediately get the following proposition.

Proposition 8.2.1.1 Let u be a time-varying “function” with positive coefficients evolving according
to the flow (8.1.1). Then for any Q, the functions in time given by E¢(q) and E¢yq) are monotone

mncreasing.

8.2.2 The heart

We begin with an easy lemma about Carleson boxes.

Lemma 8.2.2.1 For any € > 0, there is 6(€) > 0, so that if we know that

Eegg) > (1— 5)2*(3+€)j(Q)

)



then there exists Q' € C(Q), so that

By > 2 3+09(@),

Proof Let us suppose the conclusion of the lemma is false, i.e.

Eeoqn) < 9—(3+€)i(Q")

)

for all Q' € C(Q).

On the other hand we know

Bogy= Y. PFeya)
Q'ecl(Q)
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(8.2.3)

(8.2.4)

Now because we are in dimension 3, there are exactly 22 elements Q' € C'(Q) with j(Q') = j(Q)+1.

Thus(8.2.4) combined with (8.2.3) implies

Ee(g) < 93 . 9—(3+€)(H(Q)+1)

)

and therefore

Eegy <2 ¢ 9-(3+€)j(Q)

which is a contradiction provided we have chosen ¢ sufficiently small that 27¢ < 1 — 4.

Now we prove the main lemma.
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Lemma 8.2.2.2 Fix jo sufficiently large. Then there is a sufficiently small 0 < € < 1 so that if at

time ty, we have
Ecyq) > 27 3@, (8.2.5)

with §(Q) > jo, then there is some t with t < ty + 2-¢(@Q) and a cube Q' € C(Q) so that at time t, we

have Ecy gy > 2~ (3+)i(Q")

Proof We assume that the conclusion of the lemma is false, i.e.

< 9-(3+9i(@)

3

Eey (@)

for all Q' € C(Q) and for all ¢ € [tg, tg + 2 (@]

In light of Lemma 8.2.2.1 and Proposition 8.2.1.1, it must be the case that for all ¢ € [¢o, tg+2*€j(Q)]
we have Eg > 62-3+9i(Q)_ since otherwise because of the hypothesis (8.2.5) we would have Eegy >
(1 —6)2-6+93(@) which would by Lemma 8.2.2.1 lead to a contradiction.

Moreover since energy flows only in the direction of smaller squares and is conserved, it must be

that for any child Q' € C'(Q), it is the case that

to+2-i (@)
Ecq) > /t Eqtin,
0

at time ¢g + 2-¢9(Q) Thus since

5(j(Q)+1)
Eq.n=2""2 " Equg,
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we must have

t0+2*€j(Q) 1_ 5 e
/ ug < ——2275Y, (8.2.6)
to 5
However we know that
dugy 5((Q)+1) 5((Q)+2)
—E=277 B2 ug( > uge). (8.2.7)
Q”ECl(Q,)

Thus integrating, applying the fact that for all ¢ € [tg, %o + 2*€j(Q)], we have Eg > 62~ B3+93(Q) | and

3j(Q)
UQH S 2773

(we can afford to give back the €), and using (8.2.6), we see that the first term of (8.2.7)

dominates (for e sufficiently large and j(Q) sufficiently small) and

3

to+2—€i(Q)
/0 duq'  so-(3+20(Q)
) i~

0

which is a contradiction by the fundamental theorem of calculus.

Corollary 8.2.2.3 Let u be a solution to (8.1.1) which has initially all positive coefficients and at time
0, has Eqg > 2-(3+9i Q) for J(Q) > jo with jo as in the previous lemma. Then the H3% norm of u

becomes unbounded in finite time.

Proof We apply the lemma. We find a cube Q; properly contained in Q and a time ¢; < 2-(@) g0

that at ¢; we have ECO(Q1) > 2-(3+6)j(Q1)
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We iterate this procedure finding a cube (i properly contained in Q1 and and a time ¢; so that
tho1 <t <tp—1+ 2-¢i(Qk-1) and at time t;. we have ECo(Qk) > 2~ (3+6)5(Qk) |
Estimating just using the coefficient at Co(Qy), we see that at time #;, we have that
€j (Qp)
2 .

lul 50 >

Since j(Qy) is an increasing sequence of integers, this is going to co. However since,
E—1

te = (tk — tho1) + (bo1 — thoo) + - + 1 <27 TQ L Y pmed(@)
=1

and the j(Q;)’s are an increasing sequence of integers, we see that the sequence {tx} converges to a

finite limit. [ ]

We point our here that under certain assumptions on the initial Eg(0) Corollary 8.2.2.3 guarantees
finite time blow-up of ||u |H%+€—norm. This was obtained using an extended Carleson box Cy(@Q). In the
next section we shall prove for the Navier-Stokes equations with small dissipation, finite time blow-up
of slightly weaker ||u||z2+e-norm. The reason for this is the fact that for the Navier-Stokes equations
with hyper-dissipation the energy itself is not conserved. Instead part of it dissipates at each level of
our dyadic tree D.

However from Fedor Nazarov (Nazarov, 2001, personal communication) we learned his proof that
the solution to the dyadic Navier-Stokes equations with enough dissipation stays bounded in a certain
C* space provided that it started in the same C* space. The main tool in his proof is the following

observation. Let us truncate the system of ODEs which describe the dyadic Navier-Stokes equations
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with hyper-dissipation. If provided with enough dissipation the system will scatter all energy. Therefore
energy cannot become concentrated over first few levels. For example, this is true for the dyadic Navier-
Stokes itself. The natural question is what does “enough dissipation” mean. In the following section

we prove that in order to have finite time blow-up the dissipation exponent « should be less than i.

8.3 The dyadic Navier-Stokes equations with hyper-dissipation

8.3.1 Energy flow

We consider the dyadic Navier-Stokes equations with hyper-dissipation (8.1.2). Since
<C(U, U), u) =0,

we have:

— ((u, u)) + ((A)%u, u) = 0,

and therefore we have energy decay:

<u,u>+/0 (D), 1) = 0, (8.3.1)

Let us imagine that each node ) along our tree D has a wastebasket which is at time ¢ filled with
t 92aj 2
fto 2 a](Q)uQ

We define the energy of a cube @) at time ¢ as in the case of the dyadic Euler equation
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For ¢ greater than or equal to some fixed time ¢y we introduce the energy of a wastebasket of a cube

Q at time ¢ as

t .
WQ.s(t) = /t 2201(Q) R,
0

Then (8.3.1) is saying that the sum of energy at nodes plus energy at wastebaskets is controlled.

Also we have a local description of energy flow along the tree D:

d .
5o = Eq.in — Eq.ou — 2201(Q) Eg, (8.3.2)

where
i (Q)
EQ,in = 25]2 EQ V Eq,

and

EQ,out = Z EQ’,in-
Q'eC'(Q)

Thus energy is flowing always from larger squares to smaller ones and, except for portions which go to
wastebaskets, energy flows along the edges of the tree D.

We define the energy of a Carleson box by

Eqg) = Y, Eg,
Q'eC(Q)
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and the waste of a Carleson box by

WC(Q)JOZ Z Waq it
Q'eC(Q)

We immediately get the following proposition.

Proposition 8.3.1.1 Let u be a time-varying “function” with positive coefficients evolving according

to the flow (8.1.2). Then for any Q, the function in time given by Fe(qy + We(q), i monotone

0

mcreasing.

8.3.2 Energy concentration

As in the Euler case we begin with a lemma about Carleson boxes.

Lemma 8.3.2.1 For any € > 0, there is 6(€) > 0, so that if we know that

Ee(g) + Weqya, > (1 — )27 (14+9i(@)

then there exists Q' € C(Q), so that

EQ/ + WQ/ to = 2_(4+E)j(Q1).

Proof Let us assume the lemma is false, i.e.

EQ/ + WQ’,to < 27(4+€)j(Q’)’ (833)
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for all Q' € C(Q).

On the other hand we have:

Bey+Wero = D [Eo +Wai
Q'eC(Q)

= D D [Bg+ Wyl (8.3.4)

k=1Q'eCk(Q)

Now because we are in dimension 3, there are exactly 23 elements Q' € C*(Q) with j(Q') = j(Q)+k.

Thus by using (8.3.3) we can bound (8.3.4) from above by

oo

Z 93k, 9—(4+€)(4(Q)+k)
k=1

3

which is in turn the same as

2~ (HH9IQ Y "o ~(eH Dk, (8.3.5)
k=1
Since
Z 27(e+1)k <1

=~
Il
—

we can choose 0 < § < 1 such that

9~k — 1 4.

NE

Bl
I
—
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Therefore (8.3.5) transforms into (1 — §)2~(4+99(@), and we obtain

Ee(g) + Wegya, < (1 — 6)2- (14+0i(@)

which contradicts the assumption of our lemma. [ |

Now we prove the main lemma.

Lemma 8.3.2.2 Fix jg sufficiently large. Then there exists an €, 0 < € < 1 —4a so that if at time 1,

we have

Eq + Wqy, > 2 4H9i(@ (8.3.6)

with §(Q) > jo, then there is some t with t < to + T, where

(e=1)j(Q) _ ;
5 < T <272

2
and a cube Q' € C(Q) so that at time t, we have
Eg + Wqi 4y > 9—(4+6)j(Q")

Proof We assume that the conclusion of the lemma is false, i.e.

EQI + WQ’,to < 27(4+€)j(Q’)’ (837)
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for all Q' € C(Q), and for all ¢ € [tg,to + T).
In light of Lemma 8.3.2.1 and Proposition 8.3.1.1, it must be the case that for all t € [to,to + T,

we have
Eq(t) + W, (t) > 627 4F93(@) (8.3.8)
since otherwise because of the hypothesis (8.3.6) we would have
Eeg) + Wegy > (1 - §)2- W@ at some t € [to, to + T1,

which would lead to a contradiction by Lemma 8.3.2.1.

Since W 4,(t) is a monotone increasing function of ¢, (8.3.8) implies that
Eq(t) + W, (to + T) > 62~ 4+IQ) for all ¢ € [tg, to + T,

and therefore we have either

1 .
Eq(t) > 55244“”@), for all ¢ € [to, to + T, (8.3.9)

or

Wq.t (to +T) > %52—<4+6>J‘<Q>. (8.3.10)
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We shall analyze those cases separately.

First let us assume (8.3.10). Let @' an element of C}(Q). Then ug satisfies

dugpy 5((Q)+1) 5((Q)+2)
Q _ 2 2 u2 2 : UQI( Z

= 52 ) — 2200 (@F g (8.3.11)

UQH
Q" ecl (Ql)

We shall integrate (8.3.11) on the time interval [to,to + T'].

In order to simplify our notation we introduce the following integrals:

to+T .
I, = / 25(;(%>+1)UQQ’
to
FT 5G(@)+2)
IQ = / 2 2 UQI( Z UQH),
to Q”ECI(Q’)
to+T
o= [ 0@y,
to
By using (8.3.10) we estimate I; and obtain
to+T . )
to

We bound I5 as follows:

tbo+T 5 20Q)
IQ = / 2 uQ/( Z UQH)

to Q”ECI(Q’)
FT 5G@)+2)
S/ ST S
to Q”ECI(Q’)

T .9~ (44€)j | 23

N
m|§
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where the last inequality follows from (8.3.7). Thus

L <T-2 G+, (8.3.13)

Similarly we use (8.3.7) in order to get

to+T
I3 ::/ 9201 @+) g, < T . 202072755 (8.3.14)

to
One easily checks from (8.3.12), (8.3.13) and (8.3.14) that if 0 < e < 1 — 4 and T < 272%7 then

Il Z IQa

as well as

I > I

Therefore after integrating (8.3.11) on the time interval [tg, to + T we conclude that

to+T
/ oF dugy > 527(%+2a+e)j
‘ dt ~ Y

which is a contradiction by the fundamental theorem of calculus, since € < 1 — 4a.
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Now we are left to verify contradiction in the case that one has (8.3.9). Let us assume (8.3.9).

Moreover since energy flows only in the direction of smaller cubes and is conserved up to waste baskets,

it must be that for any child Q' € C'(Q), it is the case that

to+T
Eeq) + We)to 2 /t Eq in,
0

at time ¢o + T'. Thus since

5(3(Q)+1)
EQI’Z'“ =2 2 EQUQI ,

we must have

~

to+T 1—0_ -5i@
/ ug S ——2 e (8.3.15)
to

We integrate (8.3.11) on the time interval [to, to + T']. By using (8.3.9) we bound I; as follows:

to+T ; .
I = / QMUQth >T.§- o= (3+€)i (8.3.16)
to

We bound I as:

T 5G(@)+2)
I, = / 2 2 UQI( Z UQH)

to Q”ECI(Q’)
AT 5G@u+2)

S / 2 J 2 UQ/‘ Z UQ”|
to Q”ECl(Q’)

< 1%52—@%)]',
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where the last inequality follows from (8.3.15) and (8.3.7). Thus

I < %242@1} (8.3.17)

By using (8.3.15) we obtain the following bound on I3

tO‘I'T . 5 -
I ::/ 220((@)+1)y, < 220-5)i (8.3.18)
to

Again one easily checks from (8.3.16), (8.3.17) and (8.3.18) that I; dominates provided that 0 <

(e=1)j

e<l—4d4aand T >2=z .

Therefore after integrating (8.3.11) on the time interval [tg, to + T we conclude that

to+T
/ T dug T.5.9-(3+€)j
tO dt ~ b

which is a contradiction by the fundamental theorem of calculus, since T' > 2 o [ |

Lemma 8.3.2.3 Fix jy sufficiently large. Then there exists an €, 0 < € < 1 — 4a such that if at time

to we have

Eq > 2~ (+i(Q) (8.3.19)
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with j(Q) > jo, then there is some time t with t < to + T, where

o Y L < 9200(@

and a cube Q' € C(Q) so that at time t, we have
Eg > 9—(4+6)j(Q")
Proof We shall prove the lemma by contradiction. Assume the lemma is false, i.e.
Eqg < 27UH9@) for all Q' € C(Q), and for all ¢ € [tg, to + T). (8.3.20)
However from the hypothesis (8.3.19) and Lemma 8.3.2.2 we can find time t; < tg + T', where
0 T L < 9720i(@) (8.3.21)

and a cube Q1 € C(Q) so that

Eq, (t1) + Wo, 1 (t1) > 27 (4+9i(Q1), (8.3.22)
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On the other hand by using monotonicity of the function W, 4,(¢) and (8.3.20) we calculate

EQ1 (tl) + WQl,to (tl) < EQ1(t1) + WQl,to(tO + T)

to+T )
— Bo(w)+ [ 2@,
to

< 9-(4+6i(Q1) 4 92aj(Q1) . 9=(4+€)i(Q1) .

N

9-(4+0)5(Q1).

where the last inequality follows from (8.3.21).
Thus

Eq, (t1) + Wo, 1 (1) < 2704F93(@Q1),

which contradicts (8.3.22), and the lemma is proved. ]

Corollary 8.3.3 Let u be a solution to (8.1.2) which has all positive coefficients and at time 0, has
Eqg > 2~ (4491 (@) | for J(Q) > jo with jo as in the previous lemma. Then the H*Y¢ norm of u becomes

unbounded in finite time.

Proof We apply the lemma 8.3.2.3. We find a cube )1 properly contained in @ and a time t; < T <
27203(Q) 50 that at ¢; we have Fg, > 27 (4+)i(Q1),
We iterate this procedure finding a cube (i properly contained in Q1 and and a time ¢; so that

th1 <tp <tp_1+T < tp_1+ 2-22j(@Qr-1) and at time ty, we have Fg, 2 9~ (4+€)5(Qk)
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Estimating just using the coefficient at Qj, we see that at time ¢;, we have that

ej(Qg)
lull o > 2754
Since j(Qy) is an increasing sequence of integers, this is going to co. However since,

k—1
te = (tr — to1) + (bot — tea) + -+ + 11 < 27209(Q) 1 ) 9720i(Q),
=1

and the j(Q)’s are an increasing sequence of integers, we see that the sequence {t;} converges to a

finite limit. [ ]
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