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SUMMARYIn this thesis, we study a partial regularity result for a modi�ed version of the Navier-Stokesequations. In the standard Navier-Stokes equations the Laplaian of the veloity �eld appears to thepower one, whih reets amount of energy dissipation. The deepest regularity result for the Navier-Stokes equations to date is the result of Ca�arelli, Kohn and Nirenberg whih states that the Hausdor�dimension of the singular set is at most one. We onsider a modi�ation of the Navier-Stokes equationsin order to investigate how system reats to hanges aused by di�erent amount of energy dissipation.More preisely, we study the Navier-Stokes equations with hyper-dissipation, where the Laplaian israised to a power. We get an estimate for the dimension of the set of singular points at the �rst timeof blow-up depending on the degree of dissipation.In hapter 1 we desribe the equations of uid motion and some of unsolved questions onerningthem. Also in hapter 1 we state our main result about the Navier-Stokes equations with hyper-dissipation. In hapter 2 we review Littlewood-Paley theory whih will be used in the rest of thethesis. In suh a way we desribe tehniques needed for loalization in frequeny. In hapter 3 we useLittlewood-Paley operators to present some lassial results of uid dynamis suh as (1), whih givesa riterion for loss of regularity for the solutions of the Euler equations in 3D. In hapter 4 we introduea dyadi model for the equations of uid motion. The dyadi model possesses an important featureof the equations, whih is onservation (or deay) of energy. For suh a model we prove partial regu-larity results for the Navier-Stokes equations with hyper-dissipation and also for the Ladyzhenskaya'smodi�ation of the Navier-Stokes equations, in whih ase the dissipation term is nonlinear.viii



SUMMARY (Continued)The goal of hapters 5, 6 and 7 is to generalize the ideas of partial regularity result from the dyadiNavier-Stokes equations with hyper-dissipation presented in hapter 4 to the atual Navier-Stokesequations with hyper-dissipation. We do that by ombining tehniques of Littlewood-Paley operatorsand the theory of pseudodi�erential operators. In hapter 5 we desribe pseudodi�erential operatorswhih help us to loalize in spae, and we develop alulus needed to loalize our equations in bothfrequeny and spae. We de�ne a bad set in this hapter and show how one an over suh a bad setand estimate its Hausdor� dimension. In hapter 6 we �gure out a balane between the nonlinear termand the dissipation term for a loalized equation, and outside of the bad set we prove a ertain level ofregularity alled ritial regularity. Then in hapter 7 we �nish the proof of partial regularity result forthe Navier-Stokes equations with hyper-dissipation by proving an arbitrary level of regularity inside aube for whih one has a little bit better regularity then ritial one.In hapter 8 we revisit dyadi models introdued in hapter 4, and for the dyadi Euler equationswe prove �nite time blow-up, whih we prove for the Navier-Stokes equations with suÆiently smalldegree of dissipation too. However these results are built on a lower bound for the nonlinear term, andare valid only for the dyadi models.Motivation for this thesis and invaluable ontributions ame from joint projets with Nets HawkKatz (Katz, N., and Pavlovi�, N.: A heap Ca�arelli-Kohn-Nirenberg inequality for the Navier-Stokesequation with hyper-dissipation. To appear in Geometri and Funtional analysis, 2002), (Katz, N.,and Pavlovi�, N.: Finite-time blow-up for a dyadi model of the Euler equations. In preparation, 2002),and from a joint work with Susan Friedlander (Friedlander, S., and Pavlovi�, N.: Remarks onerningmodi�ed Navier-Stokes equations. To appear in Disrete and Continuous Dynamial Systems, 2002).ix



CHAPTER 1INTRODUCTION1.1 The Euler and Navier-Stokes equationsThe partial di�erential equations that desribe the most ruial properties of the uid motion arethe Euler equations. They are derived for an ideal uid, by whih one means:� inompressible (uid whose partile do not hange volume as the uid moves)� invisid (uid without internal frition between partiles)� uid with onstant density.Let x = (x1; x2; :::; xn) denote a point in Rn . Let the vetor u = u(x; t) = (u1(x; t); :::; un(x; t)) 2 Rnbe the veloity �eld, and p = p(x; t) 2 R the pressure. Then the Euler equations are:DuDt = �rp; (1.1.1)
r � u = 0; (1.1.2)with the initial ondition u(x; 0) = u0(x): (1.1.3)

1



2Here we used the notation DDt whih is de�ned for some uid quantity f = f(x; t) byDfDt := ddtf(x1(t); x2(t); :::xn(t); t);and it represents a rate of hange of f . The symbol DDt is often alled \material derivative" or \on-vetive derivative".By hain rule we have DfDt = �f�t + (u � r)f;and in partiular DuDt = �u�t + (u � r)u:Notie that the equation (1.1.1) expresses Newton's seond law F = ma. Indeed the right-hand sideof (1.1.1) represents the fore whih is in this ase the fore of internal pressure, while the left-handside of (1.1.1) is the aeleration. The mass is 1, sine the density is onstant and taken to be 1. Onthe other hand, the equation (1.1.2) reveals onservation of mass.When the Euler equations are onsidered in Rn one would like to avoid the situation in whih theveloity �eld u(x; t) beomes unbounded as jxj ! 1. Usually one restrits behavior of the veloity�eld at in�nity by imposing the bounded energy ondition:ZRn ju(x; t)j2dx < onstant; (1.1.4)



3for all time t � 0. This is a natural ondition to assume, beause from the �rst look at the equation(1.1.1) we see neither obvious dissipative e�ets nor an e�et of an external fore. In this thesiswhenever we onsider either the Euler equations or a model for the Euler equations we shall assumethe bounded energy (1.1.4).Despite the fat that Euler introdued the equations (1.1.1) - (1.1.3) in 1755, some basi questionsonerning them are still unsolved. For example, it is an outstanding problem of uid dynamis to �ndout if solutions of the Euler equations satisfying (1.1.4) form singularities in �nite time. The answeris \no" in the ase of Euler equations in dimension two. But in three-dimensional spae the questionis still open. However the loal existene theorem for Euler's equations is known (27), (28) as well as(15), (16), (17), and we will state a version of the theorem in Chapter 2 where we disuss some lassialresults about Euler equations. For details on loal existene of smooth solutions of the Euler equationssee, for example, (19) or (48).The equations that desribe the most fundamental properties of visous uids are the Navier-Stokesequations whih are given with the following equations:�u�t + (u � r)u+rp = ��u+ f; (1.1.5)
r � u = 0; (1.1.6)



4and the initial ondition u(x; 0) = u0(x): (1.1.7)When the Navier-Stokes equations are onsidered in Rn one imposes the restrition that the energyis bounded (1.1.4).As with the Euler equations the theory of the Navier-Stokes equations in three dimensions is farfrom being omplete. The major open problem is the question of global existene of smooth solutionsof the Navier-Stokes equations satisfying (1.1.4) in 3D, where by a smooth solution in Rn one means asolution to the Navier-Stokes equations suh that u(x; t) 2 C1[Rn � R+ ℄. For the preise formulationof this open problem see (12).The existene of smooth solutions of the Navier-Stokes equations initial boundary value problemin 3D has been proved loally in time, see, for example, (19), (22), (11), (13), (21), (46), (6). Alsoglobal existene of smooth solutions of the Navier-Stokes equations in 3D has been proved providedsmall initial data. This was addressed by various authors in di�erent funtion spaes, see, for example,(20), (13), (46), (5), (35), (23).In 1930s Leray (24) - (26) introdued a notion of weak solutions of the Navier-Stokes equations. Aweak solution of the Navier-Stokes equations is introdued as a funtion u whih satis�es the followingequation: h�u�t ; �i+ hu � ru; �i+ hrp; �i = �h�u; �i+ hf; �i; (1.1.8)



5for all smooth funtions � ompatly supported in R3�(0;1), where h�; �i stands for the salar produton L2(R3 � R). Obviously if funtions u and p satisfy the Navier-Stokes equations (1.1.5) - (1.1.6) ina strong sense then they satisfy (1.1.8). On the other hand, an advantage of having (1.1.8) is that byusing integration by parts on (1.1.8), one an move derivatives to fall on the test funtion �.Leray (26) and Hopf (18) showed existene of a weak solution of the Navier-Stokes equationssatisfying the following energy inequality:Z
�ftg juj2 + 2Z t0 Z
 jruj2dxdt � Z
 ju(x; 0)j2dx+ 2Z t0 Z
 f � u; (1.1.9)where 
 is a bounded domain in R3 . The inequality (1.1.9) is obtained by pairing in L2(R3 � R) theequation (1.1.5) with 2u�, then integrating by parts and taking � � 1.Regularity of weak solutions was investigated by many authors, for example, Serrin (41), (42),She�er (36) - (40), Ca�arelli-Kohn-Nirenberg (4), Lin (29). We shall disuss a partiular type ofregularity results known as partial regularity results whih give an upper bound on the Hausdor�dimension of the singular set for an equation, see for example (4), (29).In (4) Ca�arelli, Kohn and Nirenberg introdued a partiular lass of weak solutions of the Navier-Stokes equations alled suitable weak solutions. By a suitable weak solution they mean a weak solutionof the Navier-Stokes equations suh that for eah bump funtion � ompatly supported in spae andtime the following inequality is valid:2Z Z jruj2� � Z Z [juj2(�t +��) + (juj2 + 2p)u � r�+ 2(u � f)�℄: (1.1.10)



6The inequality (1.1.10) is known as generalized energy inequality. It is important to notie that the �rstterm on the right-hand side an be made small by hoosing � to satisfy the bakwards heat equation,and this was used in (4). Ca�arelli, Kohn and Nirenberg (4) proved that for the Navier-Stokes equations(1.1.5) - (1.1.7) the singular set of a suitable weak solution has paraboli Hausdor� dimension at most1. Here paraboli Hausdor� dimension is de�ned in an analogous way to Hausdor� dimension, just byusing paraboli ylinders Qr instead of Eulidean balls, whereQr(x; t) = f(y; �) : jy � xj < r; t� r2 < � < tg:In order to prove a partial regularity result for the lass of suitable weak solutions they �rst proved aloal dimensionless result whih states that if u, p and f are small enough on the paraboli ylinderQr then u is regular on the smaller ylinder Qr=2. As a onsequene of this they obtained an estimateof the minimum rate at whih a singularity ould develop and they proved a suÆient ondition fora point to be a regular point. By overing the singular set they obtained that for any suitable weaksolution, the singular set has one-dimensional paraboli Hausdor� measure zero. A new proof of thisresult was reently given by Lin (29). Lin also uses the generalized energy inequality (1.1.10). Ourmotivation ame partly from (4) and we explain that in the next setion.1.2 Partial regularity results for the Navier-Stokes equations with hyper-dissipationThe Navier Stokes equation with dissipation (��)� is given by�u�t + u � ru+rp = �(��)�u; (1.2.1)



7where u is a time-dependent divergene free vetor �eld in R3 . One sets the initial onditionu(x; 0) = u0(x) (1.2.2)where u0(x) 2 C1 (R3 ).If we pair (in L2(R3 � R) ) the equation (1.2.1) with u and then integrate by parts, we see thatlassial solutions to this equation on a time interval [0; T ℄ satisfy onservation of energy, namely thatjju(:; T )jj2L2 = jju0jj2L2 � Z T0 h(��)�u; ui:The seond term on the right is alled the dissipation term.Ca�arelli, Kohn, and Nirenberg (4) showed that when � = 1, the singular set of a generalizedweak solution to the system (1.2.1),(1.2.2) has paraboli Hausdor� dimension at most 1. This ouldbe onsidered a �rst step towards showing global strong solvability. Any improvement in this upperbound on the dimension would be genuine progress towards solution of the global solvability problem.Another well known fat is the following. We learned the proof whih we present in the hapter 2from Diego Cordoba. J.L. Lions gave a version of the proof in (30), (31). Also Mattingly and Sinai(32) reently gave a di�erent proof.Proposition 1.2.1 If � � 54 , one has global strong solvability for the system (1.2.1),(1.2.2).Indeed proposition 1.2.1 ould be also viewed as a �rst step towards the solution of the global strongsolvability for � = 1 and any improvement in the exponent 54 ould be viewed as genuine progress.



8We (Katz, N., and Pavlovi�, N.: A heap Ca�arelli-Kohn-Nirenberg inequality for the Navier-Stokesequation with hyper-dissipation. To appear in Geometri and Funtional analysis, 2002) interpolatethe two results so that these two paths to progress are uni�ed. We proveTheorem 1.2.2 If T is the time of �rst breakdown for the system (1.2.1),(1.2.2), with 1 < � < 54 thenthe Hausdor� dimension of the singular set at time T is at most 5� 4�.Heuristially, the theorem ought to be a mild generalization of Proposition 1.2.1. We think aboutthe miroloal analysis of a solution u in terms of oeÆients uQ assoiated to ubes Q. Very roughlyspeaking, the oeÆient uQ should be viewed as a generalized wavelet oeÆient. The proof of Propo-sition 1.2.1 goes wrong for � < 54 only beause of a small number of ubes with large oeÆients. Atany time, the set of points ontained in arbitrarily small suh ubes has dimension at most 5� 4�.We were also unable to diretly generalize the proof of Ca�arelli, Kohn, and Nirenberg. They relyon the \generalized energy inequality" whih is built on an amusing property of the divergene freeheat equation. Let � be any ompatly bump funtion in spae and time and u a divergene free vetor�eld, then Z h( ��t ��)u; �uidt = Z (12 ��t(hu; �ui) + hru; �rui � h(12 ���t +��)u; ui)dt:The �rst term represents a hange in loal energy. The seond term represents loal dissipation. Thethird term is an error whih an be made insigni�ant by hoosing � to satisfy the bakwards heatequation. It is this method of ontrolling the error whih we are unable to generalize.



9To irumvent the problem of not having the \generalized energy inequality" we utilize tehniquesof Littlewood-Paley theory whih was developed by Bony (see e.g. (3)), and Coifman and Meyer (seee.g.(9)), and pseudodi�erential operators of type (1; 1 � �), whih are desribed in, for example, (47).In suh a way we loalize in frequeny and in spae. We have a \quasi" version of the \generalizedenergy inequality" whih works for ertain neighboring ubes and allows us to prove a ritial levelof regularity outside of \bad" ubes in whih too muh dissipation ours. Then we prove a barrierestimate whih guarantees arbitrary regularity in the interior of a ube Q, if the ritial regularity isknown for ubes ontaining it and for boundary ubes of the ube Q. This barrier estimate an bethought of as a loalized version of global existene with small data. (One an ompare this estimatewith results in (23) and (5) in whih loal well posedness is established with hypotheses slightly morerelaxed than ours.) But in order for this to work, it is important that there not be too many smalldissipating ubes on the boundary of our ube. This ombinatorial issue is an ingredient whih seemsnot to have appeared before and whih restrits us to the ase � > 1. On the other hand we over the\bad" set and from the overing we an estimate an upper bound for the Hausdor� dimension of thesingular set.Remark on notationThroughout the thesis the expression A . B means A � B where  is a onstant. Suh a onstant may depend on the time of �rst blow-up and on the initial onditions on the veloity. It does notdepend on a partiular sale or on a ube where we are estimating.



CHAPTER 2LITTLEWOOD-PALEY OPERATORSHere we present a review of Littlewood-Paley operators by following the leture-notes of TereneTao (45) and the book of Stein (43). Our presentation is brief and suits the purposes of the thesis. Fordetails see, for example, elegant expositions in (10), (43), (45).In setion 2.1 we introdue Littlewood-Paley operators and prove Bernstein's and the \heapLittlewood-Paley" inequalities. Then in setion 2.2 by using Littlewood-Paley operators we presenta proof of a version of the Sobolev embedding theorem in R3 . In setion 2.3 we show how one andeompose a produt of two funtions by looking at piees loalized in frequenies.2.1 Introdution to Littlewood-Paley operatorsWe shall use a standard Littlewood-Paley partition of frequeny spae in R3 . Let �0 be a smoothbump funtion supported on j�j � 2, and suh that �0(�) = 1 for j�j � 1. Then we de�ne the funtionp0(�) by p0(�) = �0(�)� �0(2�):Therefore the funtion p0(�) is smooth and supported on 12 � j�j � 2.Let us introdue funtions pj(�) and �j(�) by:pj(�) = p0(2�j�);10



11and �j(�) = �0(2�j�):An immediate onsequene of this onstrution is thatXj pj(�) = 1; (2.1.1)i.e. we have a partition of unity into funtions pj(�).We de�ne Fourier multipliers Pj and Sj (on L2(R3)) with their symbols pj(�) and �j(�) respetively,i.e. ^Pjf(�) = pj(�)f̂(�);^Sjf(�) = �j(�)f̂(�):The operators Pj and Sj are usually alled Littlewood-Paley operators. We see that Pj = Sj � Sj�1by this onstrution. In other words, the Sj's ould be thought of as the partial sums of the Pj 's.As a onsequene of (2.1.1) we have the Littlewood-Paley deompositionf =Xj Pjf;for all f 2 L2(R3 ).Intuitively speaking, we see that Pj is like a projetion onto frequenies in the annulus j�j � 2j ,and Sj is like a projetion onto frequenies in the ball j�j . 2j . However we remark that Pj 's and Sj's



12are not exatly projetion operators. More preisely, it is not true that (Pj)2 = Pj , nor it is true that(Sj)2 = Sj. However we observe that Sj+2Pj = Pj : (2.1.2)On the other hand, we have Sj�2Pj = 0: (2.1.3)Thus (2.1.2) and (2.1.3) motivates the de�nition of operators ~Pj = P2k=�2 Pj+k. We an analogouslyde�ne the symbols ~pj =P2k=�2 pj+k. We observe that~PjPj = Pj ; (2.1.4)sine ~Pj is the sum of all Littlewood-Paley projetions the support of whose symbols intersets thesupport of pj(�). We shall use (2.1.4) often to manipulate Littlewood-Paley operators. As an illustrationof suh a tehnique let us prove the Bernstein's inequality for Littlewood-Paley operators in R3 :Proposition 2.1.1 jjPjf jjL1 . 2 3j2 jjPjf jjL2 :Proof Let �j = �(~pj). Then (sine we are working in R3) we have�j(x) = 23j�0(2jx):



13Now ~Pjf = �j � f so by Young's inequality, we havejjPjf jjL1 = jj ~PjPjf jjL1 � jj�j jjL2 jjPjf jjL2 ;whih is �nite sine �j is a Shwartz funtion. But by the relation between �j and �0, we havejj�j jjL2 = 2 3j2 jj�0jjL2 ;whih proves the proposition.Now we go to the \spae-side" representation for the Littlewood-Paley operator Pj . Let �j = �(pj).Then �j(x) = 23j�0(2jx), and we have:Pjf(x) = (�j � f)(x)= Z f(x� y)�j(y)dy= Z f(x� 2�jy)�0(y)dy: (2.1.5)We see that (2.1.5) and Minkowski's inequality imply:jjPjf jjLp � Z jjf(x� 2�jy)jjLp j�0(y)jdy. jjf jjLp ;



14for 1 � p � 1. This together with the triangle inequality impliessupj jjPjf jjLp . jjf jjLp .Xj jjPjf jjLp : (2.1.6)The inequality (2.1.6) is alled a heap Littlewood-Paley inequality. We will use it throughout thethesis. Material onerning the strong Littlewood-Paley inequality ould be found in, for example,(10), (43), (45). We will not go in details of the strong Littlewood-Paley inequality, sine we are notusing it in this urrent work.For writing the \spae-side" representation of the Littlewood-Paley operator ~Pj we use the notationintrodued in the proof of Proposition 2.1.1. Then we an write ~Pj as follows:~Pjf(x) = (�j � f)(x)= Z f(x� 2�jy)�0(y)dy: (2.1.7)From (2.1.4) and (2.1.7) we obtain the following formula whih relates the Littlewood-Paley pieePjf to itself: Pjf(x) = Z Pjf(x� 2�jy)�0(y)dy: (2.1.8)Now we are ready to see how di�erentiation ats on a Littlewood-Paley piee. Before formulatinglemma preisely, we think a little bit what it means to take a derivative of a Littlewood-Paley piee.Informally speaking, if we look at the Fourier side we take derivative of a Littlewood-Paley piee Pjf



15by multiplying its symbol by 2�i�. However the symbol of the operator Pj, pj(�), is supported onj�j � 2j . Therefore taking derivative of a Littlewood-Paley piee Pjf should be related to multiplyingPjf with 2j . More preisely:Lemma 2.1.2 Let j be an integer. ThenjjrPjf jjLp � 2j jjPjf jjLp ;for all 1 � p � 1.Proof We present the proof following (45). By di�erentiating (2.1.8) we obtain:rPjf = Z rxPjf(x� 2�jy)�0(y)dy;whih by integration by parts impliesrPjf = 2j Z Pjf(x� 2�jy)r�0(y)dy: (2.1.9)Now we apply Minkowski's inequality on (2.1.9) and obtainjjrPjf jjLp � 2j jjPjf jjLp ;sine r�0 is a Shwartz funtion.



16Now we are left to prove 2j jjPjf jjLp . jjrPjf jjLp : (2.1.10)In order to do that we reall the following property of the Fourier transform\rPjf(�) = 2�i�dPjf(�);i.e. dPjf(�) = 12�i�\rPjf(�);and therefore dPjf(�) = ~pj(�) �\rPjf(�)2�ij�j2 : (2.1.11)Now by taking the inverse Fourier transform of (2.1.11) we havePjf = Z �( ~pj(�) �2�ij�j2 )(y) rPjf(x� y)dy= Z �( ~p0( �2j ) �2j2�ij �2j j2 )(y) rPjf(x� y)dy: (2.1.12)By hanging a variable, (2.1.12) implies2jPjf = Z �( ~p0(�) �2�ij�j2 )(y) rPjf(x� 2�jy)dy: (2.1.13)



17We notie that �( ~p0(�) �2�ij�j2 ) itself is a Shwartz funtion. Therefore we obtain (2.1.10) from applyingMinkowski's inequality to (2.1.13).2.2 Sobolev embedding theoremLet k = (k1; k2; :::; kn) be a multi-index, where ki; i = 1; :::; n are non-negative integers and jkj =k1 + k2 + :::+ kn. Then for f : Rn ! C we de�nerk := �jkjf�xk11 xk22 � � � xknn :For 1 � p < 1 and s � 0 an integer, we de�ne the Sobolev spae W s;p(Rn) as a spae of allfuntions f suh that f and its derivatives up to order s are in Lp(Rn). The norm in this spae isintrodued by jjf jjW s;p(Rn) := sXk=1 jjrkf jjLp(Rn): (2.2.1)We see that p stands for integrability, while s stands for di�erentiability. In partiular when p = 2 thespae W s;2 is denoted by Hs; and it is a Hilbert spae.The above de�nition of the Sobolev spae W s;p an be extended so that it is valid for s 2 R. Beforewe do that, let us reall the notion of a frational derivative. A property of the Fourier transform gives\(��)f(�) = 4�2j�j2f̂(�):



18This gives motivation to de�ne the operator jrj as the square root of the operator �� bydjrjf(�) := 2�j�jf̂ (�):Also for any real s, we de�ne the frational derivative operator jrjs by\jrjsf(�) := (2�j�j)sf̂(�):In a similar way we de�ne the modi�ed frational derivative operator hris by\hrisf(�) := h2��isf̂(�);where the symbol h�i is known as the Japanese braket and is de�ned by h�i := (1 + j�j2)1=2. Notiethat for higher frequenies the operator hris behaves the same as the operator jrjs, while for thefrequenies j�j . 1 the operator hris ats as an identity.Now we are ready to introdue the Sobolev spae W s;p for s 2 R and 1 � p < 1 as a spae offuntions f suh that (1 + j�j)s=2f̂(�) 2 Lp. In partiular, when p = 2 the norm in the spae Hs isintrodued by jjf jjHs(Rn) := (ZRn jh�isf̂(�)j2d�) 12 :Here we shall state and prove a version of Sobolev embedding theorem in R3 .



19Theorem 2.2.1 Let p > 2. There exist an � > 0 and a onstant C(p; �) suh that:jjf jjLp � C(p; �)jjf jjH3( 12� 1p )+� :Proof We deompose f using Littlewood-Paley operators as f =P1j=�1 Pjf .From the de�nition of H�-norm we see thatjjPjf jjL2 � 2��j jjPjf jH� ;and therefore jjPjf jjL2 . 2��j jjf jjH� : (2.2.2)On the other hand, Bernstein's inequality guaranteesjjPjf jjL1 . 2 3j2 jjPjf jjL2 ;whih by (2.2.2) implies jjPjf jjL1 . 2 3j2 2��j jjf jjH� : (2.2.3)



20However by H�older's inequality we havejjf jjLp � jjf jj p�2pL1 jjf jj 2pL2 ;and in partiular jjPjf jjLp � jjPjf jj p�2pL1 jjPjf jj 2pL2 : (2.2.4)Notie that (2.2.4) together with bounds obtained in (2.2.2) and (2.2.3) impliesjjPjf jjLp . (2 3j2 2��j jjf jjH�) p�2p (2��j jjf jjH�) 2p= 2j[( 32��) p�2p �� 2p ℄jjf jjH� : (2.2.5)Now for � > 3(12 � 1p) we an sum (2.2.5) over j, and the theorem is proved.2.3 Frequeny trihotomyHere we shall use the Littlewood-Paley operators to analyze the pointwise produt of two funtionsf and g. Let us see what we an say about Pj(fg).First we shall represent f and g using Littlewood-Paley operators as followsf =Xk1 Pk1f;



21g =Xk2 Pk2g;and therefore Pj(fg) = Xk1;k2 Pj(Pk1fPk2g): (2.3.1)Sine dPkif(�) is supported in the annulus Aki := f� : 2ki�1 � j�j � 2ki+1g, for i = 1; 2 we know thatthe produt Pk1f Pk2g has Fourier support in the sum of the annuli Ak1 and Ak2 . On the other hand,in order that the double sum in (2.3.1) is nonzero the sum Ak1 + Ak2 should interset the support ofdPjf(�), whih is the annulus f� : 2j�1 � j�j � 2j+1g.Thus (2.3.1) an be rewritten as follows:Pj(fg) = Hj;lh +Hj;hl +Hj;ll +Hj;hh;where the low-high part is given by Hj;lh = Pj( Xk<j�4(Pkf) � ~Pjg);the high-low part is given by Hj;hl = Pj( Xk<j�4( ~Pjf) � Pkg);



22the low-low part is given byHj;ll = Pj( Xj�4�k�j+4(Pkf) � ~Pkg) + Pj( Xj�4�k�j+4( ~Pkf) � Pkg);and the high-high part is givenHj;hh = Pj( Xk>j+4(Pkf) � ~Pkg) + Pj( Xk>j+4( ~Pkf) � Pkg):Therefore there are four interations whih are nonzero. However the low-low part is usually in-luded either in the high-low part, or in the low-high part, and suh a deomposition of Pj(fg) is knownas the Littlewood-Paley trihotomy. The four sums Hj;lh; Hj;hl; Hj;ll; Hj;hh are alled paraprodutstoo. For more details on paraproduts see, for example, (47).



CHAPTER 3CLASSICAL EXAMPLES3.1 IntrodutionIn this hapter we present some lassial examples of uid dynamis by disussing how they ouldbe seen from the perspetive of Littlewood-Paley operators. First we give a summary of the famouspaper of Beale-Kato-Majda (1) whih gives a riterion for loss of regularity for solutions of the Eulerequations. After realling main ideas of (1), we use Littlewood-Paley operators to prove a logarithmiinequality playing an important role in (1).Then we revisit (1) again. We employ Littlewood-Paley operators to prove a theorem similar to oneof Beale-Kato-Majda. The proof of suh a theorem illustrates spei� roles of high and low frequenies.We also show how Sobolev embedding theorem (whih was proved in hapter 1 by using Littlewood-Paley operators too) ould be applied to prove global strong solvability for the Navier-Stokes equationswith enough dissipation.The ideas in the use of Littlewood-Paley operators ombined with pseudodi�erential operatorswere developed by Bony (3) and Meyer (33). The method of (3) found various appliations in stydingnonlinear PDEs, sine aording to paraprodut representation, the method is sensitive to desribingbehavior of the nonlinear term. In the ontext of appliations of Littlewood-Paley operators to studyingequations of uid motion, see for example, (8), (7), (6), (49), (50).
23



24In this hapter we illustrate some aspets of using Littlewood-Paley operators in studying the Eulerand the Navier-Stokes equations. In partiular, by applying Littlewood-Paley operators Pj onto theveloity �eld u(x; t), we loalize the veloity �eld to range of frequenies around 2j . The questionwhih arises is why it is enough to loalize to frequeny ranges. In the present work we estimateLebesgue and Sobolev norms of some uid quantities. The heap Littlewood-Paley inequality, whihwas disussed in the previous hapter, tells us that we an reveal information about ertain Lebesgueor Sobolev norms of a funtion just by knowing the norms of Littlewood-Paley piees, rather thenalulating Fourier oeÆients for eah di�erent frequeny. This is only one advantage of Littlewood-Paley operators. However more important reason for their suesfull appliations for studying the Eulerand the Navier-Stokes equations is that the method is well suited for analysing the nonlinear term.The worst term in both the Euler and the Navier-Stokes equations is the nonlinear term u � ru, whihby using Littlewood-Paley operators an be represented using paraproduts. In suh a way one isolatesertain frequeny ranges and their interations whih are responsible for possible growth of solutionsto the equations of uid motion.The hapter is organized as follows. In setion 3.2 we reall the work of Beale-Kato-Majda (1). Insetion 3.3 we use Littlewood-Paley operators to prove a theorem similar to one in (1). In setion 3.4we prove a global strong solvability for the Navier-Stokes equations with enough dissipation.3.2 Theorem of Beale-Kato-MajdaLet u = u(x; t) be the veloity �eld, and p = p(x; t) the pressure. Then the Euler equations are:�u�t + u � ru+rp = 0; (3.2.1)



25r � u = 0: (3.2.2)It is an outstanding problem of uid dynamis to �nd out if solutions of the Euler equations formsingularities in �nite time. The answer is \no" in the ase of Euler equations in dimension two. Butin three-dimensional spae the question is still open.However the loal existene theorem for Euler's equations is known, and we will state it hereaording to the statement given in (1):Theorem 3.2.1 Suppose an initial veloity �eld u0 is spei�ed in Hs(R3), s � 3, with jju0jjH3(R3) �N0, for some N0 > 0. Then there exists T0 > 0, depending only on N0, so that (3.2.1), (3.2.2) have asolution in the lass u 2 C([0; T ℄;Hs(R3 )) \ C1([0; T ℄;Hs�1(R3)) (3.2.3)at least for T = T0(N0).This theorem does not say if solutions atually lose their regularity.Analytial and numerial results suggest the onnetion between the aumulation of vortiity! = r � u and development of �nite time singularities for the three-dimensional Euler equations.Beale, Kato and Majda in (1) made this onnetion mathematially rigorous by proving the followingtheorem:



26Theorem 3.2.2 Let u be a solution of Euler's equations (3.2.1), (3.2.2), and suppose there is a timeT� suh that the solution annot be ontinued in the lass (3.2.3) to T = T�. Assume that T� is the�rst suh time. Then Z T�0 jj!(t)jjL1dt =1;and in partiular lim supt�!T� jj!(t)jjL1 =1:Thus Theorem 3.2.2 gives a riterion for loss of regularity in the sense that if the solution fails tobe regular past a ertain time, then the vortiity must be unbounded.Here we will present main ideas of the proof of Theorem 3.2.2 following (1). The proof is byontradition. Restrited to this hapter Hs(R3 ) is denoted by Hs, and Lp(R3 ), with 1 � p � 1 isdenoted by Lp.Let us assume Z T�0 jj!(t)jjL1dt <1: (3.2.4)Then we will show that jju(t)jjHs � C0; for all t < T�: (3.2.5)



27However (3.2.5) leads to ontradition, beause if (3.2.5) ould be true then by the loal existenetheorem, Theorem 3.2.1, we would be able to extend the original solution past time T� ontrary to thehoie of T�.The main ingredients of the proof are the following three steps:Step 1 We bound jj!(t)jjL2 by jj!(t)jjL1 . In order to to that we start from the vortiity equation:�!�t + u � r! = ! � ru: (3.2.6)Then we pair in L2(R3) the equation (3.2.6) with ! and obtain:12 ddt jj!jj2L2 = h! � ru; !i: (3.2.7)To simplify notation we de�ne m(t) by m(t) = jj!(t)jjL1 . Now from (3.2.7) by using Cauhy-Shwartz inequality, H�older inequality and a relation between u and ! we obtain the following estimate:12 ddt jj!jj2L2 � Cm(t)jj!jj2L2 ;whih by Gronwall's inequality impliesjj!(T )jjL2 � jj!(0)jjL2eC R T0 m(t)dt: (3.2.8)Step 2 Now we bound jjujjHs by jjrujjL1 . In partiular, we apply the operator D� to equations(3.2.1), (3.2.2), where � is a multi-index with j�j � s.



28Having introdued v = D�u;q = D�p;and F = D�(u � ru)� u �D�(ru);we obtain: �v�t + u � rv +rq = �F: (3.2.9)Then we pair the equation (3.2.9) with v and obtain:12 ddt jjvjj2L2 = �hF; vi: (3.2.10)By using Gagliardo-Nirenberg inequality we obtain a bound on jjF jjL2 . Then after summing over� in (3.2.10) and applying Gronwall's inequality we have:jjujj2Hs � jju(0)jj2HseC R T0 jjrujjL1dt: (3.2.11)Step 3 We state the inequality:jjrujjL1 � Cf1 + (1 + log jjujjH3)jj!jjL1 + jj!jjL2g; (3.2.12)



29whih gives bound on jjrujjL1 in terms of jj!jjL1 and jj!jjL2 . The proof of (3.2.12) presented in (1)uses the Biot-Savart Law and singular integrals approah.Now we ombine (3.2.8), (3.2.11), and (3.2.12) and in suh a way we prove (3.2.5).Here we point out the the inequality (3.2.12) ould be proved using Littlewood-Paley operators too.We present that proof in the following lemma:Lemma 3.2.3 Under above onditions we have:jjrujjL1 � Cf1 + (1 + log jjujjH3)jj!jjL1 + jj!jjL2g:Proof From the Biot-Savart Lawu(x) = � 14� Z x� yjx� yj3 � w(y)dy;we onlude that ru is a singular integral operator of !, and we will denote that operator by T!.Now we shall use Littlewood-Paley operators to deompose T! asT! = 1Xk=�1PkT!:However notie that PkT! is no more singular and we have:jjPkT!jjL1 . jjPk!jjL1 : (3.2.13)



30Now we develop three di�erent upper bounds on jjPk!jjL1 . At the end we will ompare them anduse eah when it is most eÆient.First let us notie that by using (3.2.13), Bernstein's inequality and de�nition of H2 norm we have:jjPkT!jjL1 . jjPk!jjL1� 2 3k2 jjPk!jjL2 (3.2.14)� 2� k2 jjPk!jjH2� 2� k2 jj!jjH2 ; (3.2.15)where the last inequality omes from the heap Littlewood-Paley inequality.However for k's suh that 2� k3 jj!jjH2 < jj!jjL1 ; (3.2.16)(3.2.15) implies: jjPkT!jjL1 . 2� k6 jj!jjL1 : (3.2.17)On the other hand for k's suh that 2� k3 jj!jjH2 � jj!jjL1 ;



31we simple notie that (3.2.13) together with the heap Littlewood-Paley inequality implies the bound:jjPkT!jjL1 . jj!jjL1 : (3.2.18)For negative k0s we will use the following onsequene of (3.2.14) and the heap Littlewood-Paleyinequality: jjPkT!jjL1 . 2 3k2 jj!jjL2 : (3.2.19)Notie that (3.2.16) means k & log jj!jjH2jj!jjL1 : Now we ombine bounds (3.2.17), (3.2.18) and (3.2.19).More preisely we sum over k and use:� (3.2.17) for k � log jj!jjH2jj!jjL1 ,� (3.2.18) for k < log jj!jjH2jj!jjL1 and� (3.2.19) for negative k's. Thus we obtain:jjT!jjL1 � (1 + log jj!jjH2jj!jjL1 )jj!jjL1 + jj!jjL2 : (3.2.20)If jj!jjL1 � 1 then (3.2.20) impliesjjT!jjL1 � (1 + log jj!jjH2)jj!jjL1 + jj!jjL2 ; (3.2.21)



32while if jj!jjL1 < 1 then (log jj!jjH2jj!jjL1 ) � jj!jjL1 � 1 + (log jj!jjH2)jj!jjL1 ;whih together with (3.2.20) implies the laim of the lemma.3.3 Theorem of Beale-Kato-Majda from Littlewood-Paley perspetiveHere we state a theorem whih gives a riterion for loss of regularity for the solutions of the Eulerequations. We prove the theorem using Littlewood-Paley operators. More spei�ally we prove:Theorem 3.3.1 Let u be a solution of Euler's equations (3.2.1), (3.2.2), and suppose there is a timeT� suh that the solution annot be ontinued in the lass (3.2.3) to T = T�. Assume that T� is the�rst suh time. Then jj!(T�)jjL1 =1:Proof Let us assume jj!(t)jjL1dt <1; for all t 2 [0; T�℄: (3.3.1)Then we will show that jju(t)jjHs � C0; for all t < T�: (3.3.2)



33However (3.3.2) leads to ontradition, beause if (3.3.2) ould be true then by the loal existenetheorem, Theorem 3.2.1, we would be able to extend the original solution past time T� ontrary to thehoie of T�.Let us onsider the vortiity equation.�!�t + u � r! = ! � ru: (3.3.3)Now we ompute the L2(R3) pairing of the equation (3.3.3) with P 2j !. We obtain:12 ddt jjPj!jj2L2 = �hPj(u � r!); Pj!i+ hPj(! � ru); Pj!i (3.3.4)We shall estimate the terms on the right hand side of (3.3.4).Lemma 3.3.2 Under above onditions we have:jjPj(! � ru)jjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 :Proof We rewrite Pj(! � ru) using \trihotomy":Pj(! � ru) = Hj;lh +Hj;hl +Hj;ll +Hj;hh;



34where the low-high part is given byHj;lh = Pj( Xk<j�4(Pk!) � ~Pjru);the high-low part is given by Hj;hl = Pj( Xk<j�4( ~Pj!) � Pkru);the low-low part is given byHj;ll = Pj( Xj�4�k�j+4(Pk!) � ~Pkru) + Pj( Xj�4�k�j+4( ~Pk!) � Pkru);and the high-high part is givenHj;hh = Pj( Xk>j+4(Pk!) � ~Pkru) + Pj( Xk>j+4( ~Pk!) � Pkru):We bound the low-high part by using a heap Littlewood-Paley inequality, triangle inequality andH�older inequality: jjHj;lhjjL2 � jj Xk<j�4(Pk!) � ~PjrujjL2� Xk<j�4 jj(Pk!) � ~PjrujjL2� Xk<j�4 jj(Pk!)jjL1 � jj ~PjrujjL2. jjPj!jjL2( Xk<j�4 jjPk!jjL1):



35In a similar spirit, by using a heap Littlewood-Paley inequality, triangle inequality and H�olderinequality, we bound the high-low term as:jjHj;hljjL2 � jj Xk<j�4( ~Pj!) � PkrujjL2� Xk<j�4 jj( ~Pj!) � PkrujjL2� Xk<j�4 jj( ~Pj!)jjL2 � jjPkrujjL1. jjPj!jjL2( Xk<j�4 jjPk!jjL1):Also by using a heap Littlewood-Paley inequality, triangle inequality and H�older inequality, weobtain the following bound for the low-low part:jjHj;lljjL2 . jjPj!jjL2( Xj�4�k�j+4 jjPk!jjL1):In order to bound the high-high part we will �rst reall that for any funtions f; g:jjPj(Pkf �Pkg)jjL2 = jhPj(Pkf �Pkg); hij, where jjhjjL2 = 1. Thus by using Cauhy-Shwartz inequalityand Proposition 2.1.1 we obtain:jjPj(Pkf � Pkg)jjL2 � jhPkf � Pkg; Pjhij� jjPjhjjL1 jjPkf jjL2 jjPkgjjL2� 2 3j2 jjhjjL2 jjPkf jjL2 jjPkgjjL2= 2 3j2 jjPkf jjL2 jjPkgjjL2 : (3.3.5)



36Now we apply (3.3.5) with f and g equal to ! and ru respetively. In suh a way we obtain abound for the high-high part as: jjHj;hhjjL2 . Xk>j+4 2 3j2 jjPk!jj2L2 :Combining bounds for Hj;lh, Hj;hl and Hj;hh the laim is proved.In a similar way we obtain the following type of bound for the �rst term of the right hand side of(3.3.4):Lemma 3.3.3 Under above onditions we have:jjhPj(u � r!); Pj!ijjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 :Thus by Lemma 3.3.2 and Lemma 3.3.3, the expression (3.3.4) implies:ddt jjPj!jjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 : (3.3.6)By using Proposition 2.1.1 (Bernstein's inequality), we see that (3.3.6) implies:ddt jjPj!jjL2 . jjPj!jjL2( Xk�j+4 2 3k2 jjPk!jjL2) + Xk>j+4 2 3j2 jjPk!jj2L2 : (3.3.7)Now we multiply the inequality (3.3.7) by 2 3j2 and we hoose a sequene f!kg in suh a way that2 3k2 jjPk!jjL2 < !k; as long as !k < 1:



37Then our system (3.3.7) is majorized by the system:d!jdt = !jXk�j !k +Xk>j !2k; when !j < 1; (3.3.8)and !j = 1 one !j reahes 1; (3.3.9)with the initial ondition !j(0) = 2��j : (3.3.10)Now we will prove a simple lemma whih will enable us to majorize the system (3.3.8)-(3.3.10).Lemma 3.3.4 If f!lg is a sequene of solutions to the system (3.3.8)-(3.3.10) then!k < !j;when k > j, i.e. the sequene f!lg is a dereasing sequene.Proof It suÆes to prove !j+1 < !j.Note that initially we have: !j+1(0) = 2��(j+1) < 2��j = !j(0):



38Thus it is enough to prove: d!j+1dt < d!jdt :Sine !j and !j+1 are solutions to the system (3.3.8)-(3.3.10) we an alulate d!j+1dt � d!jdt and weobtain: d(!j � !j+1)dt = (Xk�j !k)(!j � !j+1);and therefore (!j � !j+1)(t) = (!j � !j+1)(0) eR t0 Pk�j !k(�)d� ;whih implies (!j � !j+1)(t) > 0;and the lemma is proved.Now from Lemma 3.3.4 we see that the system (3.3.8)-(3.3.10) an be majorized by the system:d!jdt = ( 1Xk=1!k)!j (3.3.11)and !j = 1 one !j reahes 1; (3.3.12)



39with the initial ondition !j(0) = 2��j : (3.3.13)Notie that for the system (3.3.11) - (3.3.13) we always have!j+1 = 2��!j as long as !j is not yet 1: (3.3.14)Thus at the time t1 when !1 beomes 1, by shifting the index we are almost in the situation we had att = 0 beause !2(t1) = 2��: From this point on !1 is �xed at 1, so!1 = 1:d!jdt = (1 + 1Xk=2!k)!j:At the mth step we have: d!jdt = (m+ 1Xk=m+1!k)!j : (3.3.15)Now we prove the following statement:Lemma 3.3.5 Let f!lg be a sequene of solution to the system (3.3.11) - (3.3.13). If !1, !2, ..., !mhave already beome equal to 1, then !m+1 will go from 2�� to 1 in time like 1m .



40Proof Sine !1 = 1;:::!m = 1;by realling (3.3.14) we have1Xk=m+1!k = !m+1 + 2��!m+1 + 2�2�!m+1 + :::� 1 + 2�� + 2�2� + :::= C: (3.3.16)Sine !m+1 satis�es (3.3.15) we haved!m+1dt = (m+ 1Xk=m+1!k)!m+1;whih together with (3.3.16) implies d!m+1dt � (m+C)!m+1: (3.3.17)



41We denote the time when !m beomes equal to 1 by tm, and similarly we denote by tm+1 the timewhen !m+1 beomes equal to 1. Now we integrate (3.3.17) on the time interval [tm; tm+1℄ and onludethat tm+1 � tm is of order 1m .Now from Lemma 3.3.5 we onlude that wm+1 will have gone from 2��(m+1) to 1 in time like1 + 12 + 13 + :::+ 1m = log m;and therefore for all t < log m we have !m+1 � 22t2��(m+1): (3.3.18)In the other words for all k > 2t we have !k � 22t2��k: (3.3.19)We are almost ready to onlude the proof of Theorem 3.3.1. In order to do that we will use thefollowing two inequalities. The �rst inequality omes from the onservation of energy for the Eulerequation and an be formulated as: jjPk!jjL2 � 2k; (3.3.20)



42and we will use it for k � 2t. However for k > 2t we will use the inequality2 3k2 jjPk!jjL2 � 22t2��k; (3.3.21)whih follows from (3.3.19) by realling the de�nition of !k.Now we notie that (3.3.20) in terms of H�-norm impliesjjPk!jjH� � 2�k2k; for k � 2t; (3.3.22)while (3.3.21) implies jjPk!jjH� � 2(���)k22t2� 3k2 ; for k > 2t: (3.3.23)We sum jjPk!jjH� over k and by using (3.3.22), (3.3.23) and a heap Littlewood-Paley inequalitywe obtain: jj!jjH� � 2t2(�+1)2t +Xk>2t 2(���)k22t2� 3k2 ;and therefore for � < �+ 32 jjujjH�+1 � onstant;and the theorem is proved.



433.4 Global strong solvability for the Navier-Stokes equations with enough dissipationIn this setion we present a proof of global strong solvability for the Navier-Stokes equations withenough dissipation. We ould think about this proof as about an appliation of the Sobolev embeddingtheorem.The Navier-Stokes equation with dissipation (��)� is given by�u�t + u � ru+rp = �(��)�u; (3.4.1)where u is a time-dependent divergene free vetor �eld in R3 . One sets the initial onditionu(x; 0) = u0(x) (3.4.2)where u0(x) 2 C1 (R3 ).The well known fat about this is expressed in Proposition 3.4.1. We learned the proof whih wepresent in this setion from Diego Cordoba.Proposition 3.4.1 If � � 54 , one has global strong solvability for the system (3.4.1), (3.4.2).Proof We will use the standard notation that H� denotes the L2 Sobolev spae over R3 with �derivatives.We �rst reall the energy inequality obtained by pairing the equation (3.4.1) with u12 �(jjujj2L2 )�t = �jj(��)�2 ujj2L2 � �jjujj2H� + jjujj2L2 : (3.4.3)



44From this, we obtain by integrating over time (and observing that the L2 norm is always positive),that if the solution u remains smooth up to time T , we have the estimateZ T0 jjujj2H�dt . (1 + T ): (3.4.4)We now pair (3.4.1) with (��)u in order to estimate �(jjujj2H1)�t . We obtain12 �(jj(��) 12ujj2L2)�t + hu � ru; (��)ui = �jj(��)�+12 ujj2L2 : (3.4.5)Clearly, we must estimate the nonlinear problem termhu � ru; (��)ui:Using H�older's inequality we have the following estimatejhu � ru; (��)uij � jjujjLp jjrujjL2 jj(��)ujjLq ; (3.4.6)where 1p + 1q = 12 .Now we apply Sobolev embedding theorem to the right-hand side of (3.4.6) and obtainjhu � ru; (��)uij � jjujjH3( 12� 1p ) jjujjH1 jjujjH3( 12� 1q )+2 : (3.4.7)



45Sine we are assuming � � 54 , we obtain from (3.4.7)jhu � ru; (��)uij � jjujjH� jjujjH1 jjujjH�+1 : (3.4.8)Applying Cauhy-Shwartz, we get immediatelyjjujjH� jjujjH1 jjujjH�+1 � Æjjujj2H�+1 + 1Æ jjujj2H� jjujj2H1 :Combining this with (3.4.5), we get�jjujj2H1�t . jjujj2H� jjujj2H1 + jjujj2L2 :In turn, ombining this with (3.4.4) and with Gronwall's inequality gives global solvability.



CHAPTER 4DYADIC MODELS AND PARTIAL REGULARITY RESULTS4.1 IntrodutionIn this hapter we introdue dyadi models for the equations of uid motion. We prove partial reg-ularity result for the dyadi Navier-Stokes equations with hyper-dissipation. In the hapters followingthis hapter we will prove the same result for the atual Navier-Stokes equations with hyper-dissipation.The dyadi model illustrates main ideas used in subsequent hapters in proving an estimate for theHausdor� dimension of the set of singular points for the Navier-Stokes equation with hyper-dissipationat the �rst time of blow-up.Also we prove partial regularity result for the dyadi version of the Ladyzhenkaya's modi�ationof the Navier-Stokes equation. This proof is slightly di�erent from one for the dyadi Navier-Stokesequations with hyper-dissipation and requires a more genuine onsideration of energy deay.The dyadi model presented here is an in�nite system of ODEs. Eah ODE is given in terms of awavelet oeÆient whih desribes behavior of the veloity that is loalized to a ertain frequeny range.Therefore the dyadi model ould be understood in a general ontext of Littelwood-Paley theory. Alsoeah ODE reets behavior of the veloity loalized in spae on a dyadi ube. For suh an ODE we�gure out saling balane between the nonlinear term and the dissipation term. When the dissipationterm dominates the nonlinear term we are in a subritial situation, and the growth of a solution tothe ODE is ontrolled. That is all we need, beause in the opposite situation, when the nonlinear46



47term dominates the dissipation term we use a lemma whih gives an upper bound for the Hausdor�dimension of a \bad" set, provided that we are able to disretize that set in a ertain way.Dyadi models introdued in this hapter have the property of onserved energy, or in the ase ofthe Navier-Stokes equations the property of energy deay. On the other hand the dyadi models havethe nonlinear term with a built-in dispersive feature. Thus as models they ould be useful in studyingglobal properties of the Navier-Stokes equations.We note that those models go into a general lass of shell models introdued by Gledzer (14) andOhkitani-Yamada (34). For a survey of mathematial developments in onnetion with shell modelssee for example Bohr et al (2).The hapter is organized as follows. In setion 4.2 we present preliminaries. In setion 4.3 weintrodue dyadi models. Then in setions 4.4 and 4.5 we prove partial regularity results for the dyadiNavier-Stokes equations with hyper-dissipation and for the dyadi version of the Ladyzhenskaya'smodi�ation of the Navier-Stokes equations, respetively.4.2 PreliminariesHere we will reall the de�nition of Hausdor� dimension and present a lemma whih an be usedas a tool in the proess of proving an upper bound on the Hausdor� dimension.Given any set A � Rn , the d-dimensional Hausdor� measure of A, Hd(A), is given by:Hd(A) = lim��!0 Cd�(A);



48where Cd�(A) is de�ned as: Cd�(A) = infC2C�(A)XB2C r(B)d:Here r(B) is the radius of ball B and C�(A) stands for the set of all overings of A by balls of radiusless than or equal to �.Having de�ned Hausdor� measure we an speak about the Hausdor� dimension whih is given by:infHd(A)=0 d:Our goal is to be able to �nd an upper bound on the Hausdor� dimension of a ertain set. In orderto do that we will use Lemma 4.2.1. Intuitively speaking the lemma gives an upper bound for theHausdor� dimension of a ertain set, if we are able to disretize the partiular set so that at level j itould be seen as olletions of not more than 2jd balls of radius 2�j . More preisely:Lemma 4.2.1 Let A1; : : : ; Aj ; : : : be a sequene of olletions of balls in Rn so that eah element ofAj has radius 2�j. Suppose that #(Aj) � 2jd. De�neA = lim supj�!1 Aj ;to be the set of points in in�nitely many of the [B2AjB's. Then the Hausdor� dimension of A is atmost d.



49Proof From the de�nition of the Hausdor� dimension of A we see that is suÆes to prove:H(A) = 0; for all  > d:Choose j suh that 2�j < �. Then A an be overed by the [k>j [B2Ak B.Thus H(A) �Xk>j 2kd(2�k) ;and the limit as j goes to 1 of the right hand side is zero whenever  > d.4.3 Dyadi modelHere we shall introdue a dyadi model for the equations of uid motion in three dimensions.We de�ne a dyadi ube in a standard way. A ube Q in R3 is a dyadi ube if its sidelength is aninteger power of 2, 2l, and the orners of the ube are on the lattie 2lZ3.We let D denote the set of dyadi ubes in R3 . We let Dj denote the subset of dyadi ubes havingsidelength 2�j . Abusing notation slightly we de�ne the funtionj : D �! Z;by letting j(Q) = j if Q 2 Dj. We de�ne ~Q, the parent of Q, to be the unique dyadi ube in Dj(Q)�1whih ontains Q. For m � 1 we de�ne Cm(Q), the mth order grandhildren of Q to be the set of thoseubes in Dj(Q)+m whih are ontained in Q. We sometimes refer to the �rst order grandhildren of Qas the hildren of Q.



50In our dyadi model we onsider a salar valued funtion u. It is represented by a wavelet expansion:u =XQ uQwQ;where fwQg is an orthonormal family of wavelets suh that the wavelet wQ is assoiated to the spatialdyadi ube Q 2 Dj. The wavelet oeÆient orresponding to the ube Q is denoted by uQ. We willrefer to the values uQ as the oeÆients of the funtion u.We de�ne the dyadi Laplaian � by: �(wQ) = 22jwQ:We de�ne jjujjL2 to denote the L2 norm of u and for any � > 0, we de�nejjujjH2� = jjujjL2 + jj(�)�ujjL2 :We de�ne hu; vi to denote the L2 pairing of u and v.We would like to have an operator whih will mimi the behavior of the nonlinear term u � ru.Note that jjwQjjL1 � 2 3j(Q)2 : (4.3.1)



51On the other hand jjrwQjjL2 � 2j ; (4.3.2)sine our wavelets wQ's are orthonormal and loalized to the frequenies around 2j .With respet to (4.3.1) and (4.3.2) we de�ne a bilinear operator, the asade operator, by de�ningtwo piees from whih it is built. The asade down operator is de�ned by(Cd(u; v))Q = 2 5j(Q)2 u ~Qv ~Q:We de�ne the asade up operator by(Cu(u; v))Q = 2 5(j(Q)+1)2 uQ XQ02C1(Q) vQ0 :We de�ne the asade operator C(u; v) = Cu(u; v) � Cd(u; v):Obviously, hCu(u; u); ui = hCd(u; u); ui;whih implies hC(u; u); ui = 0: (4.3.3)



52Having de�ned operator C(u; v) we an speak about dyadi version of the Euler as well as theNavier-Stokes equations. More preisely by the dyadi Euler equations we mean:dudt + C(u; u) = 0:Now we introdue the dyadi Navier-Stokes equations as:dudt +C(u; u) + �u = 0:Also we ould speak about the dyadi Navier-Stokes equations with hyper-dissipation by whih wemean: dudt + C(u; u) + (�)�u = 0: (4.3.4)In a similar fashion we de�ne a dyadi model for the Ladyzhenskaya's modi�ation of the Navier-Stokes equations: dudt + C(u; u)� div T (D) = 0; (4.3.5)where D = ru;



53and the stress tensor T satis�es onditions:(i) jTik(D)j � 1(1 + jDj2�)jDj; (4.3.6)
(ii) Tik(D)( �ui�xk ) � �0D2 + �1D2+2�: (4.3.7)A simple onsequene of (4.3.3) is onservation of energy for all four equations, whih is an importantfeature of the atual equations preserved in the dyadi model.4.4 Partial regularity for the dyadi Navier-Stokes equations with hyper-dissipationIn this setion we will investigate partial regularity results for the equation (4.3.4).We onsider the dyadi Navier-Stokes equation with hyper-dissipation (4.3.4). We would like toestimate Hausdor� dimension of the set of singular points at the �rst time of blow up, T . The nonlinearterm C(u; u) on sale j looks like 2 5j2 u2Q (if we imagine for a moment that all neighboring ubes haveoeÆients of roughly the same size), while the dissipation term gives deay like 22�juQ. This meansthat as long as juQj < 2� j2 (5�4�);the growth of uQ is under ontrol. We shall all this bound on the oeÆients \ritial regularity".But let us hek what happens if juQj > 2� j2 (5�4�).



54We an rewrite equation (4.3.4) in terms of wavelets oeÆients as follows:duQdt = XQ0;Q002E(Q) (Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 � 22�j(Q)uQ; (4.4.1)where E(Q) := f ~Q;Qg [ C1(Q), and
(Q;Q0;Q00) = 8>>>>>><>>>>>>: 1; if Q0 = Q00 = ~Q�2 52 ; Q0 = Q and Q00 2 C1(Q)0; otherwise

9>>>>>>=>>>>>>; :
Having assumed juQj & 2� j2 (5�4�) for some time t and assuming that at the initial time t = 0 it ismuh smaller, by the smoothness assumption on the initial ondition, we integrate (4.4.1) in time onthe interval [0; T ℄ and obtain for one of the hoies of (Q0; Q00) giving a non-vanishing oeÆient:2 5j2 Z T0 juQ0uQ00 jdt & 2� j2 (5�4�);whih by Cauhy-Shwartz implies:2 5j2 (Z T0 u2Q0dt) 12 (Z T0 u2Q00dt) 12 & 2� j2 (5�4�):The last expression an be rewritten as:22j�(Z T0 u2Q0dt) 12 (Z T0 u2Q00dt) 12 & 2�j(5�4�):



55This an happen if either 22j� Z T0 u2Q0dt & 2�j(5�4�); (4.4.2)or 22j� Z T0 u2Q00dt & 2�j(5�4�): (4.4.3)However having in mind onservation of energy we have22j� Z T0 XQ at sale j u2Qdt . 1:Thus we onlude that (4.4.2) or (4.4.3) ould happen in at most . 2j(5�4�) ubes Q. Now we invokeLemma 4.2.1 and onlude that the Hausdor� dimension of the set of points of the equation (4.3.4) atwhih ritial regularity fails is at most 5� 4�.We still need to prove regularity on the interior of a dyadi ube Q, provided that one has a littlebetter than ritial regularity at a ube Q. Before formulating a lemma whih proves suh a statementlet us de�ne the graph distane as follows:De�nition 4.4.1 Let Q be a dyadi ube and let Q1 be a ube in Cm(Q). We de�ne d(Q1), the graphdistane of Q1 to the boundary of Q by d(Q1) = m.Then we prove the statement:



56Lemma 4.4.2 Fix an � > 0. Let Q be a dyadi ube in Dj. Suppose we know that for all t < T wehave juQ(t)j . 2� j2 (5�4�);then for any dyadi ube Q1 � Q of length 2�k, we have the estimatejuQ1(t)j . 2�k�(Q1); (4.4.4)where �(Q1) = 5� 4�2 + �d(Q1)2 :Proof The proof we present is by ontradition.Notie that for all ubes Q1 of sidelength 2�k we havejuQ1(0)j . 2�1000k; (4.4.5)i.e. the lemma is satis�ed at time t = 0.Now let t1 be the �rst time at whih lemma fails, and let Q1 be one of the ubes at whih thelemma fails. Thus juQ1(t1)j & 2�k�(Q1): (4.4.6)



57Having in mind (4.4.5), we an �nd the time t0, being the last time before t1 whenjuQ1(t0)j . 2k(��(Q1)+�): (4.4.7)Thus u2Q1(t) & 2k(�2�(Q1)+2�); for all time t suh that t0 < t < t1: (4.4.8)But the lemma is satis�ed on the time interval (t0; t1).We multiply the equation (4.4.1) by uQ1 . We observe that for any time t between t0 and t1, thedissipation term at the ube Q1 satis�es:22�ku2Q1 & 2(2��2�(Q1)+2�)k: (4.4.9)Therefore to reah ontradition it suÆes to prove that for any time t on the interval (t0; t1), thenonlinear term annot reah the dissipation term, i.e.XQ01;Q0012E(Q1) (Q1;Q01;Q001 )2 5k(Q1)2 uQ1uQ01uQ001 . 2(2��2�(Q1)+2�)k; (4.4.10)where (Q1;Q01;Q001 ) = 8>>>>>><>>>>>>: 1; if Q01 = Q001 = ~Q1�2 52 ; Q01 = Q1 and Q001 2 C1(Q1)0; otherwise
9>>>>>>=>>>>>>; :



58In the rest of the proof we shall use the advantage of the fat that the lemma is satis�ed on thetime interval (t0; t1). First notie that by (4.4.4) we have juQ1 j < 2�k�(Q1); for all t 2 (t0; t1).Now for any Q2 2 E(Q1) we have d(Q2) � d(Q1)� 1: (4.4.11)This follows from the de�nition of E(Q1).Using (4.4.4) and (4.4.11), we observe that for any Q2 in E(Q1) suh that Q2 � Q and for allt 2 (t0; t1) we have uQ2 . 2�k�(Q2)= 2�k( 5�4�2 + �d(Q2)2 )� 2�k( 5�4�2 + �(d(Q1)�1)2 )= 2�k�(Q1)+ k�2 ;and therefore uQ2 . 2(��(Q1)+ �2 )k: (4.4.12)



59Here we remark that in speial ase when Q2, an element of E(Q1), oinides with the ube Q itself,we an still obtain (4.4.12). In this ase it must be that Q1 2 C1(Q), and therefore the sidelength ofQ1 is k := j + 1, and d(Q1) = 1. Thus by using the assumption of the lemma we obtainuQ2 . 2�j( 5�4�2 )= 2�k( 5�4�2 )+(k�j) 5�4�2� 2�k( 5�4�2 )= 2�k( 5�4�2 + �(d(Q1)2 )+ k�2= 2�k�(Q1)+ k�2 :On the other hand for any Q2 in E(Q1) we haveuQ2 . 2 (4��5)k2 ; (4.4.13)by the lower bound on �.Thus by using (4.4.12) and (4.4.13) we bound the nonlinear term in the following way:XQ01;Q0012E(Q1) (Q1;Q01;Q001 )2 5k(Q1)2 uQ1uQ01uQ001 . 2(2�+ �2�2�(Q1))k: (4.4.14)Therefore the nonlinear term annot ontribute to the growth of uQ1 , and uQ1 ould not have grownwhih is a ontradition.



604.5 Partial regularity for a dyadi version of the Ladyzhenskaya's modi�ation of theNavier-Stokes equationsNow let us present partial regularity results for a dyadi model of type (4.3.5). Before introduingour model equation, let us onsider the equation (4.3.5) where the stress tensor T is given by:T (D) = �jDj2�D: (4.5.1)In order to analyze the dissipation term div T (D) on sale j, we imagine that all neighboring ubeshave wavelet oeÆients of approximately the same size. Sine L1 is an algebra, and our waveletswQ's are orthonormal and loalized to the frequenies around 2j , by realling (4.3.1) we have:jj jrwQj2�jjL1 . (2 3j(Q)2 � 2j)2�; (4.5.2)and jjrwQjjL2 � 2j : (4.5.3)Thus the maximum dissipation on sale j arising from a dyadi model of the type (4.3.5) with thestress tensor (4.5.1) gives deay like 2j(5�+2)juQj2�uQ.



61Now we onstrut the dyadi model for the modi�ed Navier-Stokes equations with dissipative termof the order 2j(5�+2)juQj2�uQ at sale j. More preisely, we onsider the following equation:dudt + (u; u)� div ~T (D) = 0; (4.5.4)where D = ru;and the stress tensor ~T is suh that hdiv ~T (D); wQi = �2j(5�+2)juQj2�uQ, for all dyadi ubes Q 2 Dj .We would like to estimate the Hausdor� dimension of the set of singular points for (4.5.4) at thetime �1 of �rst blow up. In order to introdue a ertain ritial level of regularity we will imagine thatall neighboring ubes have wavelet oeÆients of approximately the same size. Then the nonlinear term(u; u) on sale j looks like 2 5j2 u2Q, while the dissipation term on sale j gives deay like 2j(5�+2)juQj2�uQ.We note that in terms of saling the nonlinear term is ontrolled by the dissipation term on level j aslong as: 2j(5�+2)juQj2�+1 > 2 5j2 u2Q: (4.5.5)In order to simplify our notation we denote j(1�10�)2(1�2�) by r(j). Thus for 0 � � < 12 we an rewrite (4.5.5)as: juQj < 2�r(j):We all this level of regularity \ritial regularity".



62Here we will investigate what happens ifjuQj & 2�r(j); at the �rst time �1: (4.5.6)Thus �1 is introdued as �1 = inff� > 0 : juQ(�)j > 2�rg:Let �0 be de�ned as: �0 = supf� 2 [0; �1) : juQ(�)j < 2�r; with  < 1g:Suh time �0 exists, beause otherwise we would ontradit initial ondition on uQ(0). Thus we have:juQ(t)j & 2�r; for all time t 2 (�0; �1): (4.5.7)We an rewrite equation given with (4.5.4) in terms of wavelets oeÆients as an in�nite system ofODEs: duQdt = XQ0;Q002E(Q) (Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 � 2j(5�+2)juQj2�uQ; (4.5.8)



63where (Q;Q0;Q00) = 8>>>>>><>>>>>>: 1; if Q0 = Q00 = ~Q�2 52 ; Q0 = Q and Q00 2 C1(Q)0; otherwise
9>>>>>>=>>>>>>; :A simple onsequene of (4.3.3) is onservation of energy for (4.5.8),2j(5�+2) XQ at sale j Z �10 juQj2�u2Qdt . 1: (4.5.9)whih is an important feature of this equation that we will use here.By using our assumption (4.5.7) we havejuQj2�u2Q & 2�2�ru2Q; for all time t; �0 < t < �1; (4.5.10)and therefore 2�2�r Z �1�0 u2Qdt . Z �1�0 juQj2�u2Qdt . Z �10 juQj2�u2Qdt: (4.5.11)Hene the energy integral (4.5.9) implies:2j(5�+2)2�2�r XQ at sale j Z �1�0 u2Qdt . 1: (4.5.12)



64Having assumed juQj & 2�r for time t, �0 < t < �1, we integrate (4.5.8) in time on the interval[�0; �1℄. By realling the meaning of the symbols . and & and by notiing thatj2j(5�+2) Z �1�0 juQj2�uQj . jZ �1�0 X(Q0;Q00) (Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 j; (4.5.13)we obtain for one of the hoies of (Q0; Q00) giving a non-vanishing oeÆient:2 5j2 Z �1�0 juQ0uQ00 jdt & 2�r; (4.5.14)whih by Cauhy-Shwartz implies:2 5j2 (Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�r: (4.5.15)After we multiply both sides of (4.5.15) with 2j(5�+2)2�2�r it beomes:2j(5�+2)2�2�r(Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�r� 5j2 +j(5�+2)�2�r: (4.5.16)With respet to the de�nition of r, (4.5.16) beomes2j(5�+2)2�2�r(Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�j 1�10�1�2� : (4.5.17)



65This an happen if either 2j(5�+2)2�2�r Z �1�0 u2Q0dt & 2�j 1�10�1�2� ; (4.5.18)or 2j(5�+2)2�2�r Z �1�0 u2Q00dt & 2�j 1�10�1�2� : (4.5.19)Thus by realling (4.5.12) we onlude that (4.5.18) or (4.5.19) ould happen in at most . 2j 1�10�1�2�ubes Q. Now we invoke Lemma 4.2.1 and onlude that the Hausdor� dimension of the set of singularpoints of (4.3.5) at whih ritial regularity fails is at most 1�10�1�2� .In order to omplete the dyadi heuristi we still need to prove regularity on the interior of a dyadiube Q, provided that one has ritial regularity for ubes ontaining it. This ould be done in a similarway as in the ase of the equation (4.3.4) and we omit the proof.



CHAPTER 5LOCALIZED NAVIER-STOKES EQUATIONS WITH HYPER-DISSIPATION5.1 IntrodutionIn Chapter 4 we presented the dyadi heuristi whih gave an upper bound on the Hausdor�dimension of the singular set for the dyadi Navier-Stokes equations with hyper-dissipation. Now wewould like to generalize suh a result for the atual Navier-Stokes equation with hyper-dissipation:�u�t + u � ru+rp = �(��)�u; (5.1.1)where u is a time-dependent divergene free vetor �eld in R3 . One sets the initial onditionu(x; 0) = u0(x) (5.1.2)where u0(x) 2 C1 (R3 ).First we need to loalize the equation (5.1.1) in frequeny and spae. We do that in this hapter. Inpartiular to deal with loalization we ombine the theory of paramultipliation presented in hapter2 with the theory of pseudodi�erential operators. One equation (5.1.1) is in a loalized form weanalyze the nonlinear term and the dissipation term separately. We obtain an upper bound for thenonlinear term, and a lower bound for the dissipation term. Then we �gure out a balane betweenthese two terms. For eah loalization sale we introdue a bad ube as a ube where the nonlinear66



67term dominates the dissipation term. However by using overing lemma of Vitali we are able to ountnumber of bad ubes at eah sale, whih is enough to obtain an estimate on the Hausdor� dimensionof the singular set. We do all that in this hapter. Then in hapters 6 and 7 we prove regularity outsideof the bad set.This hapter is organized as follows. In setion 5.2 we employ Littlewood-Paley operators andpseudodi�erential operators to loalize the equation (5.1.1) in frequeny and spae. In setion 5.3 weanalyze the dissipation term. In setion 5.4 we obtain an upper bound on the nonlinear term. Insetion 5.5 we desribe the singular set and its overing.5.2 Littlewood Paley theory and Pseudodi�erential operatorsHere we loalize the equation (5.1.1) in frequeny and spae.We shall use a standard Littlewood Paley partition of frequeny spae as introdued in hapter 1.The idea of Littlewood-Paley theory is that Pjf is like a ombination of wavelets supported on ubesof length 2�j . Bernstein's inequality is sharp only when a large proportion of the L2 energy of Pjf isonentrated in a single one of these ubes. Hene one is led to try to loalize Pjf in spae on suhubes. However by Heisenberg unertainty priniple we annot ahieve perfet loalization both infrequeny and spae. It is important to notie that we have some room for error sine our goal is aHausdor� dimension estimate whih is a losed ondition. Therefore we �x an � > 0 and never try toloalize better than within 2�j(1��).Our loalization is nearly perfet if we ignore negligible quantities. More preisely, whenever we areat sale j, we neglet quantities of size . 2�100j sine they will not a�et our estimates. Similarly weneglet operators whose norms are smaller than 2�100j provided they will only be applied to funtions



68whose norms are . 1. The hoie of 100 is arbitrary. It is large enough so that it does not a�et the L1norm of u. But in fat our tehniques for showing quantities are negligible rely on Shwartz funtionproperties and ould give an arbitrary exponent with loss in the onstant. The urrent approah workswell prinipally beause of onservation of energy, sine the L2 norm of u is ertainly . 1.Now let us loalize in spae. For any ube Q with sidelength greater than 2�j(1�2�), we de�nea bump funtion �Q;j whih is positive, is bounded above by 1, equals 1 on Q and is 0 outside of(1 + 2�j�)Q. Further, we require for eah multiindex � that there is a onstant C� independent of Qso that jD��Q;jj � C�2j�jj(1��): (5.2.1)We say that any bump funtion whih satis�es estimates (5.2.1) is of type j.The map �Q;jPj ats muh like a projetion, and we shall treat jj�Q;jPjf jjL2 as if it were a waveletoeÆient. When we deal with a ube Q of sidelength 2�j(1�2�); we shall de�ne j(Q) = j and we shalldenote jj�Q;j(Q)Pjf jjL2 by fQ. Further if j(Q) = j, we say that Q is at level j.Here we note that �Q;jPj is a pseudodi�erential operator. In order to see that we reall de�nitionof a pseudodi�erential operator aording to Taylor (47) .De�nition 5.2.1 We say that the operatorp(x;D)f(x) := Z p(x; �)f̂(�)eix��d�



69with a symbol p(x; �) is in lass OPSm�;Æ if there is a onstant Ca;b suh that:jDbxDa�p(x; �)j � Ca;bh�im��jaj+Æjbj;for all a, b, where h�i = (1+j�j2) 12 , and �; Æ 2 [0; 1℄. Herem stands for the order of the pseudodi�erentialoperator, and (�; Æ) for its type.Thus �Q;jPj , with the symbol �Q;j(x)pj(�), is a pseudodi�erential operator in lass OPS01;1��.Now we will show that �Q;jPj is loalized in frequeny, up to negligible terms.Proposition 5.2.2 Given f with jjf jjL2 . 1, and � a bump funtion of type j, the quantityjj�Pjf � ~Pj�Pjf jjL2is negligible.Proof Let us de�ne � = �1 + �2; where �̂2(�) = �fj�j> 1100 2jg�̂(�). We have�Pjf � ~Pj�Pjf = �1Pjf � ~Pj�1Pjf + �2Pjf � ~Pj�2Pjf:By our estimates on the derivatives of �, we an getjj�2(�)jjL1 = negligible;



70while, beause of the Fourier transform supports,~Pj�1Pjf = �1Pjf:Thus the proposition is proved.We would like to have a Bernstein's type inequality for �Q;jPj too, i.e. an inequality whih allowsus to move from jj�Q;jPj jjL2 to jj�Q;jPj jjL1 . Combining Bernstein's inequality itself and Proposition5.2.2, we get the following extremely useful lemma, whih we ould think of as \super Bernstein'sinequality".Lemma 5.2.3 Let � be a bump funtion of type j. Thenjj�Pjf jjL1 . 2 3j2 jj�Pjf jjL2 + negligible:Proof We neglet negligible terms. Then we have �Pjf = ~Pj�Pjf , by proposition 5.2.2. We estimatejj ~Pj�Pjf jjL1 by Bernstein's inequality.Before formulating the proposition whih shows that �Q;jPj is loalized in spae let us reall asymp-toti formula for produt of two pseudodi�erential operators that will be useful in the proof of Propo-sition 5.2.4. We state the produt rule aording to (47). More preisely, if pj(x; �) 2 OPSmj�j ;Æj , and0 � Æ2 < � � 1 with � = min(�1; �2), thenp1(x;D)p2(x;D) = q(x;D) 2 OPSm1+m2�;Æ ;



71with Æ = max(Æ1; Æ2), and q(x; �) �X��0 ij�j�! D�� p1(x; �)D�xp2(x; �): (5.2.2)Now we show that �Q;jPj is loalized in spae too, up to negligible terms.Proposition 5.2.4 For any ube Q, we have that for any f with jjf jjH� . 1 with � < 10 that(1� �(1+2��j(Q)2 )Q;j(Q))Pj�Q;j(Q)f;is negligible.Proof (1� �(1+2��j(Q)2 )Q;j(Q))Pj�Q;j(Q);is a omposition of type (1; 1 � �) pseudodi�erential operators whose symbols have disjoint support.Thus when we apply formula (5.2.2) the term of order zero is equal to zero, and we are left with higherorder derivatives, whih is smoothing.Notie that the above proposition really says that we an move bump funtions aross LittlewoodPaley projetions as long as the bump funtions proliferate and inrease in support. In other words,the proposition an be rewritten as�(1+2��j(Q)2 )Q;j(Q)Pj�Q;j(Q) = Pj�Q;j(Q) + negligible:



72Similarly, this an be used to remove inonvenient bump funtions, provided there is a smaller bumpfuntion already present in the expression.Proposition 5.2.5 Let C be a overing of a set E by ubes of sidelength 2�j(1�2�) for some �xed j.Then for any f 2 L2, we have jj�EPjf jj2L2 �XQ2C f2Q:Proof We simply observe thatXQ2C f2Q = Z (XQ2C �2Q;j)jPjf j2 � Z �EjPjf j2:
Essentially what we have done up to now is to use approximations to projetions whih are uniformlypseudodi�erential operators of type (1; 1� �). The negligible interation of distant squares an be justas well derived from the asymptoti formula for omposition of suh operators. The omposition of two(1; 1 � �) operators whose symbols have disjoint support is in�nitely smoothing and hene negligible.Now we are ready to write a loalized form of the Navier-Stokes equations with hyper-dissipation.Let u be a solution to the equation (5.1.1).In light of divergene-free ondition r � u = 0, we an rewrite (5.1.1) as

�u�t + T (u � ru) = �(��)�u; (5.2.3)



73where T is the projetion into divergene free vetor �elds. The operator T is a singular integraloperator and is also a Fourier multiplier. We pik a ube Q of side length 2�j(1�2�) and ompute theL2 pairing of the equation with Pj�2Q;jPju. We obtain the energy estimate
12 ddtu2Q = h�T (u � ru); Pj�2Q;jPjui � h(��)�u; Pj�2Q;jPjui (5.2.4)We shall estimate the two terms on the right hand side of (5.2.4) separately.5.3 DissipationIn this setion we analyze the dissipation termh(��)�u; Pj�2Q;jPjui:As before we use the notation ~Pj = 2Xk=�2Pj+k:This has the advantage that Pj = ~PjPj :We make some de�nitions. We de�ne for eah ube Q, the set N 1(Q), the nulear family of Q tobe a union of sets AQ; BQ; CQ;DQ; EQ, where AQ; BQ; CQ;DQ; EQ are overs of ~Q = (1 + 2��j4 )Q by



74fewer than 1024 ubes eah at levels respetively j � 2; j � 1; j; j + 1; and j + 2. We de�ne reursivelyN l(Q) to be the union of all N 1(Q0) for all Q0 2 N l�1(Q). Thus in partiular, we have#(N l(Q)) � 213l;sine 5(210) < 213.Now we are ready to state and prove the lower bound on the dissipation term:Proposition 5.3.1 Let Q be a ube and j = j(Q). Thenh(��)�u; Pj�2Q;jPjui � 22�ju2Q � C2(2��2�)j XQ02N 1(Q)u2Q0 � negligible (5.3.1)Proof Note thath(��)�u; Pj�2Q;jPjui = h�Q;jPj(��)�u; �Q;jPjui= h(��)��Q;jPju; �Q;jPjui+ h[�Q;jPj; (��)�℄u; �Q;jPjui= X + Y:



75Note that X := h(��)��Q;jPju; �Q;jPjui= jj(��)�2 �Q;jPjujj2L2& 22�j jj ~Pj�Q;jPjujj2L2= 22�ju2Q � negligible;where the last equality follows from Proposition 5.2.2.To estimate Y we shall use (5.2.2). Let p1(x; �) be a symbol of (��)�, let p2(x; �) be a symbol of�Q;jPj , and q(x; �) be a symbol of [(��)�; �Q;jPj ℄. Then we have:q(x; �) � X��0 ij�j�! D�� p1(x; �)D�xp2(x; �)�X��0 ij�j�! D�� p2(x; �)D�xp1(x; �)= [p1(x; �)p2(x; �)� p2(x; �)p1(x; �)℄+ [ 12�iD�p1(x; �)Dxp2(x; �)� 12�iD�p2(x; �)Dxp1(x; �)℄+ [( 12�i )2D2�p1(x; �)D2xp2(x; �) � ( 12�i )2D2�p2(x; �)D2xp1(x; �)℄:::Sine �Q;jPj is a pseudodi�erential operator in the lassOPS01;1��, and (��)� is a pseudodi�erentialoperator in the lass OPS2�1;0, the asymptoti formula for q(x; �) implies:jq(x; �)j � 12�i h�i(2���) + ( 12�i )2h�i(2��2�) + :::



76Thus we observe that [�Q;jPj ; (��)�℄ is of order 2�� �. Further by Proposition 5.2.2, we have[�Q;jPj ; (��)�℄ ~Pj � [�Q;jPj ; (��)�℄ = negligible:Even further, applying Proposition 5.2.4, we getY = h[�Q;jPj ; (��)�℄� ~Q;j ~Pju; �Q;jPjui+ negligible:Now applying the mapping properties of operators of order 2�� � we getjY j � 2(2���)j jj� ~Q;j ~PjujjL2 jj�Q;jPjujjL2 (5.3.2)whih for any number K, by Cauhy Shwartz impliesjY j . 1K 22�ju2Q +K2(2��2�)j jj� ~Q;j ~Pjujj2L2 :Now applying Proposition 5.2.5, we get the desired result.Let us de�ne for every l, u2N l(Q) = XQ02N l(Q)u2Q0 :Then we have



77Corollary 5.3.2 Let Q be a ube and j = j(Q). Then for any l,XQ02N l(Q)h(��)�u; Pj�2Q0;jPjui � 22�ju2N l(Q) � C2(2��2�)ju2N l+1(Q) � negligible (5.3.3)Proof Simply sum proposition 5.3.1 over N l(Q).We want to use Proposition 5.3.1 to �ght against the growth of uQ. Thus the term 2(2��2�)ju2Q0would appear to be a serious nuisane. However heuristially speaking if the term 2(2��2�)ju2Q0 istoo large ompared to the �rst term on the right-hand side of Proposition 5.3.1 we an extend ouronsideration from a ube Q0 to its nulear family N (Q0). Then if the term 2(2��2�)ju2N (Q0) is still tolarge we go from N (Q0) to its nulear family and so on up to N l(Q0). However we will have to stop atsome point beause of onservation of energy. We make this preise by the following lemma, whih weall \good neighbors".Lemma 5.3.3 For any interval of time J � [0; T ℄ and any ube Q we may �nd an l < 400� so thatZJ u2N l(Q)dt+ negligible & 2��j ZJ u2N l+1(Q)dt: (5.3.4)Proof By onservation of energy, for every l � 400� and every t we have,u2N l+1(Q) . 1:



78Sine our onstants an depend on T this meansZJ u2N l+1(Q)dt . 1:Now suppose the lemma is false. Applying the opposite of (5.3.4), for l = 1 : : : 400� ; we getZJ u2N 2(Q)dt+ negligible . 2�399j = negligible;whih implies that (5.3.4) holds for l = 1.We will be able to apply Lemma 5.3.3 together with Corollary 5.3.2 to show that for any ube andany interval in time, there is an lth iterated nulear family for small l whih is undergoing dissipation.5.4 An upper bound on the nonlinear termNow we turn our attention to the termGQ = h�T (u � ru); Pj�2Q;jPjui:We rewrite it as GQ = h��Qj ~PjTPj(u � ru); �Q;jPjui:Now we use the \trihotomy". We an writePj(u � ru) = Hj;lh +Hj;hl +Hj;hh +Hlo;



79where the low-high part is given byHj;lh = Xk<j� 1000� Pj((Pku) � ~Pjru);the high-low part is given by Hj;hl = Xk<j� 1000� Pj(( ~Pju) � Pkru);the high-high part is givenHj;hh = Xk>j+ 1000� Pj(( ~Pku) � Pkru) + Xk>j+ 1000� Pj((Pku) � ~Pkru);(tehnially that was the end of the trihotomy) and the loal part is given byHlo = Xj� 1000� <k<j+ 1000� Pj(( ~Pku) � Pkru) + Xj� 1000� <k<j+ 1000� Pj((Pku) � ~Pkru):Now we break up GQ in the obvious way:GQ = GQ;lh +GQ;hl +GQ;hh +GQ;lo;where GQ;lh = h��Q;j ~PjTHj;lh; �Q;jPjui;GQ;hl = h��Q;j ~PjTHj;hl; �Q;jPjui;



80GQ;hh = h��Q;j ~PjTHj;hh�Q;jPjui;GQ;lo = h��Q;j ~PjTHj;lo; �Q;jPjui:Our goal is to �nd an upper bound on GQ. Now �xing Q and j we would like to estimate eah ofGQ;lh; GQ;hl; GQ;hh; and GQ;lo. Before going into details let us intuitively explain how we obtain thesebounds. For example let us heuristially disuss how we obtain a bound on GQ;lh. We remark that weare on the level of piees loalized in frequeny, i.e. on the level of Littlewood-Paley operators. Thenwe need to estimate L2-norm of the produt:jjPku � ~PjrujjL2 ; (5.4.1)where k stands for a low frequeny part, and j for a high frequeny part. First we apply the H�olderinequality, jjf � gjjL2 � jjf jjL2 jjgjjL1 ;having in mind that we shall hoose a funtion g to be one of Pku, ~Pjru so that we an applyBernstein's inequality on jjgjjL1 in the most eÆient way. Sine Bernstein's inequality is more eÆientwhen applied on low-frequeny part we hoose a funtion g to be Pku, while we hoose ~Pjru to be fin H�older's inequality. All this is on the level of Littlewood-Paley operators only. Indeed we deal withpiees loalized in frequeny and spae too, and instead of Pku we shall be able to deal with �lPku.However thanks to the alulus developed in setion 5.2, we are able to use the idea just desribed. In



81suh a way by employing H�older and \super-Bernstein's" inequalities we obtain an upper bound forthe atual GQ.We take a moment to be areful about how we loalize. For any k < j, de�ne Qk = 2(j�k)(1�2�)Q.For any k � j (inluding j) de�ne Qk = (1 + 2��k2 )Q.Then we haveLemma 5.4.1 For any Æ > 0jGQ;lhj+ jGQ;hlj . j� 1000�Xk=Æj 2 3k2 +juQkuN 1(Q)uQ + 2j(1+ 3Æ2 )uN 1(Q)uQ + negligible:Proof We onsider for k < j � 1000� , the relevant expressionGQ;lh;k = h��Q;jPjT (Pku ~Pjru); �Q;jPjui:We divide this into two ases whih are k < Æj and k � Æj. In the seond ase, we use the idea ofProposition 5.2.4 (we just have to use a higher degree of smoothing than is used in that proposition)to observe GQ;lh;k = h��Q;jPjT ((�Qk ;kPk)u � r(�Qj ;j ~Pju)); �Q;jPjui+ negligible:(This is beause r ats on �Qj ;j only where it has a negligible e�et on the whole quantity by Propo-sition 5.2.4.) Now we simply observe by Proposition 5.2.3 thatjj�Qk;kPkujjL1 . 2 3k2 uQk + negligible;



82and by Proposition 5.2.4, the proof of Proposition 5.2.2 (to ontrol the ation of r) and Proposition5.2.5 that jjr�Qj ;j ~PjujjL2 . 2juN 1(Q) + negligible:On the other hand for the �rst ase, there is no point in loalizing to Qk beause k is too small andso the error is too big. Thus in in this ase, we simply estimatejjPkujjL1 . 2 3Æj2 uQk . 2 3Æj2 :This last appliation of onservation of energy aounts for the peuliar homogeneity of our result. Weare pleased to ontrol the energy in very large sales by 1.Summing these estimates gives the desired bound for GQ;lh. The bound for GQ;hl proeeds likewise(and gives a better estimate sine the derivative falls on the level k term.)
Lemma 5.4.2 jGQ;loj . 2 5j2 uQu2N 1000� (Q) + negligible:Proof From the de�nition of GQ;lo we have:GQ;lo = 2Xl=�2[ j+ 1000�Xk=j� 1000� h�Q;jPjT (Pk+lu � rPku); �Q;jPjui+ j+ 1000�Xk=j� 1000� h�Q;jPjT (Pku � rPk+lu); �Q;jPjui℄:



83Sine the above sum has only . 1 many terms by applying Proposition 5.2.4, we observe that forsome partiular values of k; ljGQ;loj . jh�Q;jPjT (�Qj ;jPku � �Qj ;jrPk+lu); �Q;jPjuij+ negligible:Now we apply Proposition 5.2.3 together with Cauhy Shwartz to obtainjj�Qj ;jPkujjL1 . 2 3j2 jj�Qj ;jPkujjL2 + negligible:Using Proposition 5.2.5, we observe thatjj�Qj ;jPkujjL2 . uN 1000� (Q):Finally diret alulation showsjj�Qj ;jrPk+lujjL2 . jjr�(1+2�2�j3 )Qj ;jPk+lujj . 2juN 1000� (Q) + negligible;where the �rst inequality omes from the fat that �(1+2�2�j3 )Qj ;j = 1 on the support of �Qj ;j and theseond inequality omes again from Proposition 5.2.5. Combining all these estimates proves the lemma.
Lemma 5.4.3 jGQ;hhj . Xk>j+ 1000� uQ2 3j2 +kjj�Qj ;jPkujj2L2 :



84Proof We begin similarly to before by estimatingh�Q;jPjT (Pku � r ~Pku); �Q;jPjui:With the other terms one an proeed likewise. Now, similarly to what we have already done, weobserve that we an write this as,h�Q;jPjT (�Qj ;jPku � r�Qj ;j ~Pku); �Q;jPjui+ negligible:Now we estimate jj�Q;jPjujjL1 . 2 3j2 uQ + negligible;jjr�Qj ;j ~PkujjL2 . 2k 2Xl=�2 jj�Qj ;jPk+lujjL2 + negligible:Combining these estimates gives the desired inequality.In fat, we get a slightly better estimate, for instane by the div-url lemma, but it does not seemto be neessary.The previous three lemmas are somewhat wasteful, partiularly in the de�nition of the loal part.We are using more squares than we need to over. For the result of the hapter 6 we need a somewhatmore eÆient deomposition, whih is proved in exatly the same way. We formulate it here.For Q a ube at level j, we de�ne the anestors of Q,A(Q) = fQkg�j<k<j�4:



85For k � j � 4, we de�ne the olletion Sk(Q) to be a overing (with overlap . 1) of the ube Qj�4 byubes at level k. We de�ne the strit extended familyE(Q) = j+ 1000�[k=j�4 Sk(Q);and we de�ne F(Q), the followers of Q byF(Q) = [k>j+ 1000� Sk(Q):Then applying the same estimates as in the proofs of lemmas 5.4.1, 5.4.2 and 5.4.3, to a slightlydi�erent deomposition we obtainCorollary 5.4.4 For any Æ > 0 we an estimateGQ . ZQ;lhhl + ZQ;lo + ZQ;hh + 2j(1+ 32 Æ)uQuN 1(Q);where ZQ;lhhl = Xk<j�4 XQ02N 1(Q) 2j+ 3k2 uQkuQ0uQ;and ZQ;lo = 2 5j2 XQ0;Q002E(Q)uQuQ0uQ00 ;



86and �nally ZQ;hh = Xk>j+ 1000� 2 3j2 +kuQ XQ02Sk(Q) u2Q0 :Proof This time we de�ne: H 0j;lh = Xk<j�4Pj((Pku) � ~Pjru);H 0j;hl = Xk<j�4Pj(( ~Pju) � Pkru);H 0j;hh = Xk>j+ 1000� Pj(( ~Pku) � Pkru) + Xk>j+ 1000� Pj((Pku) � ~Pkru); ;and H 0lo = Xj�4<k<j+ 1000� Pj(( ~Pku) � Pkru) + Xj�4<k<j+ 1000� Pj((Pku) � ~Pkru); :Now we break up GQ in the obvious way:GQ = G0Q;lh +G0Q;hl +G0Q;hh +G0Q;lo;where G0Q;lh = h��Q;j ~PjTH 0j;lh; �Q;jPjui;G0Q;hl = h��Q;j ~PjTH 0j;hl; �Q;jPjui;G0Q;hh = h��Q;j ~PjTH 0j;hh�Q;jPjui;



87G0Q;lo = h��Q;j ~PjTH 0j;lo; �Q;jPjui:Now we simply estimate eah of the G0's as before.
5.5 Singular setIn this setion for eah sale j we introdue notion of a bad ube, and a bad set. Intuitively badube is a ube on whih the nonlinear term dominates the dissipation term, while bad set is a ertainunion of bad ubes at sale j. On eah sale j we shall use Vitali's lemma to over the orrespondingbad set. We shall be able to ount elements of these overings, and that will imply the bound onHausdor� dimension of our singular set.Now we are ready to desribe our singular set. We will say that a ube Q of sidelength 2�j(1�2�) isbad if Z T0 Z Xk�j 22�kj�Q;kPkuj2 & 2�(5�4�)j�100�j : (5.5.1)Let Ej be the union of 2 3000� Q for all ubes Q of sidelength 2�j(1�2�) whih are bad.We will need the following well known overing lemma of Vitali (see (44)):Lemma 5.5.1 Let C be any olletion of ubes, then there is a subolletion C0 so that any two ubesin C0 are pairwise disjoint and so that [Q2CQ � [Q2C0 5Q:



88Proposition 5.5.2 There is overing Qj of Ej by ubes of sidelength 2�j(1�2�) so that#(Qj) . 2(5�4�)j+100�j :Proof Let C be the olletion of ubes 2Q where Q is a bad ube at level j. >From Lemma 5.5.1 weknow that there are disjoint ubes f2Q�g�2Z suh that the olletion onsisting of f10Q�g overs theset Ej . Any ube of sidelength 10 � 2�j(1�2�) an be overed by 1000 ubes of sidelength 2�j(1�2�) (and1000 is a onstant.) We will de�ne Qj to be the overing formed by the union of the thousandths ofthe elements of f10Q�g .In order to ount ubes in Qj it is enough to ount the disjoint ubes used in the onstrution ofQj .However we know sine the 2Q�'s are disjoint thatX� Xk Z T0 22�kj�Q�;kPkuj2 . Z T0 Z j��uj2 . 1 (5.5.2)by onservation of energy, while we knowX� Xk Z T0 22�kj�Q�;kPjuj2 & #(Qj)2�(5�4�)j�100�j (5.5.3)by the badness of the ubes.Combining the inequalities (5.5.2) and (5.5.3) implies the laim.We pause for a moment to apply Lemma 4.2.1.



89Corollary 5.5.3 The dimension of E = lim supj�!1Ej is bounded by 5� 4�+O(�).If we ould show that if x =2 E then x is a regular point of u at time T - in other words thatlim supt�!T ju(x; t)j <1:(Indeed if we ould show it is a regular point for a derivative of u of any �xed order) this wouldimmediately imply Theorem 1.2.2.



CHAPTER 6CRITICAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS WITHHYPER-DISSIPATION6.1 IntrodutionWe ontinue to onsider the Navier-Stokes equations with hyper-dissipation. In this hapter foreah sale of frequeny loalization j, we prove a ertain level of regularity, whih is valid away fromthe orresponding bad set. This level of regularity shall express a balane between the nonlinear andthe dissipation terms as in the ase of the dyadi Navier-Stokes equations with hyper-dissipation.Let E be de�ned as in the previous hapter, i.e.E = lim supj�!1 Ej ;where Ej stands for the bad set at sale j.First we investigate what are the immediate onsequenes of x =2 E. Saying that x =2 E is the sameas saying that there exists a j so that so that for any k > j, we have x =2 Ek. Denote Fj as the setof points with this property. To prove a regularity statement about E, it suÆes to show that thatstatement holds for any j0, provided x 2 Fj0 . However �xing j, we may hange our onstants in thede�nition of bad square so that x is not ontained in any bad squares. Thus we may as well assume xis ontained in no bad squares. This will be our hypothesis in this hapter. (And, the onstants willnow depend on j0.) 90



91Now we would like to introdue a level of regularity whih intuitively separates the bad set from itsomplement. As in the dyadi heuristi as long as the dissipation term dominates the nonlinear termthe growth of uQ should be under ontrol. Heuristially, the worst part of the nonlinear part GQ isGQ;lo whih looks at sale j like 2 5j2 u3Q. On the other hand, dissipation gives deay like 22�ju2Q. Thisshould mean that as long as uQ < 22(�� 54 )j; the growth of uQ ought to be under ontrol. It is thisestimate whih we will show in the following setion for any Q not ontained in Ek for any k > j0.6.2 Critial regularity theoremTheorem 6.2.1 Let Q be as above, then there is a onstant C, depending only on T , the initialonditions for u, the onstant in the de�nition of badness, and j0 so thatuQ(t) < C22(�� 54� �2 )j(Q):Proof We proeed by ontradition. Suppose the theorem is false. We let T0 be the �rst time and Qbe the largest ube so that uQ(T0) > C22(�� 54� �2 )j :Now sine our initial data is smooth, at the initial time, (sine j is hosen suÆiently large), wehave uQ(0) . 2�1000j : (6.2.1)



92Reall that in hapter 5 we wrote a loalized version of the energy equation for the Navier-Stokesequation in the form: 12 ddtu2Q = h�T (u � ru); Pj�2Q;jPjui � h(��)�u; Pj�2Q;jPjui;whih was by introduing GQ rewritten as12 ddtu2Q = GQ � h(��)�u; Pj�2Q;jPjui:Therefore having in mind the lower bound on the dissipation termh(��)�u; Pj�2Q;jPjui � 22�ju2Q �C2(2��2�)j XQ02N 1(Q) u2Q0 � negligibleas well as (6.2.1), it must be the ase thatZ T00 (GQ(t)� 22�ju2Q + C2(2��2�)j XQ02N 1(Q) u2Q0)dt & 24(�� 54� �2 )j :By using the \good neighbors" proposition, we an replae Q by an extended nulear family N l(Q),with l < 400� for whihZ T0 (�22�ju2N l(Q) + C2(2��2�)ju2N l+1(Q))dt . �Z T0 22�ju2N l(Q):For the urrent theorem, this is all we need. Sine uN l(Q) also begins . 2�1000j , we must have



93Z T00 GN l(Q)(t)dt & 24(�� 54� �2 )j + Z T0 22�ju2N l(Q);where we de�ne GN l(Q)(t) = XQ12N l(Q)GQ1(t):Sine there are only . 1 ubes in N l(Q), for this to be the ase, there must be a ~Q so thatZ T00 G ~Q(t)dt & 24(�� 54� �2 )j + Z T0 22�ju2N l( ~Q);We ontradit this by using Lemmas 5.4.1, 5.4.2, and 5.4.3 to estimate G ~Q. By our de�nition ofEj , the ube ~Q is ontained in no larger bad squares.Eah estimate ontains a fator of u ~Q whih we take out using the estimate ju ~Qj . 22(�� 54� �2 )j ,whih we get from the de�nition of T0.First let Q1 be a nulear family member of ~Q and Q2 be a distant anestor at level k. Supposek < Æj, we see that 2(1+ 3Æ2 )juQ1 . 22�juN l( ~Q). Thus we need not worry about this term.Suppose k > Æj. We must estimate Z T0 2 3k2 +juQ1uQ2dt:Note that both Q1 and Q2 are good squares. Thus we have the estimatesZ T0 23ku2Q2 � 2(2��2)k�10�k ;



94and Z T0 22ju2Q1 � 2(2��3)j�10�j :Applying Cauhy-Shwartz, we get (using � � 1)Z T0 2 3k2 +juQ1uQ2dt � 2( 4��52 )j�10�j :Summing over (there are only j terms) provides the desired estimate on G ~Q;hl+G ~Q;lh. We an estimateG ~Q;lo in the same way (by allowing k as large as j + 1000� .)We are left to estimate G ~Q;hh. We �x a sale k > j and pik k2 within 2 of k. Now we are left toestimate Z T00 2 3j2 +kjj� ~Q;kPkujjL2 jj� ~Q;k2Pk2ujjL2 :However sine ~Q is a good square, we haveZ 22�kj� ~Q;kPkuj2 � 2(4��5)j�10�j :Thus Z 2k+ 3j2 j� ~Q;kPkuj2 � 2( 4��52 )j�10�j�(2��1)(k�j);whih is an estimate that deays geometrially in k when � > 12 . By using the similar estimate for k2,applying Cauhy Shwartz and summing over k, we get the desired result.



CHAPTER 7BARRIER ESTIMATE FOR THE NAVIER-STOKES EQUATIONS WITHHYPER-DISSIPATION7.1 IntrodutionIn this hapter we �nish the proof of the main theorem by proving that a solution of the Navier-Stokes equations with hyper-dissipation is regular outside of a ertain bad set. Ideally we would liketo prove that if x =2 E then lim supt�!T ju(x; t)j <1:However due to a ombinatorial issue we shall prove the same statement for a somewhat larger olletionthan one whih overs the set E.We shall prove regularity far inside a ube Q provided that one has a little better than ritialregularity for the ube Q as well as smooth initial data. By \a little better than ritial regularity forthe ube Q" we mean:� ritial regularity for all ubes ontaining our ube Q, and� ritial regularity for all boundary ubes of the ube Q.The last one whih we ould think of as a \safe boundary ondition" imposes the restrition on � whihis � > 1.Now we shall prove a statement whih veri�es the \safe boundary ondition". We do that in setion7.2. Then in setion 7.3 we prove a barrier estimate whih guarantees regularity far inside the ube Q.95



967.2 CombinatorisHere we shall verify that we an replae our ube Q with a slightly smaller ube whose boundary isaway from the singular set. Let us think heuristially about the boundary of our ube Q. Sine we arein R3 the boundary of the ube Q is 2-dimensional. However the dimension of the singular set is 5�4�and this number is smaller than 1, provided that � > 1. Now we need to assure that 2-dimensionalboundary does not interset the singular set whose dimension is less than 1. We an do that beausewe are in 3 dimensions. In other words we will replae our ube Q with slightly smaller ube withsafe boundary. More preisely, we prove the theorem whih guarantees the existene of a number r,12 < r < 1 suh that the ube rQ would have a nie boundary, i.e. boundary whih is away from aertain bad set.We begin with the set Ej whih is the union of a olletion Qj of ubes with sidelength 2�(1�2�)jhaving ardinality . 2(5�4�+100�)j . (We assume 4�� 4 > 200�.)Theorem 7.2.1 There exists a sequene of olletions Q0j of ubes of sidelength 2�(1�2�)j with #(Q0j) .2(5�4�+100�)j , so that for any Q of length 2�(1�2�)j whih does not interset any element Q0j there existsa number 12 < r < 1 with the following property: For no k > j is there ~Q 2 Qk so that100 ~Q \ �(rQ) 6= ; (7.2.1)Proof We refer to the elements of Qj as the bad ubes. We say that a ube of sidelength 2�(1�2�)j isvery bad if either it intersets a bad ube of the same length or it intersets more than 2(5�4�+150�)(k�j)elements of 100Qk for some k > j with  a small onstant to be spei�ed later. Let E0j be the union



97of all very bad ubes of length 2�(1�2�)j , then by the estimates on the ardinality of the Qk's and bythe Vitali lemma, we an see that that E0j an be overed by . 2(5�4�+100�)j ubes of length 2�(1�2�)j .We refer to these ubes as Q0k. Now we need only prove (7.2.1).Let Q be a ube of length 2�(1�2�)j whih does not interset E0j. Let Dk(Q) be the set of elementsof 100Qk whih interset Q. Then we have the estimate#(Dk(Q)) � 2(5�4�+150�)(k�j):Let fk(r) be the funtion de�ned from 12 to 1 whih ounts how many elements of Dk(Q) interset�(rQ). For eah Q0 2 Dk(Q) de�ne rQ0 to be that number so that the enter of Q0 lies on �(rQ0Q).Then fk(r) � XQ02Dk(Q)�(rQ0�100(2(1�2�)(j�k));rQ0+100(2(1�2�)(j�k))):Thus jjfk(r)jjL1 � 2002(4��4�152�)(j�k) :Sine 4� � 4 > 200�; this estimate deays geometrially with k. By hoosing  suÆiently small, wemay arrange that jjXk>j fkjjL1 < 14 :Thus by Thebyhev's inequality, jfr : jXk>j fk(r)j � 1gj � 14 :



98Therefore having in mind that fk(r) is integer valued, we onlude that there must be a value of rbetween 12 and 1 so that fk(r) = 0 for all k > j. This is the value of r that we hoose.7.3 Barrier estimateIn this setion, we prove regularity on the interior of a ube Q, provided that one has ritialregularity for ubes ontaining it and ubes Q0 for whih �Q \ 100Q0 6= ;.If Q is a ube and Q1 � Q, we de�ne d(Q1), the graph distane of Q1 to the boundary of Q byd(Q1) = k � 1, where k is the smallest positive integer so that2kQ1 \ �Q 6= ;:Lemma 7.3.1 Let Q be a ube. Suppose we know that for all t < T we have that for any ube Q0 sothat Q � Q0 with sidelength of Q0 being 2�l(1�2�), we have thatjuQ0(t)j . 2�l( 5�4�+2�2 );and suppose further that for any Q0 so that 100Q0 \ �Q 6= ; with sidelength of Q0 being 2�l(1�2�) andl > j � 2, we have that juQ0(t)j . 2�l( 5�4�+2�2 );then for any Q1 � Q of length 2�k(1�2�), we have the estimatejuQ1(t)j . 2�k�(Q1); (7.3.1)



99where �(Q1) = min(10; 5� 4�+ 2�2 + �(d(Q1)� 5)50 ):Proof The proof we present is by ontradition.Notie that for all ubes Q1 of sidelength 2�(1�2�)k we havejuQ1(0)j . 2�1000k; (7.3.2)i.e. the lemma is satis�ed at time t = 0.Let t1 be the �rst time at whih the lemma fails and Q1 be one of the ubes for whih it fails. Itmust be the ase by hypothesis that 32Q1 does not interset �Q. Then we haveuQ1(t1) � 2�k�(Q1):Having in mind (7.3.2), we an �nd the time t0, being the last time before t1 whenuQ1(t0) . 2k(��(Q1)+ �10 ):Then we have Z t1t0 ddt(u2Q1) & 2�2k�(Q1): (7.3.3)However on the time interval (t0; t1) the lemma is satis�ed.



100We will invoke Corollary 5.4.4. Now for any Q2 2 E(Q1) we haved(Q2) � d(Q1)� 5: (7.3.4)This is beause Q2 � 32Q1. Further for any anestor Q3 2 A(Q1) with Q3 having sidelength 2�(1�2�)l,with �k < l < k � 4, d(Q3) � d(Q1)� 5(k � l): (7.3.5)Further for any follower Q4 2 F(Q1) (that is a ube whih ontributes to GQ1;hh and is in partiularontained in 32Q1) of Q1 with Q4 having sidelength 2�(1�2�)l with l > k + 1000� , we haved(Q4) � d(Q1) + ( l � k2 ): (7.3.6)Applying (7.3.6), we onlude that �(Q4) = 10. Thus we onludeZQ1;hh .Xl>k 2 5k2 23(l�k)2�20l2(��(Q1)+ �10 )k;by ounting the elements of Sl(Q) by 23(l�k). Calulating, we �ndZQ1;hh . 2�( 352 +�(Q1))k;whih sine �(Q1) � 10; annot possibly aount for (7.3.3).



101Now applying (7.3.4) to Proposition 5.3.1, we observe that for any t between t0 and t1, we havedissipation at Q1 of & 22�ku2Q1(t) & 2(2��2�(Q1)+ �5 )k:Thus to reah a ontradition, it suÆes to show that on this time intervalZQ1;hllh + ZQ1;lo . 2(2��2�(Q1)+ �5 )k:For this reason we an also ignore the ultra-low term 2j(1+ 32 Æ)uQ1uN 1(Q1) in Corollary 5.4.4.In the rest of the proof we shall use the advantage of the fat that the lemma is satis�ed on thetime interval (t0; t1). First notie that by (7.3.1) we have juQ1 j < 2�k�(Q1); for all t 2 [t0; t1℄.Using (7.3.1) and (7.3.4), we observe that for any Q2 in E(Q1) and for all t 2 [t0; t1℄ we haveuQ2 . 2�k�(Q2)= 2�k( 5�4�+2�2 + �(d(Q2)�5)50 )� 2�k( 5�4�+2�2 + �(d(Q1)�5)50 )+ k�10= 2�k�(Q1)+ k�10 ;and therefore uQ2 . 2(��(Q1)+ �10 )k: (7.3.7)



102On the other hand for any Q2 in E(Q1) we haveuQ2 . 2 (4��5�2�)k2 ; (7.3.8)by the lower bound on �.Thus by using (7.3.7) and (7.3.8) we bound ZQ1;loZQ1;lo . XQ2;Q022E(Q1) 2 5k2 uQ2uQ02uQ1 . 2(2�� 4�5 �2�(Q1))k:Thus ZQ1;lo annot ontribute to the growth.Now to estimate ZQ1;hllh, we observe that for Q01 2 N 1(Q1) we have the estimateuQ01 . 2(��(Q1)+ �10 )k;while for anestor Q3 of sidelength 2�(1�2�)l, we apply (7.3.5) (as well as the hypotheses of the lemmafor squares larger than Q) uQ3 . 2 (4��5�2�)k2 +( 32�100�)(k�l);sine of ourse 32 > 5�4�2 + 200�. Now we just estimateZQ1;hllh .Xl X 2 3l2 +kuQ01uQ3uQ1 . 2(2�� 4�5 �2�(Q1))k:Thus uQ1 ould not have grown whih is a ontradition.



103But now we have in fat proven the main theorem. We de�ne E0j as in setion 7.2. We need to showthat u is regular at any x not ontained in any E0j with j larger than some integer jx. By hanging ouronstants, we an say x is not in any E0j. Now by theorems 6.2.1 and 7.2.1, for any ube Q enteredat x, we an �nd a ube almost half as large whih satis�es the hypotheses of Lemma 7.3.1. But theonlusion of the lemma implies that x is a regular point. Thus any singular point must be ontainedin E = lim supE0j . By lemma 4.2.1, we have dim(E) < 5� 4�+ 20�. Letting � tend towards 0, we getTheorem 1.2.2.



CHAPTER 8DYADIC MODELS AND BLOW-UP RESULTS8.1 IntrodutionIn this hapter we revisit the dyadi model for the Euler equations and the Navier-Stokes equationswith hyper-dissipation in three dimenison. For the dyadi Euler equations we prove �nite time blow-up. In the ontext of the dyadi Navier-Stokes equations with hyper-dissipation we prove �nite timeblow-up in ase when the dissipation degree is suÆiently small.For both the dyadi Euler and the dyadi Navier-Stokes equations with hyper-dissipation we provean estimate whih gives a lower bound on the nonlinear term. Notie that in the ontext of partialregularity results presented in previous hapters we always used an upper bound on the nonlinear term.Then we alulated a balane betwwen the nonlinear and the dissipation term. However for the blow-up results one needs a lower bound on the nonlinear term. Suh a bound desribes onentration ofenergy suÆient to produe a blow-up. We prove for the dyadi model that a lower bound guaranteesblow-up, provided that the dissipation degree is small. However we are not able to produe suh alower bound for the atual equations themselves.Before going into details let us reall the model. Following the notation introdued in hapter 4, weuse the bilinear operator C(u; v), whih is built from two piees, Cu(u; v) and Cd(u; v), and we have:(Cd(u; u))Q = 2 5j(Q)2 u2~Q;104



105(Cu(u; u))Q = 2 5(j(Q)+1)2 uQ XQ02C1(Q) uQ0 ;C(u; u) = Cu(u; u)� Cd(u; u):Clearly we always have antisymmetry in the sense thathC(u; u); ui = 0:We shall say that a time varying \funtion" u satis�es the dyadi Euler equation provided thatdudt + C(u; u) = 0: (8.1.1)Also we shall say that u satis�es the dyadi Navier-Stokes equations with hyper-dissipation ifdudt + C(u; u) + (�)�u = 0: (8.1.2)We will restrit our attention to \funtions" u all of whose oeÆients uQ are initially positive.This lass of funtions is preserved by both ows (8.1.1) and (8.1.2). Let us verify that for the ow(8.1.1). Fix a dyadi ube Q. We rewrite the equation (8.1.1) in terms of wavelet oeÆients as follows:
duQ(t)dt + 2 5j(Q)2 uQ XQ02C1(Q) uQ0(t) = u2~Q(t): (8.1.3)



106Now we remark that the equation (8.1.3) is a �rst order linear ordinary di�erential equation inuQ(t) and its solution is: uQ(t) = 1�(t)(uQ(0) + Z t0 u2~Q(�)�(�)d�); (8.1.4)where �(t) = eR t0 2 5j(Q)2 PQ02C1(Q) uQ0(�)d� :Sine �(t) > 0 for all t, (8.1.4) implies that uQ(t) > 0 for all t > 0, provided that uQ(0) is positive.The hapter is organized as follows. In setion 8.2 we give a blow-up result for the dyadi Eulerequation. Then in setion 8.3 we present a proof of �nite time blow-up for the dyadi Navier-Stokesequations with small dissipation.8.2 The dyadi Euler equation8.2.1 Energy owOne of the most important features of the ow (8.1.1) is that it onserves energy. To be morepreise ddt(hu; ui) = 0 (8.2.1)This an be obtained by pairing (8.1.1) with u. Energy an be thought of as divided up amongst thenodes Q. To be more preise, if we write E = hu; ui;



107then E = XQ2DEQ;where EQ = u2Q:The ow (8.1.1) gives rise to an extremely loal desription of energy ow along the tree D.To be preise ddtEQ = EQ;in �EQ;out; (8.2.2)where EQ;in = 2 5j(Q)2 (E ~QpEQ);and EQ;out = XQ02C1(Q)EQ0;in:Thus energy is owing always from larger squares to smaller ones and indeed it ows along the edgesof the tree D.We de�ne a Carleson box by C(Q) = 1[k=1 Ck(Q);



108and the energy of a Carleson box by EC(Q) = XQ02C(Q)EQ0 :Also we shall introdue an extended Carleson box byC0(Q) � Q [ C(Q):Then we de�ne the energy of C0(Q) by EC0(Q) = XQ02C0(Q)EQ0 ;We immediately get the following proposition.Proposition 8.2.1.1 Let u be a time-varying \funtion" with positive oeÆients evolving aordingto the ow (8.1.1). Then for any Q, the funtions in time given by EC(Q) and EC0(Q) are monotoneinreasing.8.2.2 The heartWe begin with an easy lemma about Carleson boxes.Lemma 8.2.2.1 For any � > 0, there is Æ(�) > 0, so that if we know thatEC(Q) > (1� Æ)2�(3+�)j(Q);



109then there exists Q0 2 C(Q); so that EC0(Q0) � 2�(3+�)j(Q0):Proof Let us suppose the onlusion of the lemma is false, i.e.EC0(Q0) < 2�(3+�)j(Q0); (8.2.3)for all Q0 2 C(Q):On the other hand we know EC(Q) = XQ02C1(Q)EC0(Q0): (8.2.4)Now beause we are in dimension 3, there are exatly 23 elements Q0 2 C1(Q) with j(Q0) = j(Q)+1.Thus(8.2.4) ombined with (8.2.3) impliesEC(Q) � 23 � 2�(3+�)(j(Q)+1);and therefore EC(Q) � 2�� � 2�(3+�)j(Q)whih is a ontradition provided we have hosen Æ suÆiently small that 2�� < 1� Æ.Now we prove the main lemma.



110Lemma 8.2.2.2 Fix j0 suÆiently large. Then there is a suÆiently small 0 < � < 1 so that if attime t0, we have EC0(Q) � 2�(3+�)j(Q); (8.2.5)with j(Q) > j0, then there is some t with t < t0 + 2��j(Q) and a ube Q0 2 C(Q) so that at time t, wehave EC0(Q0) � 2�(3+�)j(Q0).Proof We assume that the onlusion of the lemma is false, i.e.EC0(Q0) < 2�(3+�)j(Q0);for all Q0 2 C(Q) and for all t 2 [t0; t0 + 2��j(Q)℄:In light of Lemma 8.2.2.1 and Proposition 8.2.1.1, it must be the ase that for all t 2 [t0; t0+2��j(Q)℄we have EQ � Æ2�(3+�)j(Q), sine otherwise beause of the hypothesis (8.2.5) we would have EC(Q) >(1� Æ)2�(3+�)j(Q), whih would by Lemma 8.2.2.1 lead to a ontradition.Moreover sine energy ows only in the diretion of smaller squares and is onserved, it must bethat for any hild Q0 2 C1(Q), it is the ase thatEC(Q) � Z t0+2��j(Q)t0 EQ0;in;at time t0 + 2��j(Q). Thus sine EQ0;in = 2 5(j(Q)+1)2 EQuQ0 ;



111we must have Z t0+2��j(Q)t0 uQ0 . 1� ÆÆ 2�5j(Q)2 : (8.2.6)However we know thatduQ0dt = 2 5(j(Q)+1)2 EQ � 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00): (8.2.7)Thus integrating, applying the fat that for all t 2 [t0; t0 + 2��j(Q)℄, we have EQ > Æ2�(3+�)j(Q); anduQ00 . 2� 3j(Q)2 (we an a�ord to give bak the �), and using (8.2.6), we see that the �rst term of (8.2.7)dominates (for � suÆiently large and j(Q) suÆiently small) andZ t0+2��j(Q)t0 duQ0dt & Æ2�( 12+2�)j(Q);whih is a ontradition by the fundamental theorem of alulus.
Corollary 8.2.2.3 Let u be a solution to (8.1.1) whih has initially all positive oeÆients and at time0, has EQ > 2�(3+�)j(Q), for j(Q) > j0 with j0 as in the previous lemma. Then the H 32+� norm of ubeomes unbounded in �nite time.Proof We apply the lemma. We �nd a ube Q1 properly ontained in Q and a time t1 < 2��j(Q) sothat at t1 we have EC0(Q1) > 2�(3+�)j(Q1).



112We iterate this proedure �nding a ube Qk properly ontained in Qk�1 and and a time tk so thattk�1 � tk < tk�1 + 2��j(Qk�1) and at time tk we have EC0(Qk) > 2�(3+�)j(Qk).Estimating just using the oeÆient at C0(Qk), we see that at time tk, we have thatjjujjH 32+� � 2 �j(Qk)2 :Sine j(Qk) is an inreasing sequene of integers, this is going to 1. However sine,tk = (tk � tk�1) + (tk�1 � tk�2) + � � �+ t1 � 2��j(Q) + k�1Xl=1 2��j(Ql);and the j(Ql)'s are an inreasing sequene of integers, we see that the sequene ftkg onverges to a�nite limit.We point our here that under ertain assumptions on the initial EQ(0) Corollary 8.2.2.3 guarantees�nite time blow-up of jjujjH 32+�-norm. This was obtained using an extended Carleson box C0(Q). In thenext setion we shall prove for the Navier-Stokes equations with small dissipation, �nite time blow-upof slightly weaker jjujjH2+� -norm. The reason for this is the fat that for the Navier-Stokes equationswith hyper-dissipation the energy itself is not onserved. Instead part of it dissipates at eah level ofour dyadi tree D.However from Fedor Nazarov (Nazarov, 2001, personal ommuniation) we learned his proof thatthe solution to the dyadi Navier-Stokes equations with enough dissipation stays bounded in a ertainCk spae provided that it started in the same Ck spae. The main tool in his proof is the followingobservation. Let us trunate the system of ODEs whih desribe the dyadi Navier-Stokes equations



113with hyper-dissipation. If provided with enough dissipation the system will satter all energy. Thereforeenergy annot beome onentrated over �rst few levels. For example, this is true for the dyadi Navier-Stokes itself. The natural question is what does \enough dissipation" mean. In the following setionwe prove that in order to have �nite time blow-up the dissipation exponent � should be less than 14 .8.3 The dyadi Navier-Stokes equations with hyper-dissipation8.3.1 Energy owWe onsider the dyadi Navier-Stokes equations with hyper-dissipation (8.1.2). SinehC(u; u); ui = 0;we have: ddt(hu; ui) + h(�)�u; ui = 0;and therefore we have energy deay: hu; ui + Z t0 h(�)�u; ui = 0: (8.3.1)Let us imagine that eah node Q along our tree D has a wastebasket whih is at time t �lled withR tt0 22�j(Q)u2Q:We de�ne the energy of a ube Q at time t as in the ase of the dyadi Euler equationEQ(t) = u2Q(t):



114For t greater than or equal to some �xed time t0 we introdue the energy of a wastebasket of a ubeQ at time t as WQ;t0(t) = Z tt0 22�j(Q)EQ:Then (8.3.1) is saying that the sum of energy at nodes plus energy at wastebaskets is ontrolled.Also we have a loal desription of energy ow along the tree D:
ddtEQ = EQ;in �EQ;out � 22�j(Q)EQ; (8.3.2)where EQ;in = 2 5j(Q)2 E ~QpEQ;and EQ;out = XQ02C1(Q)EQ0;in:Thus energy is owing always from larger squares to smaller ones and, exept for portions whih go towastebaskets, energy ows along the edges of the tree D.We de�ne the energy of a Carleson box byEC(Q) = XQ02C(Q)EQ0 ;



115and the waste of a Carleson box by WC(Q);t0 = XQ02C(Q)WQ0;t0 :We immediately get the following proposition.Proposition 8.3.1.1 Let u be a time-varying \funtion" with positive oeÆients evolving aordingto the ow (8.1.2). Then for any Q, the funtion in time given by EC(Q) + WC(Q);t0 is monotoneinreasing.8.3.2 Energy onentrationAs in the Euler ase we begin with a lemma about Carleson boxes.Lemma 8.3.2.1 For any � > 0, there is Æ(�) > 0, so that if we know thatEC(Q) +WC(Q);t0 > (1� Æ)2�(4+�)j(Q);then there exists Q0 2 C(Q); so that EQ0 +WQ0;t0 � 2�(4+�)j(Q0):Proof Let us assume the lemma is false, i.e.EQ0 +WQ0;t0 < 2�(4+�)j(Q0); (8.3.3)



116for all Q0 2 C(Q).On the other hand we have:EC(Q) +WC(Q);t0 = XQ02C(Q)[EQ0 +WQ0;t0 ℄= 1Xk=1 XQ02Ck(Q)[EQ0 +WQ0;t0 ℄: (8.3.4)Now beause we are in dimension 3, there are exatly 23k elements Q0 2 Ck(Q) with j(Q0) = j(Q)+k.Thus by using (8.3.3) we an bound (8.3.4) from above by1Xk=1 23k � 2�(4+�)(j(Q)+k);whih is in turn the same as 2�(4+�)j(Q) 1Xk=1 2�(�+1)k: (8.3.5)Sine 1Xk=1 2�(�+1)k < 1we an hoose 0 < Æ < 1 suh that 1Xk=1 2�(�+1)k = 1� Æ:



117Therefore (8.3.5) transforms into (1� Æ)2�(4+�)j(Q), and we obtainEC(Q) +WC(Q);t0 < (1� Æ)2�(4+�)j(Q);whih ontradits the assumption of our lemma.Now we prove the main lemma.Lemma 8.3.2.2 Fix j0 suÆiently large. Then there exists an �, 0 < � < 1� 4� so that if at time t0,we have EQ +WQ;t0 � 2�(4+�)j(Q) (8.3.6)with j(Q) > j0; then there is some t with t < t0 + T , where2 (��1)j(Q)2 < T < 2�2�jand a ube Q0 2 C(Q) so that at time t, we haveEQ0 +WQ0;t0 � 2�(4+�)j(Q0):Proof We assume that the onlusion of the lemma is false, i.e.EQ0 +WQ0;t0 < 2�(4+�)j(Q0); (8.3.7)



118for all Q0 2 C(Q), and for all t 2 [t0; t0 + T ℄.In light of Lemma 8.3.2.1 and Proposition 8.3.1.1, it must be the ase that for all t 2 [t0; t0 + T ℄,we have EQ(t) +WQ;t0(t) � Æ2�(4+�)j(Q); (8.3.8)sine otherwise beause of the hypothesis (8.3.6) we would haveEC(Q) +WC(Q) > (1� Æ)2�(4+�)j(Q); at some t 2 [t0; t0 + T ℄;whih would lead to a ontradition by Lemma 8.3.2.1.Sine WQ;t0(t) is a monotone inreasing funtion of t, (8.3.8) implies thatEQ(t) +WQ;t0(t0 + T ) � Æ2�(4+�)j(Q); for all t 2 [t0; t0 + T ℄;and therefore we have eitherEQ(t) � 12Æ2�(4+�)j(Q); for all t 2 [t0; t0 + T ℄; (8.3.9)or WQ;t0(t0 + T ) � 12Æ2�(4+�)j(Q): (8.3.10)



119We shall analyze those ases separately.First let us assume (8.3.10). Let Q0 an element of C1(Q). Then uQ0 satis�esduQ0dt = 2 5(j(Q)+1)2 u2Q � 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00)� 22�(j(Q)+1)uQ0 : (8.3.11)We shall integrate (8.3.11) on the time interval [t0; t0 + T ℄.In order to simplify our notation we introdue the following integrals:I1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Q;I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00);I3 := Z t0+Tt0 22�(j(Q)+1)uQ0 :By using (8.3.10) we estimate I1 and obtainI1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Q & Æ2�( 32+2�+�)j : (8.3.12)We bound I2 as follows: I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0) uQ00)� Z t0+Tt0 2 5(j(Q)+2)2 uQ0 j XQ002C1(Q0) uQ00 j. 2 5j2 � T � 2�(4+�)j � 23;



120where the last inequality follows from (8.3.7). ThusI2 . T � 2�( 32+�)j: (8.3.13)Similarly we use (8.3.7) in order to getI3 := Z t0+Tt0 22�(j(Q)+1)uQ0 . T � 2(2��2� �2 )j : (8.3.14)One easily heks from (8.3.12), (8.3.13) and (8.3.14) that if 0 < � < 1� 4� and T < 2�2�j thenI1 � I2;as well as I1 � I3:Therefore after integrating (8.3.11) on the time interval [t0; t0 + T ℄ we onlude thatZ t0+Tt0 duQ0dt & Æ2�( 32+2�+�)j ;whih is a ontradition by the fundamental theorem of alulus, sine � < 1� 4�.



121Now we are left to verify ontradition in the ase that one has (8.3.9). Let us assume (8.3.9).Moreover sine energy ows only in the diretion of smaller ubes and is onserved up to waste baskets,it must be that for any hild Q0 2 C1(Q), it is the ase thatEC(Q) +WC(Q);t0 � Z t0+Tt0 EQ0;in;at time t0 + T . Thus sine EQ0;in = 2 5(j(Q)+1)2 EQuQ0 ;we must have Z t0+Tt0 uQ0 . 1� ÆÆ 2�5j(Q)2 : (8.3.15)We integrate (8.3.11) on the time interval [t0; t0 + T ℄. By using (8.3.9) we bound I1 as follows:I1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Qdt & T � Æ � 2�( 32+�)j: (8.3.16)We bound I2 as: I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0) uQ00)� Z t0+Tt0 2 5(j(Q)+2)2 uQ0 j XQ002C1(Q0) uQ00 j. 1� ÆÆ 2�(2+ �2 )j ;



122where the last inequality follows from (8.3.15) and (8.3.7). ThusI2 . 1� ÆÆ 2�(2+ �2 )j : (8.3.17)By using (8.3.15) we obtain the following bound on I3I3 := Z t0+Tt0 22�(j(Q)+1)uQ0 . 2(2�� 52 )j : (8.3.18)Again one easily heks from (8.3.16), (8.3.17) and (8.3.18) that I1 dominates provided that 0 <� < 1� 4� and T > 2 (��1)j2 .Therefore after integrating (8.3.11) on the time interval [t0; t0 + T ℄ we onlude thatZ t0+Tt0 duQ0dt & T � Æ � 2�( 32+�)j;whih is a ontradition by the fundamental theorem of alulus, sine T > 2 (��1)j(Q)2 .Lemma 8.3.2.3 Fix j0 suÆiently large. Then there exists an �, 0 < � < 1 � 4� suh that if at timet0 we have EQ & 2�(4+�)j(Q) (8.3.19)



123with j(Q) > j0, then there is some time t with t < t0 + T , where2 (��1)j(Q)2 < T < 2�2�j(Q)and a ube Q0 2 C(Q) so that at time t, we haveEQ0 & 2�(4+�)j(Q0):Proof We shall prove the lemma by ontradition. Assume the lemma is false, i.e.EQ0 < 2�(4+�)j(Q0); for all Q0 2 C(Q); and for all t 2 [t0; t0 + T ℄: (8.3.20)However from the hypothesis (8.3.19) and Lemma 8.3.2.2 we an �nd time t1 < t0 + T , where2 (��1)j(Q)2 < T < 2�2�j(Q) (8.3.21)and a ube Q1 2 C(Q) so that EQ1(t1) +WQ1;t0(t1) � 2�(4+�)j(Q1): (8.3.22)



124On the other hand by using monotoniity of the funtion WQ1;t0(t) and (8.3.20) we alulateEQ1(t1) +WQ1;t0(t1) < EQ1(t1) +WQ1;t0(t0 + T )= EQ1(t1) + Z t0+Tt0 22�j(Q1)EQ1< 2�(4+�)j(Q1) + 22�j(Q1) � 2�(4+�)j(Q1) � T. 2�(4+�)j(Q1);where the last inequality follows from (8.3.21).Thus EQ1(t1) +WQ1;t0(t1) . 2�(4+�)j(Q1);whih ontradits (8.3.22), and the lemma is proved.Corollary 8.3.3 Let u be a solution to (8.1.2) whih has all positive oeÆients and at time 0, hasEQ > 2�(4+�)j(Q), for j(Q) > j0 with j0 as in the previous lemma. Then the H2+� norm of u beomesunbounded in �nite time.Proof We apply the lemma 8.3.2.3. We �nd a ube Q1 properly ontained in Q and a time t1 < T <2�2�j(Q) so that at t1 we have EQ1 & 2�(4+�)j(Q1).We iterate this proedure �nding a ube Qk properly ontained in Qk�1 and and a time tk so thattk�1 � tk < tk�1 + T < tk�1 + 2�2�j(Qk�1) and at time tk we have EQk & 2�(4+�)j(Qk).



125Estimating just using the oeÆient at Qk, we see that at time tk, we have thatjjujjH2+� � 2 �j(Qk)2 :Sine j(Qk) is an inreasing sequene of integers, this is going to 1. However sine,tk = (tk � tk�1) + (tk�1 � tk�2) + � � �+ t1 � 2�2�j(Q) + k�1Xl=1 2�2�j(Ql);and the j(Ql)'s are an inreasing sequene of integers, we see that the sequene ftkg onverges to a�nite limit.
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Invited Talks:� The 2002 International Conferene on Di�erential Equations and Mathematial Physis, Birm-ingham, Alabama, Marh 2002� Mathematis and Appliations Seminar, University of Illinois at Chiago, Marh 2002� PDE Seminar, Northwestern University, January 2002� Analysis Seminar, John Hopkins University, January 2002� Analysis Seminar, Cornell University, January 2002� Speial Seminar, Brown University, January 2002� Session on Harmoni Analysis and PDEs, AMS 2001 Fall Western Setion Meeting, Irvine, CA,November 2001� Analysis Seminar, Washington University at St. Louis, November 2001� Session on Mathematial uid dynamis, First Joint Mathematial International Meeting AMS -SMF, Eole Normale Sup�erieure de Lyon, Frane, July 2001� Summer Shool on uid dynamis, Asilomar onferene ground, Monterey CA, June 2001� Analysis Seminar, Prineton University, May 2001� Applied Mathematis Seminar, Yale University, April 2001� PDE Seminar, Northwestern University, April 2001132



� Analysis Seminar, University of California Los Angeles, February 2001� Summer Shool on spetral theory of 1D Shr�odinger operators, Lake Arrowhead, UCLA onfer-ene enter, September 2000� Analysis and Fluid Dynamis Seminar, University of Illinois at Chiago, August 1999, September1999Publiations:� Katz, N., and Pavlovi�, N.: A heap Ca�arelli-Kohn-Nirenberg inequality for the Navier-Stokesequation with hyper-dissipation. To appear in Geometri and Funtional Analysis, 2002.� Friedlander, S., and Pavlovi�, N.: Remarks onerning a modi�ed Navier-Stokes equation. Toappear in Disrete and Continuous Dynamial Systems, 2002.� Pavlovi�, N.: Lieb-Thirring type inequalities via the ommutation method. Preprint, 2001.� Pavlovi�, N.: On the paper by Beale-Kato-Majda and the paper by Kozono-Taniuhi. Bulletinof the summer shool on uid dynamis, June 2001.� Pavlovi�, N.: On the paper of Benguria and Loss. Bulletin of the summer shool on spetraltheory of 1D Shr�odinger operators, September 2000.
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