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SUMMARYIn this thesis, we study a partial regularity result for a modi�ed version of the Navier-Stokesequations. In the standard Navier-Stokes equations the Lapla
ian of the velo
ity �eld appears to thepower one, whi
h re
e
ts amount of energy dissipation. The deepest regularity result for the Navier-Stokes equations to date is the result of Ca�arelli, Kohn and Nirenberg whi
h states that the Hausdor�dimension of the singular set is at most one. We 
onsider a modi�
ation of the Navier-Stokes equationsin order to investigate how system rea
ts to 
hanges 
aused by di�erent amount of energy dissipation.More pre
isely, we study the Navier-Stokes equations with hyper-dissipation, where the Lapla
ian israised to a power. We get an estimate for the dimension of the set of singular points at the �rst timeof blow-up depending on the degree of dissipation.In 
hapter 1 we des
ribe the equations of 
uid motion and some of unsolved questions 
on
erningthem. Also in 
hapter 1 we state our main result about the Navier-Stokes equations with hyper-dissipation. In 
hapter 2 we review Littlewood-Paley theory whi
h will be used in the rest of thethesis. In su
h a way we des
ribe te
hniques needed for lo
alization in frequen
y. In 
hapter 3 we useLittlewood-Paley operators to present some 
lassi
al results of 
uid dynami
s su
h as (1), whi
h givesa 
riterion for loss of regularity for the solutions of the Euler equations in 3D. In 
hapter 4 we introdu
ea dyadi
 model for the equations of 
uid motion. The dyadi
 model possesses an important featureof the equations, whi
h is 
onservation (or de
ay) of energy. For su
h a model we prove partial regu-larity results for the Navier-Stokes equations with hyper-dissipation and also for the Ladyzhenskaya'smodi�
ation of the Navier-Stokes equations, in whi
h 
ase the dissipation term is nonlinear.viii



SUMMARY (Continued)The goal of 
hapters 5, 6 and 7 is to generalize the ideas of partial regularity result from the dyadi
Navier-Stokes equations with hyper-dissipation presented in 
hapter 4 to the a
tual Navier-Stokesequations with hyper-dissipation. We do that by 
ombining te
hniques of Littlewood-Paley operatorsand the theory of pseudodi�erential operators. In 
hapter 5 we des
ribe pseudodi�erential operatorswhi
h help us to lo
alize in spa
e, and we develop 
al
ulus needed to lo
alize our equations in bothfrequen
y and spa
e. We de�ne a bad set in this 
hapter and show how one 
an 
over su
h a bad setand estimate its Hausdor� dimension. In 
hapter 6 we �gure out a balan
e between the nonlinear termand the dissipation term for a lo
alized equation, and outside of the bad set we prove a 
ertain level ofregularity 
alled 
riti
al regularity. Then in 
hapter 7 we �nish the proof of partial regularity result forthe Navier-Stokes equations with hyper-dissipation by proving an arbitrary level of regularity inside a
ube for whi
h one has a little bit better regularity then 
riti
al one.In 
hapter 8 we revisit dyadi
 models introdu
ed in 
hapter 4, and for the dyadi
 Euler equationswe prove �nite time blow-up, whi
h we prove for the Navier-Stokes equations with suÆ
iently smalldegree of dissipation too. However these results are built on a lower bound for the nonlinear term, andare valid only for the dyadi
 models.Motivation for this thesis and invaluable 
ontributions 
ame from joint proje
ts with Nets HawkKatz (Katz, N., and Pavlovi�
, N.: A 
heap Ca�arelli-Kohn-Nirenberg inequality for the Navier-Stokesequation with hyper-dissipation. To appear in Geometri
 and Fun
tional analysis, 2002), (Katz, N.,and Pavlovi�
, N.: Finite-time blow-up for a dyadi
 model of the Euler equations. In preparation, 2002),and from a joint work with Susan Friedlander (Friedlander, S., and Pavlovi�
, N.: Remarks 
on
erningmodi�ed Navier-Stokes equations. To appear in Dis
rete and Continuous Dynami
al Systems, 2002).ix



CHAPTER 1INTRODUCTION1.1 The Euler and Navier-Stokes equationsThe partial di�erential equations that des
ribe the most 
ru
ial properties of the 
uid motion arethe Euler equations. They are derived for an ideal 
uid, by whi
h one means:� in
ompressible (
uid whose parti
le do not 
hange volume as the 
uid moves)� invis
id (
uid without internal fri
tion between parti
les)� 
uid with 
onstant density.Let x = (x1; x2; :::; xn) denote a point in Rn . Let the ve
tor u = u(x; t) = (u1(x; t); :::; un(x; t)) 2 Rnbe the velo
ity �eld, and p = p(x; t) 2 R the pressure. Then the Euler equations are:DuDt = �rp; (1.1.1)
r � u = 0; (1.1.2)with the initial 
ondition u(x; 0) = u0(x): (1.1.3)

1



2Here we used the notation DDt whi
h is de�ned for some 
uid quantity f = f(x; t) byDfDt := ddtf(x1(t); x2(t); :::xn(t); t);and it represents a rate of 
hange of f . The symbol DDt is often 
alled \material derivative" or \
on-ve
tive derivative".By 
hain rule we have DfDt = �f�t + (u � r)f;and in parti
ular DuDt = �u�t + (u � r)u:Noti
e that the equation (1.1.1) expresses Newton's se
ond law F = ma. Indeed the right-hand sideof (1.1.1) represents the for
e whi
h is in this 
ase the for
e of internal pressure, while the left-handside of (1.1.1) is the a

eleration. The mass is 1, sin
e the density is 
onstant and taken to be 1. Onthe other hand, the equation (1.1.2) reveals 
onservation of mass.When the Euler equations are 
onsidered in Rn one would like to avoid the situation in whi
h thevelo
ity �eld u(x; t) be
omes unbounded as jxj ! 1. Usually one restri
ts behavior of the velo
ity�eld at in�nity by imposing the bounded energy 
ondition:ZRn ju(x; t)j2dx < 
onstant; (1.1.4)



3for all time t � 0. This is a natural 
ondition to assume, be
ause from the �rst look at the equation(1.1.1) we see neither obvious dissipative e�e
ts nor an e�e
t of an external for
e. In this thesiswhenever we 
onsider either the Euler equations or a model for the Euler equations we shall assumethe bounded energy (1.1.4).Despite the fa
t that Euler introdu
ed the equations (1.1.1) - (1.1.3) in 1755, some basi
 questions
on
erning them are still unsolved. For example, it is an outstanding problem of 
uid dynami
s to �ndout if solutions of the Euler equations satisfying (1.1.4) form singularities in �nite time. The answeris \no" in the 
ase of Euler equations in dimension two. But in three-dimensional spa
e the questionis still open. However the lo
al existen
e theorem for Euler's equations is known (27), (28) as well as(15), (16), (17), and we will state a version of the theorem in Chapter 2 where we dis
uss some 
lassi
alresults about Euler equations. For details on lo
al existen
e of smooth solutions of the Euler equationssee, for example, (19) or (48).The equations that des
ribe the most fundamental properties of vis
ous 
uids are the Navier-Stokesequations whi
h are given with the following equations:�u�t + (u � r)u+rp = ��u+ f; (1.1.5)
r � u = 0; (1.1.6)



4and the initial 
ondition u(x; 0) = u0(x): (1.1.7)When the Navier-Stokes equations are 
onsidered in Rn one imposes the restri
tion that the energyis bounded (1.1.4).As with the Euler equations the theory of the Navier-Stokes equations in three dimensions is farfrom being 
omplete. The major open problem is the question of global existen
e of smooth solutionsof the Navier-Stokes equations satisfying (1.1.4) in 3D, where by a smooth solution in Rn one means asolution to the Navier-Stokes equations su
h that u(x; t) 2 C1[Rn � R+ ℄. For the pre
ise formulationof this open problem see (12).The existen
e of smooth solutions of the Navier-Stokes equations initial boundary value problemin 3D has been proved lo
ally in time, see, for example, (19), (22), (11), (13), (21), (46), (6). Alsoglobal existen
e of smooth solutions of the Navier-Stokes equations in 3D has been proved providedsmall initial data. This was addressed by various authors in di�erent fun
tion spa
es, see, for example,(20), (13), (46), (5), (35), (23).In 1930s Leray (24) - (26) introdu
ed a notion of weak solutions of the Navier-Stokes equations. Aweak solution of the Navier-Stokes equations is introdu
ed as a fun
tion u whi
h satis�es the followingequation: h�u�t ; �i+ hu � ru; �i+ hrp; �i = �h�u; �i+ hf; �i; (1.1.8)



5for all smooth fun
tions � 
ompa
tly supported in R3�(0;1), where h�; �i stands for the s
alar produ
ton L2(R3 � R). Obviously if fun
tions u and p satisfy the Navier-Stokes equations (1.1.5) - (1.1.6) ina strong sense then they satisfy (1.1.8). On the other hand, an advantage of having (1.1.8) is that byusing integration by parts on (1.1.8), one 
an move derivatives to fall on the test fun
tion �.Leray (26) and Hopf (18) showed existen
e of a weak solution of the Navier-Stokes equationssatisfying the following energy inequality:Z
�ftg juj2 + 2Z t0 Z
 jruj2dxdt � Z
 ju(x; 0)j2dx+ 2Z t0 Z
 f � u; (1.1.9)where 
 is a bounded domain in R3 . The inequality (1.1.9) is obtained by pairing in L2(R3 � R) theequation (1.1.5) with 2u�, then integrating by parts and taking � � 1.Regularity of weak solutions was investigated by many authors, for example, Serrin (41), (42),S
he�er (36) - (40), Ca�arelli-Kohn-Nirenberg (4), Lin (29). We shall dis
uss a parti
ular type ofregularity results known as partial regularity results whi
h give an upper bound on the Hausdor�dimension of the singular set for an equation, see for example (4), (29).In (4) Ca�arelli, Kohn and Nirenberg introdu
ed a parti
ular 
lass of weak solutions of the Navier-Stokes equations 
alled suitable weak solutions. By a suitable weak solution they mean a weak solutionof the Navier-Stokes equations su
h that for ea
h bump fun
tion � 
ompa
tly supported in spa
e andtime the following inequality is valid:2Z Z jruj2� � Z Z [juj2(�t +��) + (juj2 + 2p)u � r�+ 2(u � f)�℄: (1.1.10)



6The inequality (1.1.10) is known as generalized energy inequality. It is important to noti
e that the �rstterm on the right-hand side 
an be made small by 
hoosing � to satisfy the ba
kwards heat equation,and this was used in (4). Ca�arelli, Kohn and Nirenberg (4) proved that for the Navier-Stokes equations(1.1.5) - (1.1.7) the singular set of a suitable weak solution has paraboli
 Hausdor� dimension at most1. Here paraboli
 Hausdor� dimension is de�ned in an analogous way to Hausdor� dimension, just byusing paraboli
 
ylinders Qr instead of Eu
lidean balls, whereQr(x; t) = f(y; �) : jy � xj < r; t� r2 < � < tg:In order to prove a partial regularity result for the 
lass of suitable weak solutions they �rst proved alo
al dimensionless result whi
h states that if u, p and f are small enough on the paraboli
 
ylinderQr then u is regular on the smaller 
ylinder Qr=2. As a 
onsequen
e of this they obtained an estimateof the minimum rate at whi
h a singularity 
ould develop and they proved a suÆ
ient 
ondition fora point to be a regular point. By 
overing the singular set they obtained that for any suitable weaksolution, the singular set has one-dimensional paraboli
 Hausdor� measure zero. A new proof of thisresult was re
ently given by Lin (29). Lin also uses the generalized energy inequality (1.1.10). Ourmotivation 
ame partly from (4) and we explain that in the next se
tion.1.2 Partial regularity results for the Navier-Stokes equations with hyper-dissipationThe Navier Stokes equation with dissipation (��)� is given by�u�t + u � ru+rp = �(��)�u; (1.2.1)



7where u is a time-dependent divergen
e free ve
tor �eld in R3 . One sets the initial 
onditionu(x; 0) = u0(x) (1.2.2)where u0(x) 2 C1
 (R3 ).If we pair (in L2(R3 � R) ) the equation (1.2.1) with u and then integrate by parts, we see that
lassi
al solutions to this equation on a time interval [0; T ℄ satisfy 
onservation of energy, namely thatjju(:; T )jj2L2 = jju0jj2L2 � Z T0 h(��)�u; ui:The se
ond term on the right is 
alled the dissipation term.Ca�arelli, Kohn, and Nirenberg (4) showed that when � = 1, the singular set of a generalizedweak solution to the system (1.2.1),(1.2.2) has paraboli
 Hausdor� dimension at most 1. This 
ouldbe 
onsidered a �rst step towards showing global strong solvability. Any improvement in this upperbound on the dimension would be genuine progress towards solution of the global solvability problem.Another well known fa
t is the following. We learned the proof whi
h we present in the 
hapter 2from Diego Cordoba. J.L. Lions gave a version of the proof in (30), (31). Also Mattingly and Sinai(32) re
ently gave a di�erent proof.Proposition 1.2.1 If � � 54 , one has global strong solvability for the system (1.2.1),(1.2.2).Indeed proposition 1.2.1 
ould be also viewed as a �rst step towards the solution of the global strongsolvability for � = 1 and any improvement in the exponent 54 
ould be viewed as genuine progress.



8We (Katz, N., and Pavlovi�
, N.: A 
heap Ca�arelli-Kohn-Nirenberg inequality for the Navier-Stokesequation with hyper-dissipation. To appear in Geometri
 and Fun
tional analysis, 2002) interpolatethe two results so that these two paths to progress are uni�ed. We proveTheorem 1.2.2 If T is the time of �rst breakdown for the system (1.2.1),(1.2.2), with 1 < � < 54 thenthe Hausdor� dimension of the singular set at time T is at most 5� 4�.Heuristi
ally, the theorem ought to be a mild generalization of Proposition 1.2.1. We think aboutthe mi
rolo
al analysis of a solution u in terms of 
oeÆ
ients uQ asso
iated to 
ubes Q. Very roughlyspeaking, the 
oeÆ
ient uQ should be viewed as a generalized wavelet 
oeÆ
ient. The proof of Propo-sition 1.2.1 goes wrong for � < 54 only be
ause of a small number of 
ubes with large 
oeÆ
ients. Atany time, the set of points 
ontained in arbitrarily small su
h 
ubes has dimension at most 5� 4�.We were also unable to dire
tly generalize the proof of Ca�arelli, Kohn, and Nirenberg. They relyon the \generalized energy inequality" whi
h is built on an amusing property of the divergen
e freeheat equation. Let � be any 
ompa
tly bump fun
tion in spa
e and time and u a divergen
e free ve
tor�eld, then Z h( ��t ��)u; �uidt = Z (12 ��t(hu; �ui) + hru; �rui � h(12 ���t +��)u; ui)dt:The �rst term represents a 
hange in lo
al energy. The se
ond term represents lo
al dissipation. Thethird term is an error whi
h 
an be made insigni�
ant by 
hoosing � to satisfy the ba
kwards heatequation. It is this method of 
ontrolling the error whi
h we are unable to generalize.



9To 
ir
umvent the problem of not having the \generalized energy inequality" we utilize te
hniquesof Littlewood-Paley theory whi
h was developed by Bony (see e.g. (3)), and Coifman and Meyer (seee.g.(9)), and pseudodi�erential operators of type (1; 1 � �), whi
h are des
ribed in, for example, (47).In su
h a way we lo
alize in frequen
y and in spa
e. We have a \quasi" version of the \generalizedenergy inequality" whi
h works for 
ertain neighboring 
ubes and allows us to prove a 
riti
al levelof regularity outside of \bad" 
ubes in whi
h too mu
h dissipation o

urs. Then we prove a barrierestimate whi
h guarantees arbitrary regularity in the interior of a 
ube Q, if the 
riti
al regularity isknown for 
ubes 
ontaining it and for boundary 
ubes of the 
ube Q. This barrier estimate 
an bethought of as a lo
alized version of global existen
e with small data. (One 
an 
ompare this estimatewith results in (23) and (5) in whi
h lo
al well posedness is established with hypotheses slightly morerelaxed than ours.) But in order for this to work, it is important that there not be too many smalldissipating 
ubes on the boundary of our 
ube. This 
ombinatorial issue is an ingredient whi
h seemsnot to have appeared before and whi
h restri
ts us to the 
ase � > 1. On the other hand we 
over the\bad" set and from the 
overing we 
an estimate an upper bound for the Hausdor� dimension of thesingular set.Remark on notationThroughout the thesis the expression A . B means A � 
B where 
 is a 
onstant. Su
h a 
onstant
 may depend on the time of �rst blow-up and on the initial 
onditions on the velo
ity. It does notdepend on a parti
ular s
ale or on a 
ube where we are estimating.



CHAPTER 2LITTLEWOOD-PALEY OPERATORSHere we present a review of Littlewood-Paley operators by following the le
ture-notes of Teren
eTao (45) and the book of Stein (43). Our presentation is brief and suits the purposes of the thesis. Fordetails see, for example, elegant expositions in (10), (43), (45).In se
tion 2.1 we introdu
e Littlewood-Paley operators and prove Bernstein's and the \
heapLittlewood-Paley" inequalities. Then in se
tion 2.2 by using Littlewood-Paley operators we presenta proof of a version of the Sobolev embedding theorem in R3 . In se
tion 2.3 we show how one 
ande
ompose a produ
t of two fun
tions by looking at pie
es lo
alized in frequen
ies.2.1 Introdu
tion to Littlewood-Paley operatorsWe shall use a standard Littlewood-Paley partition of frequen
y spa
e in R3 . Let �0 be a smoothbump fun
tion supported on j�j � 2, and su
h that �0(�) = 1 for j�j � 1. Then we de�ne the fun
tionp0(�) by p0(�) = �0(�)� �0(2�):Therefore the fun
tion p0(�) is smooth and supported on 12 � j�j � 2.Let us introdu
e fun
tions pj(�) and �j(�) by:pj(�) = p0(2�j�);10



11and �j(�) = �0(2�j�):An immediate 
onsequen
e of this 
onstru
tion is thatXj pj(�) = 1; (2.1.1)i.e. we have a partition of unity into fun
tions pj(�).We de�ne Fourier multipliers Pj and Sj (on L2(R3)) with their symbols pj(�) and �j(�) respe
tively,i.e. ^Pjf(�) = pj(�)f̂(�);^Sjf(�) = �j(�)f̂(�):The operators Pj and Sj are usually 
alled Littlewood-Paley operators. We see that Pj = Sj � Sj�1by this 
onstru
tion. In other words, the Sj's 
ould be thought of as the partial sums of the Pj 's.As a 
onsequen
e of (2.1.1) we have the Littlewood-Paley de
ompositionf =Xj Pjf;for all f 2 L2(R3 ).Intuitively speaking, we see that Pj is like a proje
tion onto frequen
ies in the annulus j�j � 2j ,and Sj is like a proje
tion onto frequen
ies in the ball j�j . 2j . However we remark that Pj 's and Sj's



12are not exa
tly proje
tion operators. More pre
isely, it is not true that (Pj)2 = Pj , nor it is true that(Sj)2 = Sj. However we observe that Sj+2Pj = Pj : (2.1.2)On the other hand, we have Sj�2Pj = 0: (2.1.3)Thus (2.1.2) and (2.1.3) motivates the de�nition of operators ~Pj = P2k=�2 Pj+k. We 
an analogouslyde�ne the symbols ~pj =P2k=�2 pj+k. We observe that~PjPj = Pj ; (2.1.4)sin
e ~Pj is the sum of all Littlewood-Paley proje
tions the support of whose symbols interse
ts thesupport of pj(�). We shall use (2.1.4) often to manipulate Littlewood-Paley operators. As an illustrationof su
h a te
hnique let us prove the Bernstein's inequality for Littlewood-Paley operators in R3 :Proposition 2.1.1 jjPjf jjL1 . 2 3j2 jjPjf jjL2 :Proof Let �j = �(~pj). Then (sin
e we are working in R3) we have�j(x) = 23j�0(2jx):



13Now ~Pjf = �j � f so by Young's inequality, we havejjPjf jjL1 = jj ~PjPjf jjL1 � jj�j jjL2 jjPjf jjL2 ;whi
h is �nite sin
e �j is a S
hwartz fun
tion. But by the relation between �j and �0, we havejj�j jjL2 = 2 3j2 jj�0jjL2 ;whi
h proves the proposition.Now we go to the \spa
e-side" representation for the Littlewood-Paley operator Pj . Let �j = �(pj).Then �j(x) = 23j�0(2jx), and we have:Pjf(x) = (�j � f)(x)= Z f(x� y)�j(y)dy= Z f(x� 2�jy)�0(y)dy: (2.1.5)We see that (2.1.5) and Minkowski's inequality imply:jjPjf jjLp � Z jjf(x� 2�jy)jjLp j�0(y)jdy. jjf jjLp ;



14for 1 � p � 1. This together with the triangle inequality impliessupj jjPjf jjLp . jjf jjLp .Xj jjPjf jjLp : (2.1.6)The inequality (2.1.6) is 
alled a 
heap Littlewood-Paley inequality. We will use it throughout thethesis. Material 
on
erning the strong Littlewood-Paley inequality 
ould be found in, for example,(10), (43), (45). We will not go in details of the strong Littlewood-Paley inequality, sin
e we are notusing it in this 
urrent work.For writing the \spa
e-side" representation of the Littlewood-Paley operator ~Pj we use the notationintrodu
ed in the proof of Proposition 2.1.1. Then we 
an write ~Pj as follows:~Pjf(x) = (�j � f)(x)= Z f(x� 2�jy)�0(y)dy: (2.1.7)From (2.1.4) and (2.1.7) we obtain the following formula whi
h relates the Littlewood-Paley pie
ePjf to itself: Pjf(x) = Z Pjf(x� 2�jy)�0(y)dy: (2.1.8)Now we are ready to see how di�erentiation a
ts on a Littlewood-Paley pie
e. Before formulatinglemma pre
isely, we think a little bit what it means to take a derivative of a Littlewood-Paley pie
e.Informally speaking, if we look at the Fourier side we take derivative of a Littlewood-Paley pie
e Pjf



15by multiplying its symbol by 2�i�. However the symbol of the operator Pj, pj(�), is supported onj�j � 2j . Therefore taking derivative of a Littlewood-Paley pie
e Pjf should be related to multiplyingPjf with 2j . More pre
isely:Lemma 2.1.2 Let j be an integer. ThenjjrPjf jjLp � 2j jjPjf jjLp ;for all 1 � p � 1.Proof We present the proof following (45). By di�erentiating (2.1.8) we obtain:rPjf = Z rxPjf(x� 2�jy)�0(y)dy;whi
h by integration by parts impliesrPjf = 2j Z Pjf(x� 2�jy)r�0(y)dy: (2.1.9)Now we apply Minkowski's inequality on (2.1.9) and obtainjjrPjf jjLp � 2j jjPjf jjLp ;sin
e r�0 is a S
hwartz fun
tion.



16Now we are left to prove 2j jjPjf jjLp . jjrPjf jjLp : (2.1.10)In order to do that we re
all the following property of the Fourier transform\rPjf(�) = 2�i�dPjf(�);i.e. dPjf(�) = 12�i�\rPjf(�);and therefore dPjf(�) = ~pj(�) �\rPjf(�)2�ij�j2 : (2.1.11)Now by taking the inverse Fourier transform of (2.1.11) we havePjf = Z �( ~pj(�) �2�ij�j2 )(y) rPjf(x� y)dy= Z �( ~p0( �2j ) �2j2�ij �2j j2 )(y) rPjf(x� y)dy: (2.1.12)By 
hanging a variable, (2.1.12) implies2jPjf = Z �( ~p0(�) �2�ij�j2 )(y) rPjf(x� 2�jy)dy: (2.1.13)



17We noti
e that �( ~p0(�) �2�ij�j2 ) itself is a S
hwartz fun
tion. Therefore we obtain (2.1.10) from applyingMinkowski's inequality to (2.1.13).2.2 Sobolev embedding theoremLet k = (k1; k2; :::; kn) be a multi-index, where ki; i = 1; :::; n are non-negative integers and jkj =k1 + k2 + :::+ kn. Then for f : Rn ! C we de�nerk := �jkjf�xk11 xk22 � � � xknn :For 1 � p < 1 and s � 0 an integer, we de�ne the Sobolev spa
e W s;p(Rn) as a spa
e of allfun
tions f su
h that f and its derivatives up to order s are in Lp(Rn). The norm in this spa
e isintrodu
ed by jjf jjW s;p(Rn) := sXk=1 jjrkf jjLp(Rn): (2.2.1)We see that p stands for integrability, while s stands for di�erentiability. In parti
ular when p = 2 thespa
e W s;2 is denoted by Hs; and it is a Hilbert spa
e.The above de�nition of the Sobolev spa
e W s;p 
an be extended so that it is valid for s 2 R. Beforewe do that, let us re
all the notion of a fra
tional derivative. A property of the Fourier transform gives\(��)f(�) = 4�2j�j2f̂(�):



18This gives motivation to de�ne the operator jrj as the square root of the operator �� bydjrjf(�) := 2�j�jf̂ (�):Also for any real s, we de�ne the fra
tional derivative operator jrjs by\jrjsf(�) := (2�j�j)sf̂(�):In a similar way we de�ne the modi�ed fra
tional derivative operator hris by\hrisf(�) := h2��isf̂(�);where the symbol h�i is known as the Japanese bra
ket and is de�ned by h�i := (1 + j�j2)1=2. Noti
ethat for higher frequen
ies the operator hris behaves the same as the operator jrjs, while for thefrequen
ies j�j . 1 the operator hris a
ts as an identity.Now we are ready to introdu
e the Sobolev spa
e W s;p for s 2 R and 1 � p < 1 as a spa
e offun
tions f su
h that (1 + j�j)s=2f̂(�) 2 Lp. In parti
ular, when p = 2 the norm in the spa
e Hs isintrodu
ed by jjf jjHs(Rn) := (ZRn jh�isf̂(�)j2d�) 12 :Here we shall state and prove a version of Sobolev embedding theorem in R3 .



19Theorem 2.2.1 Let p > 2. There exist an � > 0 and a 
onstant C(p; �) su
h that:jjf jjLp � C(p; �)jjf jjH3( 12� 1p )+� :Proof We de
ompose f using Littlewood-Paley operators as f =P1j=�1 Pjf .From the de�nition of H�-norm we see thatjjPjf jjL2 � 2��j jjPjf jH� ;and therefore jjPjf jjL2 . 2��j jjf jjH� : (2.2.2)On the other hand, Bernstein's inequality guaranteesjjPjf jjL1 . 2 3j2 jjPjf jjL2 ;whi
h by (2.2.2) implies jjPjf jjL1 . 2 3j2 2��j jjf jjH� : (2.2.3)



20However by H�older's inequality we havejjf jjLp � jjf jj p�2pL1 jjf jj 2pL2 ;and in parti
ular jjPjf jjLp � jjPjf jj p�2pL1 jjPjf jj 2pL2 : (2.2.4)Noti
e that (2.2.4) together with bounds obtained in (2.2.2) and (2.2.3) impliesjjPjf jjLp . (2 3j2 2��j jjf jjH�) p�2p (2��j jjf jjH�) 2p= 2j[( 32��) p�2p �� 2p ℄jjf jjH� : (2.2.5)Now for � > 3(12 � 1p) we 
an sum (2.2.5) over j, and the theorem is proved.2.3 Frequen
y tri
hotomyHere we shall use the Littlewood-Paley operators to analyze the pointwise produ
t of two fun
tionsf and g. Let us see what we 
an say about Pj(fg).First we shall represent f and g using Littlewood-Paley operators as followsf =Xk1 Pk1f;



21g =Xk2 Pk2g;and therefore Pj(fg) = Xk1;k2 Pj(Pk1fPk2g): (2.3.1)Sin
e dPkif(�) is supported in the annulus Aki := f� : 2ki�1 � j�j � 2ki+1g, for i = 1; 2 we know thatthe produ
t Pk1f Pk2g has Fourier support in the sum of the annuli Ak1 and Ak2 . On the other hand,in order that the double sum in (2.3.1) is nonzero the sum Ak1 + Ak2 should interse
t the support ofdPjf(�), whi
h is the annulus f� : 2j�1 � j�j � 2j+1g.Thus (2.3.1) 
an be rewritten as follows:Pj(fg) = Hj;lh +Hj;hl +Hj;ll +Hj;hh;where the low-high part is given by Hj;lh = Pj( Xk<j�4(Pkf) � ~Pjg);the high-low part is given by Hj;hl = Pj( Xk<j�4( ~Pjf) � Pkg);



22the low-low part is given byHj;ll = Pj( Xj�4�k�j+4(Pkf) � ~Pkg) + Pj( Xj�4�k�j+4( ~Pkf) � Pkg);and the high-high part is givenHj;hh = Pj( Xk>j+4(Pkf) � ~Pkg) + Pj( Xk>j+4( ~Pkf) � Pkg):Therefore there are four intera
tions whi
h are nonzero. However the low-low part is usually in-
luded either in the high-low part, or in the low-high part, and su
h a de
omposition of Pj(fg) is knownas the Littlewood-Paley tri
hotomy. The four sums Hj;lh; Hj;hl; Hj;ll; Hj;hh are 
alled paraprodu
tstoo. For more details on paraprodu
ts see, for example, (47).



CHAPTER 3CLASSICAL EXAMPLES3.1 Introdu
tionIn this 
hapter we present some 
lassi
al examples of 
uid dynami
s by dis
ussing how they 
ouldbe seen from the perspe
tive of Littlewood-Paley operators. First we give a summary of the famouspaper of Beale-Kato-Majda (1) whi
h gives a 
riterion for loss of regularity for solutions of the Eulerequations. After re
alling main ideas of (1), we use Littlewood-Paley operators to prove a logarithmi
inequality playing an important role in (1).Then we revisit (1) again. We employ Littlewood-Paley operators to prove a theorem similar to oneof Beale-Kato-Majda. The proof of su
h a theorem illustrates spe
i�
 roles of high and low frequen
ies.We also show how Sobolev embedding theorem (whi
h was proved in 
hapter 1 by using Littlewood-Paley operators too) 
ould be applied to prove global strong solvability for the Navier-Stokes equationswith enough dissipation.The ideas in the use of Littlewood-Paley operators 
ombined with pseudodi�erential operatorswere developed by Bony (3) and Meyer (33). The method of (3) found various appli
ations in stydingnonlinear PDEs, sin
e a

ording to paraprodu
t representation, the method is sensitive to des
ribingbehavior of the nonlinear term. In the 
ontext of appli
ations of Littlewood-Paley operators to studyingequations of 
uid motion, see for example, (8), (7), (6), (49), (50).
23



24In this 
hapter we illustrate some aspe
ts of using Littlewood-Paley operators in studying the Eulerand the Navier-Stokes equations. In parti
ular, by applying Littlewood-Paley operators Pj onto thevelo
ity �eld u(x; t), we lo
alize the velo
ity �eld to range of frequen
ies around 2j . The questionwhi
h arises is why it is enough to lo
alize to frequen
y ranges. In the present work we estimateLebesgue and Sobolev norms of some 
uid quantities. The 
heap Littlewood-Paley inequality, whi
hwas dis
ussed in the previous 
hapter, tells us that we 
an reveal information about 
ertain Lebesgueor Sobolev norms of a fun
tion just by knowing the norms of Littlewood-Paley pie
es, rather then
al
ulating Fourier 
oeÆ
ients for ea
h di�erent frequen
y. This is only one advantage of Littlewood-Paley operators. However more important reason for their su

esfull appli
ations for studying the Eulerand the Navier-Stokes equations is that the method is well suited for analysing the nonlinear term.The worst term in both the Euler and the Navier-Stokes equations is the nonlinear term u � ru, whi
hby using Littlewood-Paley operators 
an be represented using paraprodu
ts. In su
h a way one isolates
ertain frequen
y ranges and their intera
tions whi
h are responsible for possible growth of solutionsto the equations of 
uid motion.The 
hapter is organized as follows. In se
tion 3.2 we re
all the work of Beale-Kato-Majda (1). Inse
tion 3.3 we use Littlewood-Paley operators to prove a theorem similar to one in (1). In se
tion 3.4we prove a global strong solvability for the Navier-Stokes equations with enough dissipation.3.2 Theorem of Beale-Kato-MajdaLet u = u(x; t) be the velo
ity �eld, and p = p(x; t) the pressure. Then the Euler equations are:�u�t + u � ru+rp = 0; (3.2.1)



25r � u = 0: (3.2.2)It is an outstanding problem of 
uid dynami
s to �nd out if solutions of the Euler equations formsingularities in �nite time. The answer is \no" in the 
ase of Euler equations in dimension two. Butin three-dimensional spa
e the question is still open.However the lo
al existen
e theorem for Euler's equations is known, and we will state it herea

ording to the statement given in (1):Theorem 3.2.1 Suppose an initial velo
ity �eld u0 is spe
i�ed in Hs(R3), s � 3, with jju0jjH3(R3) �N0, for some N0 > 0. Then there exists T0 > 0, depending only on N0, so that (3.2.1), (3.2.2) have asolution in the 
lass u 2 C([0; T ℄;Hs(R3 )) \ C1([0; T ℄;Hs�1(R3)) (3.2.3)at least for T = T0(N0).This theorem does not say if solutions a
tually lose their regularity.Analyti
al and numeri
al results suggest the 
onne
tion between the a

umulation of vorti
ity! = r � u and development of �nite time singularities for the three-dimensional Euler equations.Beale, Kato and Majda in (1) made this 
onne
tion mathemati
ally rigorous by proving the followingtheorem:



26Theorem 3.2.2 Let u be a solution of Euler's equations (3.2.1), (3.2.2), and suppose there is a timeT� su
h that the solution 
annot be 
ontinued in the 
lass (3.2.3) to T = T�. Assume that T� is the�rst su
h time. Then Z T�0 jj!(t)jjL1dt =1;and in parti
ular lim supt�!T� jj!(t)jjL1 =1:Thus Theorem 3.2.2 gives a 
riterion for loss of regularity in the sense that if the solution fails tobe regular past a 
ertain time, then the vorti
ity must be unbounded.Here we will present main ideas of the proof of Theorem 3.2.2 following (1). The proof is by
ontradi
tion. Restri
ted to this 
hapter Hs(R3 ) is denoted by Hs, and Lp(R3 ), with 1 � p � 1 isdenoted by Lp.Let us assume Z T�0 jj!(t)jjL1dt <1: (3.2.4)Then we will show that jju(t)jjHs � C0; for all t < T�: (3.2.5)



27However (3.2.5) leads to 
ontradi
tion, be
ause if (3.2.5) 
ould be true then by the lo
al existen
etheorem, Theorem 3.2.1, we would be able to extend the original solution past time T� 
ontrary to the
hoi
e of T�.The main ingredients of the proof are the following three steps:Step 1 We bound jj!(t)jjL2 by jj!(t)jjL1 . In order to to that we start from the vorti
ity equation:�!�t + u � r! = ! � ru: (3.2.6)Then we pair in L2(R3) the equation (3.2.6) with ! and obtain:12 ddt jj!jj2L2 = h! � ru; !i: (3.2.7)To simplify notation we de�ne m(t) by m(t) = jj!(t)jjL1 . Now from (3.2.7) by using Cau
hy-S
hwartz inequality, H�older inequality and a relation between u and ! we obtain the following estimate:12 ddt jj!jj2L2 � Cm(t)jj!jj2L2 ;whi
h by Gronwall's inequality impliesjj!(T )jjL2 � jj!(0)jjL2eC R T0 m(t)dt: (3.2.8)Step 2 Now we bound jjujjHs by jjrujjL1 . In parti
ular, we apply the operator D� to equations(3.2.1), (3.2.2), where � is a multi-index with j�j � s.



28Having introdu
ed v = D�u;q = D�p;and F = D�(u � ru)� u �D�(ru);we obtain: �v�t + u � rv +rq = �F: (3.2.9)Then we pair the equation (3.2.9) with v and obtain:12 ddt jjvjj2L2 = �hF; vi: (3.2.10)By using Gagliardo-Nirenberg inequality we obtain a bound on jjF jjL2 . Then after summing over� in (3.2.10) and applying Gronwall's inequality we have:jjujj2Hs � jju(0)jj2HseC R T0 jjrujjL1dt: (3.2.11)Step 3 We state the inequality:jjrujjL1 � Cf1 + (1 + log jjujjH3)jj!jjL1 + jj!jjL2g; (3.2.12)



29whi
h gives bound on jjrujjL1 in terms of jj!jjL1 and jj!jjL2 . The proof of (3.2.12) presented in (1)uses the Biot-Savart Law and singular integrals approa
h.Now we 
ombine (3.2.8), (3.2.11), and (3.2.12) and in su
h a way we prove (3.2.5).Here we point out the the inequality (3.2.12) 
ould be proved using Littlewood-Paley operators too.We present that proof in the following lemma:Lemma 3.2.3 Under above 
onditions we have:jjrujjL1 � Cf1 + (1 + log jjujjH3)jj!jjL1 + jj!jjL2g:Proof From the Biot-Savart Lawu(x) = � 14� Z x� yjx� yj3 � w(y)dy;we 
on
lude that ru is a singular integral operator of !, and we will denote that operator by T!.Now we shall use Littlewood-Paley operators to de
ompose T! asT! = 1Xk=�1PkT!:However noti
e that PkT! is no more singular and we have:jjPkT!jjL1 . jjPk!jjL1 : (3.2.13)



30Now we develop three di�erent upper bounds on jjPk!jjL1 . At the end we will 
ompare them anduse ea
h when it is most eÆ
ient.First let us noti
e that by using (3.2.13), Bernstein's inequality and de�nition of H2 norm we have:jjPkT!jjL1 . jjPk!jjL1� 2 3k2 jjPk!jjL2 (3.2.14)� 2� k2 jjPk!jjH2� 2� k2 jj!jjH2 ; (3.2.15)where the last inequality 
omes from the 
heap Littlewood-Paley inequality.However for k's su
h that 2� k3 jj!jjH2 < jj!jjL1 ; (3.2.16)(3.2.15) implies: jjPkT!jjL1 . 2� k6 jj!jjL1 : (3.2.17)On the other hand for k's su
h that 2� k3 jj!jjH2 � jj!jjL1 ;



31we simple noti
e that (3.2.13) together with the 
heap Littlewood-Paley inequality implies the bound:jjPkT!jjL1 . jj!jjL1 : (3.2.18)For negative k0s we will use the following 
onsequen
e of (3.2.14) and the 
heap Littlewood-Paleyinequality: jjPkT!jjL1 . 2 3k2 jj!jjL2 : (3.2.19)Noti
e that (3.2.16) means k & log jj!jjH2jj!jjL1 : Now we 
ombine bounds (3.2.17), (3.2.18) and (3.2.19).More pre
isely we sum over k and use:� (3.2.17) for k � log jj!jjH2jj!jjL1 ,� (3.2.18) for k < log jj!jjH2jj!jjL1 and� (3.2.19) for negative k's. Thus we obtain:jjT!jjL1 � (1 + log jj!jjH2jj!jjL1 )jj!jjL1 + jj!jjL2 : (3.2.20)If jj!jjL1 � 1 then (3.2.20) impliesjjT!jjL1 � (1 + log jj!jjH2)jj!jjL1 + jj!jjL2 ; (3.2.21)



32while if jj!jjL1 < 1 then (log jj!jjH2jj!jjL1 ) � jj!jjL1 � 1 + (log jj!jjH2)jj!jjL1 ;whi
h together with (3.2.20) implies the 
laim of the lemma.3.3 Theorem of Beale-Kato-Majda from Littlewood-Paley perspe
tiveHere we state a theorem whi
h gives a 
riterion for loss of regularity for the solutions of the Eulerequations. We prove the theorem using Littlewood-Paley operators. More spe
i�
ally we prove:Theorem 3.3.1 Let u be a solution of Euler's equations (3.2.1), (3.2.2), and suppose there is a timeT� su
h that the solution 
annot be 
ontinued in the 
lass (3.2.3) to T = T�. Assume that T� is the�rst su
h time. Then jj!(T�)jjL1 =1:Proof Let us assume jj!(t)jjL1dt <1; for all t 2 [0; T�℄: (3.3.1)Then we will show that jju(t)jjHs � C0; for all t < T�: (3.3.2)



33However (3.3.2) leads to 
ontradi
tion, be
ause if (3.3.2) 
ould be true then by the lo
al existen
etheorem, Theorem 3.2.1, we would be able to extend the original solution past time T� 
ontrary to the
hoi
e of T�.Let us 
onsider the vorti
ity equation.�!�t + u � r! = ! � ru: (3.3.3)Now we 
ompute the L2(R3) pairing of the equation (3.3.3) with P 2j !. We obtain:12 ddt jjPj!jj2L2 = �hPj(u � r!); Pj!i+ hPj(! � ru); Pj!i (3.3.4)We shall estimate the terms on the right hand side of (3.3.4).Lemma 3.3.2 Under above 
onditions we have:jjPj(! � ru)jjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 :Proof We rewrite Pj(! � ru) using \tri
hotomy":Pj(! � ru) = Hj;lh +Hj;hl +Hj;ll +Hj;hh;



34where the low-high part is given byHj;lh = Pj( Xk<j�4(Pk!) � ~Pjru);the high-low part is given by Hj;hl = Pj( Xk<j�4( ~Pj!) � Pkru);the low-low part is given byHj;ll = Pj( Xj�4�k�j+4(Pk!) � ~Pkru) + Pj( Xj�4�k�j+4( ~Pk!) � Pkru);and the high-high part is givenHj;hh = Pj( Xk>j+4(Pk!) � ~Pkru) + Pj( Xk>j+4( ~Pk!) � Pkru):We bound the low-high part by using a 
heap Littlewood-Paley inequality, triangle inequality andH�older inequality: jjHj;lhjjL2 � jj Xk<j�4(Pk!) � ~PjrujjL2� Xk<j�4 jj(Pk!) � ~PjrujjL2� Xk<j�4 jj(Pk!)jjL1 � jj ~PjrujjL2. jjPj!jjL2( Xk<j�4 jjPk!jjL1):



35In a similar spirit, by using a 
heap Littlewood-Paley inequality, triangle inequality and H�olderinequality, we bound the high-low term as:jjHj;hljjL2 � jj Xk<j�4( ~Pj!) � PkrujjL2� Xk<j�4 jj( ~Pj!) � PkrujjL2� Xk<j�4 jj( ~Pj!)jjL2 � jjPkrujjL1. jjPj!jjL2( Xk<j�4 jjPk!jjL1):Also by using a 
heap Littlewood-Paley inequality, triangle inequality and H�older inequality, weobtain the following bound for the low-low part:jjHj;lljjL2 . jjPj!jjL2( Xj�4�k�j+4 jjPk!jjL1):In order to bound the high-high part we will �rst re
all that for any fun
tions f; g:jjPj(Pkf �Pkg)jjL2 = jhPj(Pkf �Pkg); hij, where jjhjjL2 = 1. Thus by using Cau
hy-S
hwartz inequalityand Proposition 2.1.1 we obtain:jjPj(Pkf � Pkg)jjL2 � jhPkf � Pkg; Pjhij� jjPjhjjL1 jjPkf jjL2 jjPkgjjL2� 2 3j2 jjhjjL2 jjPkf jjL2 jjPkgjjL2= 2 3j2 jjPkf jjL2 jjPkgjjL2 : (3.3.5)



36Now we apply (3.3.5) with f and g equal to ! and ru respe
tively. In su
h a way we obtain abound for the high-high part as: jjHj;hhjjL2 . Xk>j+4 2 3j2 jjPk!jj2L2 :Combining bounds for Hj;lh, Hj;hl and Hj;hh the 
laim is proved.In a similar way we obtain the following type of bound for the �rst term of the right hand side of(3.3.4):Lemma 3.3.3 Under above 
onditions we have:jjhPj(u � r!); Pj!ijjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 :Thus by Lemma 3.3.2 and Lemma 3.3.3, the expression (3.3.4) implies:ddt jjPj!jjL2 . jjPj!jjL2( Xk�j+4 jjPk!jjL1) + Xk>j+4 2 3j2 jjPk!jj2L2 : (3.3.6)By using Proposition 2.1.1 (Bernstein's inequality), we see that (3.3.6) implies:ddt jjPj!jjL2 . jjPj!jjL2( Xk�j+4 2 3k2 jjPk!jjL2) + Xk>j+4 2 3j2 jjPk!jj2L2 : (3.3.7)Now we multiply the inequality (3.3.7) by 2 3j2 and we 
hoose a sequen
e f!kg in su
h a way that2 3k2 jjPk!jjL2 < !k; as long as !k < 1:



37Then our system (3.3.7) is majorized by the system:d!jdt = !jXk�j !k +Xk>j !2k; when !j < 1; (3.3.8)and !j = 1 on
e !j rea
hes 1; (3.3.9)with the initial 
ondition !j(0) = 2��j : (3.3.10)Now we will prove a simple lemma whi
h will enable us to majorize the system (3.3.8)-(3.3.10).Lemma 3.3.4 If f!lg is a sequen
e of solutions to the system (3.3.8)-(3.3.10) then!k < !j;when k > j, i.e. the sequen
e f!lg is a de
reasing sequen
e.Proof It suÆ
es to prove !j+1 < !j.Note that initially we have: !j+1(0) = 2��(j+1) < 2��j = !j(0):



38Thus it is enough to prove: d!j+1dt < d!jdt :Sin
e !j and !j+1 are solutions to the system (3.3.8)-(3.3.10) we 
an 
al
ulate d!j+1dt � d!jdt and weobtain: d(!j � !j+1)dt = (Xk�j !k)(!j � !j+1);and therefore (!j � !j+1)(t) = (!j � !j+1)(0) eR t0 Pk�j !k(�)d� ;whi
h implies (!j � !j+1)(t) > 0;and the lemma is proved.Now from Lemma 3.3.4 we see that the system (3.3.8)-(3.3.10) 
an be majorized by the system:d!jdt = ( 1Xk=1!k)!j (3.3.11)and !j = 1 on
e !j rea
hes 1; (3.3.12)



39with the initial 
ondition !j(0) = 2��j : (3.3.13)Noti
e that for the system (3.3.11) - (3.3.13) we always have!j+1 = 2��!j as long as !j is not yet 1: (3.3.14)Thus at the time t1 when !1 be
omes 1, by shifting the index we are almost in the situation we had att = 0 be
ause !2(t1) = 2��: From this point on !1 is �xed at 1, so!1 = 1:d!jdt = (1 + 1Xk=2!k)!j:At the mth step we have: d!jdt = (m+ 1Xk=m+1!k)!j : (3.3.15)Now we prove the following statement:Lemma 3.3.5 Let f!lg be a sequen
e of solution to the system (3.3.11) - (3.3.13). If !1, !2, ..., !mhave already be
ome equal to 1, then !m+1 will go from 2�� to 1 in time like 1m .



40Proof Sin
e !1 = 1;:::!m = 1;by re
alling (3.3.14) we have1Xk=m+1!k = !m+1 + 2��!m+1 + 2�2�!m+1 + :::� 1 + 2�� + 2�2� + :::= C: (3.3.16)Sin
e !m+1 satis�es (3.3.15) we haved!m+1dt = (m+ 1Xk=m+1!k)!m+1;whi
h together with (3.3.16) implies d!m+1dt � (m+C)!m+1: (3.3.17)



41We denote the time when !m be
omes equal to 1 by tm, and similarly we denote by tm+1 the timewhen !m+1 be
omes equal to 1. Now we integrate (3.3.17) on the time interval [tm; tm+1℄ and 
on
ludethat tm+1 � tm is of order 1m .Now from Lemma 3.3.5 we 
on
lude that wm+1 will have gone from 2��(m+1) to 1 in time like1 + 12 + 13 + :::+ 1m = log m;and therefore for all t < log m we have !m+1 � 22t2��(m+1): (3.3.18)In the other words for all k > 2t we have !k � 22t2��k: (3.3.19)We are almost ready to 
on
lude the proof of Theorem 3.3.1. In order to do that we will use thefollowing two inequalities. The �rst inequality 
omes from the 
onservation of energy for the Eulerequation and 
an be formulated as: jjPk!jjL2 � 2k; (3.3.20)



42and we will use it for k � 2t. However for k > 2t we will use the inequality2 3k2 jjPk!jjL2 � 22t2��k; (3.3.21)whi
h follows from (3.3.19) by re
alling the de�nition of !k.Now we noti
e that (3.3.20) in terms of H�-norm impliesjjPk!jjH� � 2�k2k; for k � 2t; (3.3.22)while (3.3.21) implies jjPk!jjH� � 2(���)k22t2� 3k2 ; for k > 2t: (3.3.23)We sum jjPk!jjH� over k and by using (3.3.22), (3.3.23) and a 
heap Littlewood-Paley inequalitywe obtain: jj!jjH� � 2t2(�+1)2t +Xk>2t 2(���)k22t2� 3k2 ;and therefore for � < �+ 32 jjujjH�+1 � 
onstant;and the theorem is proved.



433.4 Global strong solvability for the Navier-Stokes equations with enough dissipationIn this se
tion we present a proof of global strong solvability for the Navier-Stokes equations withenough dissipation. We 
ould think about this proof as about an appli
ation of the Sobolev embeddingtheorem.The Navier-Stokes equation with dissipation (��)� is given by�u�t + u � ru+rp = �(��)�u; (3.4.1)where u is a time-dependent divergen
e free ve
tor �eld in R3 . One sets the initial 
onditionu(x; 0) = u0(x) (3.4.2)where u0(x) 2 C1
 (R3 ).The well known fa
t about this is expressed in Proposition 3.4.1. We learned the proof whi
h wepresent in this se
tion from Diego Cordoba.Proposition 3.4.1 If � � 54 , one has global strong solvability for the system (3.4.1), (3.4.2).Proof We will use the standard notation that H� denotes the L2 Sobolev spa
e over R3 with �derivatives.We �rst re
all the energy inequality obtained by pairing the equation (3.4.1) with u12 �(jjujj2L2 )�t = �jj(��)�2 ujj2L2 � �jjujj2H� + jjujj2L2 : (3.4.3)



44From this, we obtain by integrating over time (and observing that the L2 norm is always positive),that if the solution u remains smooth up to time T , we have the estimateZ T0 jjujj2H�dt . (1 + T ): (3.4.4)We now pair (3.4.1) with (��)u in order to estimate �(jjujj2H1)�t . We obtain12 �(jj(��) 12ujj2L2)�t + hu � ru; (��)ui = �jj(��)�+12 ujj2L2 : (3.4.5)Clearly, we must estimate the nonlinear problem termhu � ru; (��)ui:Using H�older's inequality we have the following estimatejhu � ru; (��)uij � jjujjLp jjrujjL2 jj(��)ujjLq ; (3.4.6)where 1p + 1q = 12 .Now we apply Sobolev embedding theorem to the right-hand side of (3.4.6) and obtainjhu � ru; (��)uij � jjujjH3( 12� 1p ) jjujjH1 jjujjH3( 12� 1q )+2 : (3.4.7)



45Sin
e we are assuming � � 54 , we obtain from (3.4.7)jhu � ru; (��)uij � jjujjH� jjujjH1 jjujjH�+1 : (3.4.8)Applying Cau
hy-S
hwartz, we get immediatelyjjujjH� jjujjH1 jjujjH�+1 � Æjjujj2H�+1 + 1Æ jjujj2H� jjujj2H1 :Combining this with (3.4.5), we get�jjujj2H1�t . jjujj2H� jjujj2H1 + jjujj2L2 :In turn, 
ombining this with (3.4.4) and with Gronwall's inequality gives global solvability.



CHAPTER 4DYADIC MODELS AND PARTIAL REGULARITY RESULTS4.1 Introdu
tionIn this 
hapter we introdu
e dyadi
 models for the equations of 
uid motion. We prove partial reg-ularity result for the dyadi
 Navier-Stokes equations with hyper-dissipation. In the 
hapters followingthis 
hapter we will prove the same result for the a
tual Navier-Stokes equations with hyper-dissipation.The dyadi
 model illustrates main ideas used in subsequent 
hapters in proving an estimate for theHausdor� dimension of the set of singular points for the Navier-Stokes equation with hyper-dissipationat the �rst time of blow-up.Also we prove partial regularity result for the dyadi
 version of the Ladyzhenkaya's modi�
ationof the Navier-Stokes equation. This proof is slightly di�erent from one for the dyadi
 Navier-Stokesequations with hyper-dissipation and requires a more genuine 
onsideration of energy de
ay.The dyadi
 model presented here is an in�nite system of ODEs. Ea
h ODE is given in terms of awavelet 
oeÆ
ient whi
h des
ribes behavior of the velo
ity that is lo
alized to a 
ertain frequen
y range.Therefore the dyadi
 model 
ould be understood in a general 
ontext of Littelwood-Paley theory. Alsoea
h ODE re
e
ts behavior of the velo
ity lo
alized in spa
e on a dyadi
 
ube. For su
h an ODE we�gure out s
aling balan
e between the nonlinear term and the dissipation term. When the dissipationterm dominates the nonlinear term we are in a sub
riti
al situation, and the growth of a solution tothe ODE is 
ontrolled. That is all we need, be
ause in the opposite situation, when the nonlinear46



47term dominates the dissipation term we use a lemma whi
h gives an upper bound for the Hausdor�dimension of a \bad" set, provided that we are able to dis
retize that set in a 
ertain way.Dyadi
 models introdu
ed in this 
hapter have the property of 
onserved energy, or in the 
ase ofthe Navier-Stokes equations the property of energy de
ay. On the other hand the dyadi
 models havethe nonlinear term with a built-in dispersive feature. Thus as models they 
ould be useful in studyingglobal properties of the Navier-Stokes equations.We note that those models go into a general 
lass of shell models introdu
ed by Gledzer (14) andOhkitani-Yamada (34). For a survey of mathemati
al developments in 
onne
tion with shell modelssee for example Bohr et al (2).The 
hapter is organized as follows. In se
tion 4.2 we present preliminaries. In se
tion 4.3 weintrodu
e dyadi
 models. Then in se
tions 4.4 and 4.5 we prove partial regularity results for the dyadi
Navier-Stokes equations with hyper-dissipation and for the dyadi
 version of the Ladyzhenskaya'smodi�
ation of the Navier-Stokes equations, respe
tively.4.2 PreliminariesHere we will re
all the de�nition of Hausdor� dimension and present a lemma whi
h 
an be usedas a tool in the pro
ess of proving an upper bound on the Hausdor� dimension.Given any set A � Rn , the d-dimensional Hausdor� measure of A, Hd(A), is given by:Hd(A) = lim��!0 Cd�(A);



48where Cd�(A) is de�ned as: Cd�(A) = infC2C�(A)XB2C r(B)d:Here r(B) is the radius of ball B and C�(A) stands for the set of all 
overings of A by balls of radiusless than or equal to �.Having de�ned Hausdor� measure we 
an speak about the Hausdor� dimension whi
h is given by:infHd(A)=0 d:Our goal is to be able to �nd an upper bound on the Hausdor� dimension of a 
ertain set. In orderto do that we will use Lemma 4.2.1. Intuitively speaking the lemma gives an upper bound for theHausdor� dimension of a 
ertain set, if we are able to dis
retize the parti
ular set so that at level j it
ould be seen as 
olle
tions of not more than 2jd balls of radius 2�j . More pre
isely:Lemma 4.2.1 Let A1; : : : ; Aj ; : : : be a sequen
e of 
olle
tions of balls in Rn so that ea
h element ofAj has radius 2�j. Suppose that #(Aj) � 2jd. De�neA = lim supj�!1 Aj ;to be the set of points in in�nitely many of the [B2AjB's. Then the Hausdor� dimension of A is atmost d.



49Proof From the de�nition of the Hausdor� dimension of A we see that is suÆ
es to prove:H
(A) = 0; for all 
 > d:Choose j su
h that 2�j < �. Then A 
an be 
overed by the [k>j [B2Ak B.Thus H
(A) �Xk>j 2kd(2�k)
 ;and the limit as j goes to 1 of the right hand side is zero whenever 
 > d.4.3 Dyadi
 modelHere we shall introdu
e a dyadi
 model for the equations of 
uid motion in three dimensions.We de�ne a dyadi
 
ube in a standard way. A 
ube Q in R3 is a dyadi
 
ube if its sidelength is aninteger power of 2, 2l, and the 
orners of the 
ube are on the latti
e 2lZ3.We let D denote the set of dyadi
 
ubes in R3 . We let Dj denote the subset of dyadi
 
ubes havingsidelength 2�j . Abusing notation slightly we de�ne the fun
tionj : D �! Z;by letting j(Q) = j if Q 2 Dj. We de�ne ~Q, the parent of Q, to be the unique dyadi
 
ube in Dj(Q)�1whi
h 
ontains Q. For m � 1 we de�ne Cm(Q), the mth order grand
hildren of Q to be the set of those
ubes in Dj(Q)+m whi
h are 
ontained in Q. We sometimes refer to the �rst order grand
hildren of Qas the 
hildren of Q.



50In our dyadi
 model we 
onsider a s
alar valued fun
tion u. It is represented by a wavelet expansion:u =XQ uQwQ;where fwQg is an orthonormal family of wavelets su
h that the wavelet wQ is asso
iated to the spatialdyadi
 
ube Q 2 Dj. The wavelet 
oeÆ
ient 
orresponding to the 
ube Q is denoted by uQ. We willrefer to the values uQ as the 
oeÆ
ients of the fun
tion u.We de�ne the dyadi
 Lapla
ian � by: �(wQ) = 22jwQ:We de�ne jjujjL2 to denote the L2 norm of u and for any � > 0, we de�nejjujjH2� = jjujjL2 + jj(�)�ujjL2 :We de�ne hu; vi to denote the L2 pairing of u and v.We would like to have an operator whi
h will mimi
 the behavior of the nonlinear term u � ru.Note that jjwQjjL1 � 2 3j(Q)2 : (4.3.1)



51On the other hand jjrwQjjL2 � 2j ; (4.3.2)sin
e our wavelets wQ's are orthonormal and lo
alized to the frequen
ies around 2j .With respe
t to (4.3.1) and (4.3.2) we de�ne a bilinear operator, the 
as
ade operator, by de�ningtwo pie
es from whi
h it is built. The 
as
ade down operator is de�ned by(Cd(u; v))Q = 2 5j(Q)2 u ~Qv ~Q:We de�ne the 
as
ade up operator by(Cu(u; v))Q = 2 5(j(Q)+1)2 uQ XQ02C1(Q) vQ0 :We de�ne the 
as
ade operator C(u; v) = Cu(u; v) � Cd(u; v):Obviously, hCu(u; u); ui = hCd(u; u); ui;whi
h implies hC(u; u); ui = 0: (4.3.3)



52Having de�ned operator C(u; v) we 
an speak about dyadi
 version of the Euler as well as theNavier-Stokes equations. More pre
isely by the dyadi
 Euler equations we mean:dudt + C(u; u) = 0:Now we introdu
e the dyadi
 Navier-Stokes equations as:dudt +C(u; u) + �u = 0:Also we 
ould speak about the dyadi
 Navier-Stokes equations with hyper-dissipation by whi
h wemean: dudt + C(u; u) + (�)�u = 0: (4.3.4)In a similar fashion we de�ne a dyadi
 model for the Ladyzhenskaya's modi�
ation of the Navier-Stokes equations: dudt + C(u; u)� div T (D) = 0; (4.3.5)where D = ru;



53and the stress tensor T satis�es 
onditions:(i) jTik(D)j � 
1(1 + jDj2�)jDj; (4.3.6)
(ii) Tik(D)( �ui�xk ) � �0D2 + �1D2+2�: (4.3.7)A simple 
onsequen
e of (4.3.3) is 
onservation of energy for all four equations, whi
h is an importantfeature of the a
tual equations preserved in the dyadi
 model.4.4 Partial regularity for the dyadi
 Navier-Stokes equations with hyper-dissipationIn this se
tion we will investigate partial regularity results for the equation (4.3.4).We 
onsider the dyadi
 Navier-Stokes equation with hyper-dissipation (4.3.4). We would like toestimate Hausdor� dimension of the set of singular points at the �rst time of blow up, T . The nonlinearterm C(u; u) on s
ale j looks like 2 5j2 u2Q (if we imagine for a moment that all neighboring 
ubes have
oeÆ
ients of roughly the same size), while the dissipation term gives de
ay like 22�juQ. This meansthat as long as juQj < 2� j2 (5�4�);the growth of uQ is under 
ontrol. We shall 
all this bound on the 
oeÆ
ients \
riti
al regularity".But let us 
he
k what happens if juQj > 2� j2 (5�4�).



54We 
an rewrite equation (4.3.4) in terms of wavelets 
oeÆ
ients as follows:duQdt = XQ0;Q002E(Q) 
(Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 � 22�j(Q)uQ; (4.4.1)where E(Q) := f ~Q;Qg [ C1(Q), and

(Q;Q0;Q00) = 8>>>>>><>>>>>>: 1; if Q0 = Q00 = ~Q�2 52 ; Q0 = Q and Q00 2 C1(Q)0; otherwise

9>>>>>>=>>>>>>; :
Having assumed juQj & 2� j2 (5�4�) for some time t and assuming that at the initial time t = 0 it ismu
h smaller, by the smoothness assumption on the initial 
ondition, we integrate (4.4.1) in time onthe interval [0; T ℄ and obtain for one of the 
hoi
es of (Q0; Q00) giving a non-vanishing 
oeÆ
ient:2 5j2 Z T0 juQ0uQ00 jdt & 2� j2 (5�4�);whi
h by Cau
hy-S
hwartz implies:2 5j2 (Z T0 u2Q0dt) 12 (Z T0 u2Q00dt) 12 & 2� j2 (5�4�):The last expression 
an be rewritten as:22j�(Z T0 u2Q0dt) 12 (Z T0 u2Q00dt) 12 & 2�j(5�4�):



55This 
an happen if either 22j� Z T0 u2Q0dt & 2�j(5�4�); (4.4.2)or 22j� Z T0 u2Q00dt & 2�j(5�4�): (4.4.3)However having in mind 
onservation of energy we have22j� Z T0 XQ at s
ale j u2Qdt . 1:Thus we 
on
lude that (4.4.2) or (4.4.3) 
ould happen in at most . 2j(5�4�) 
ubes Q. Now we invokeLemma 4.2.1 and 
on
lude that the Hausdor� dimension of the set of points of the equation (4.3.4) atwhi
h 
riti
al regularity fails is at most 5� 4�.We still need to prove regularity on the interior of a dyadi
 
ube Q, provided that one has a littlebetter than 
riti
al regularity at a 
ube Q. Before formulating a lemma whi
h proves su
h a statementlet us de�ne the graph distan
e as follows:De�nition 4.4.1 Let Q be a dyadi
 
ube and let Q1 be a 
ube in Cm(Q). We de�ne d(Q1), the graphdistan
e of Q1 to the boundary of Q by d(Q1) = m.Then we prove the statement:



56Lemma 4.4.2 Fix an � > 0. Let Q be a dyadi
 
ube in Dj. Suppose we know that for all t < T wehave juQ(t)j . 2� j2 (5�4�);then for any dyadi
 
ube Q1 � Q of length 2�k, we have the estimatejuQ1(t)j . 2�k�(Q1); (4.4.4)where �(Q1) = 5� 4�2 + �d(Q1)2 :Proof The proof we present is by 
ontradi
tion.Noti
e that for all 
ubes Q1 of sidelength 2�k we havejuQ1(0)j . 2�1000k; (4.4.5)i.e. the lemma is satis�ed at time t = 0.Now let t1 be the �rst time at whi
h lemma fails, and let Q1 be one of the 
ubes at whi
h thelemma fails. Thus juQ1(t1)j & 2�k�(Q1): (4.4.6)



57Having in mind (4.4.5), we 
an �nd the time t0, being the last time before t1 whenjuQ1(t0)j . 2k(��(Q1)+�): (4.4.7)Thus u2Q1(t) & 2k(�2�(Q1)+2�); for all time t su
h that t0 < t < t1: (4.4.8)But the lemma is satis�ed on the time interval (t0; t1).We multiply the equation (4.4.1) by uQ1 . We observe that for any time t between t0 and t1, thedissipation term at the 
ube Q1 satis�es:22�ku2Q1 & 2(2��2�(Q1)+2�)k: (4.4.9)Therefore to rea
h 
ontradi
tion it suÆ
es to prove that for any time t on the interval (t0; t1), thenonlinear term 
annot rea
h the dissipation term, i.e.XQ01;Q0012E(Q1) 
(Q1;Q01;Q001 )2 5k(Q1)2 uQ1uQ01uQ001 . 2(2��2�(Q1)+2�)k; (4.4.10)where 
(Q1;Q01;Q001 ) = 8>>>>>><>>>>>>: 1; if Q01 = Q001 = ~Q1�2 52 ; Q01 = Q1 and Q001 2 C1(Q1)0; otherwise
9>>>>>>=>>>>>>; :



58In the rest of the proof we shall use the advantage of the fa
t that the lemma is satis�ed on thetime interval (t0; t1). First noti
e that by (4.4.4) we have juQ1 j < 2�k�(Q1); for all t 2 (t0; t1).Now for any Q2 2 E(Q1) we have d(Q2) � d(Q1)� 1: (4.4.11)This follows from the de�nition of E(Q1).Using (4.4.4) and (4.4.11), we observe that for any Q2 in E(Q1) su
h that Q2 � Q and for allt 2 (t0; t1) we have uQ2 . 2�k�(Q2)= 2�k( 5�4�2 + �d(Q2)2 )� 2�k( 5�4�2 + �(d(Q1)�1)2 )= 2�k�(Q1)+ k�2 ;and therefore uQ2 . 2(��(Q1)+ �2 )k: (4.4.12)



59Here we remark that in spe
ial 
ase when Q2, an element of E(Q1), 
oin
ides with the 
ube Q itself,we 
an still obtain (4.4.12). In this 
ase it must be that Q1 2 C1(Q), and therefore the sidelength ofQ1 is k := j + 1, and d(Q1) = 1. Thus by using the assumption of the lemma we obtainuQ2 . 2�j( 5�4�2 )= 2�k( 5�4�2 )+(k�j) 5�4�2� 2�k( 5�4�2 )= 2�k( 5�4�2 + �(d(Q1)2 )+ k�2= 2�k�(Q1)+ k�2 :On the other hand for any Q2 in E(Q1) we haveuQ2 . 2 (4��5)k2 ; (4.4.13)by the lower bound on �.Thus by using (4.4.12) and (4.4.13) we bound the nonlinear term in the following way:XQ01;Q0012E(Q1) 
(Q1;Q01;Q001 )2 5k(Q1)2 uQ1uQ01uQ001 . 2(2�+ �2�2�(Q1))k: (4.4.14)Therefore the nonlinear term 
annot 
ontribute to the growth of uQ1 , and uQ1 
ould not have grownwhi
h is a 
ontradi
tion.



604.5 Partial regularity for a dyadi
 version of the Ladyzhenskaya's modi�
ation of theNavier-Stokes equationsNow let us present partial regularity results for a dyadi
 model of type (4.3.5). Before introdu
ingour model equation, let us 
onsider the equation (4.3.5) where the stress tensor T is given by:T (D) = �jDj2�D: (4.5.1)In order to analyze the dissipation term div T (D) on s
ale j, we imagine that all neighboring 
ubeshave wavelet 
oeÆ
ients of approximately the same size. Sin
e L1 is an algebra, and our waveletswQ's are orthonormal and lo
alized to the frequen
ies around 2j , by re
alling (4.3.1) we have:jj jrwQj2�jjL1 . (2 3j(Q)2 � 2j)2�; (4.5.2)and jjrwQjjL2 � 2j : (4.5.3)Thus the maximum dissipation on s
ale j arising from a dyadi
 model of the type (4.3.5) with thestress tensor (4.5.1) gives de
ay like 2j(5�+2)juQj2�uQ.



61Now we 
onstru
t the dyadi
 model for the modi�ed Navier-Stokes equations with dissipative termof the order 2j(5�+2)juQj2�uQ at s
ale j. More pre
isely, we 
onsider the following equation:dudt + 
(u; u)� div ~T (D) = 0; (4.5.4)where D = ru;and the stress tensor ~T is su
h that hdiv ~T (D); wQi = �2j(5�+2)juQj2�uQ, for all dyadi
 
ubes Q 2 Dj .We would like to estimate the Hausdor� dimension of the set of singular points for (4.5.4) at thetime �1 of �rst blow up. In order to introdu
e a 
ertain 
riti
al level of regularity we will imagine thatall neighboring 
ubes have wavelet 
oeÆ
ients of approximately the same size. Then the nonlinear term
(u; u) on s
ale j looks like 2 5j2 u2Q, while the dissipation term on s
ale j gives de
ay like 2j(5�+2)juQj2�uQ.We note that in terms of s
aling the nonlinear term is 
ontrolled by the dissipation term on level j aslong as: 2j(5�+2)juQj2�+1 > 2 5j2 u2Q: (4.5.5)In order to simplify our notation we denote j(1�10�)2(1�2�) by r(j). Thus for 0 � � < 12 we 
an rewrite (4.5.5)as: juQj < 2�r(j):We 
all this level of regularity \
riti
al regularity".



62Here we will investigate what happens ifjuQj & 2�r(j); at the �rst time �1: (4.5.6)Thus �1 is introdu
ed as �1 = inff� > 0 : juQ(�)j > 2�rg:Let �0 be de�ned as: �0 = supf� 2 [0; �1) : juQ(�)j < 
2�r; with 
 < 1g:Su
h time �0 exists, be
ause otherwise we would 
ontradi
t initial 
ondition on uQ(0). Thus we have:juQ(t)j & 2�r; for all time t 2 (�0; �1): (4.5.7)We 
an rewrite equation given with (4.5.4) in terms of wavelets 
oeÆ
ients as an in�nite system ofODEs: duQdt = XQ0;Q002E(Q) 
(Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 � 2j(5�+2)juQj2�uQ; (4.5.8)



63where 
(Q;Q0;Q00) = 8>>>>>><>>>>>>: 1; if Q0 = Q00 = ~Q�2 52 ; Q0 = Q and Q00 2 C1(Q)0; otherwise
9>>>>>>=>>>>>>; :A simple 
onsequen
e of (4.3.3) is 
onservation of energy for (4.5.8),2j(5�+2) XQ at s
ale j Z �10 juQj2�u2Qdt . 1: (4.5.9)whi
h is an important feature of this equation that we will use here.By using our assumption (4.5.7) we havejuQj2�u2Q & 2�2�ru2Q; for all time t; �0 < t < �1; (4.5.10)and therefore 2�2�r Z �1�0 u2Qdt . Z �1�0 juQj2�u2Qdt . Z �10 juQj2�u2Qdt: (4.5.11)Hen
e the energy integral (4.5.9) implies:2j(5�+2)2�2�r XQ at s
ale j Z �1�0 u2Qdt . 1: (4.5.12)



64Having assumed juQj & 2�r for time t, �0 < t < �1, we integrate (4.5.8) in time on the interval[�0; �1℄. By re
alling the meaning of the symbols . and & and by noti
ing thatj2j(5�+2) Z �1�0 juQj2�uQj . jZ �1�0 X(Q0;Q00) 
(Q;Q0;Q00)2 5j(Q)2 uQ0uQ00 j; (4.5.13)we obtain for one of the 
hoi
es of (Q0; Q00) giving a non-vanishing 
oeÆ
ient:2 5j2 Z �1�0 juQ0uQ00 jdt & 2�r; (4.5.14)whi
h by Cau
hy-S
hwartz implies:2 5j2 (Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�r: (4.5.15)After we multiply both sides of (4.5.15) with 2j(5�+2)2�2�r it be
omes:2j(5�+2)2�2�r(Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�r� 5j2 +j(5�+2)�2�r: (4.5.16)With respe
t to the de�nition of r, (4.5.16) be
omes2j(5�+2)2�2�r(Z �1�0 u2Q0dt) 12 (Z �1�0 u2Q00dt) 12 & 2�j 1�10�1�2� : (4.5.17)



65This 
an happen if either 2j(5�+2)2�2�r Z �1�0 u2Q0dt & 2�j 1�10�1�2� ; (4.5.18)or 2j(5�+2)2�2�r Z �1�0 u2Q00dt & 2�j 1�10�1�2� : (4.5.19)Thus by re
alling (4.5.12) we 
on
lude that (4.5.18) or (4.5.19) 
ould happen in at most . 2j 1�10�1�2�
ubes Q. Now we invoke Lemma 4.2.1 and 
on
lude that the Hausdor� dimension of the set of singularpoints of (4.3.5) at whi
h 
riti
al regularity fails is at most 1�10�1�2� .In order to 
omplete the dyadi
 heuristi
 we still need to prove regularity on the interior of a dyadi

ube Q, provided that one has 
riti
al regularity for 
ubes 
ontaining it. This 
ould be done in a similarway as in the 
ase of the equation (4.3.4) and we omit the proof.



CHAPTER 5LOCALIZED NAVIER-STOKES EQUATIONS WITH HYPER-DISSIPATION5.1 Introdu
tionIn Chapter 4 we presented the dyadi
 heuristi
 whi
h gave an upper bound on the Hausdor�dimension of the singular set for the dyadi
 Navier-Stokes equations with hyper-dissipation. Now wewould like to generalize su
h a result for the a
tual Navier-Stokes equation with hyper-dissipation:�u�t + u � ru+rp = �(��)�u; (5.1.1)where u is a time-dependent divergen
e free ve
tor �eld in R3 . One sets the initial 
onditionu(x; 0) = u0(x) (5.1.2)where u0(x) 2 C1
 (R3 ).First we need to lo
alize the equation (5.1.1) in frequen
y and spa
e. We do that in this 
hapter. Inparti
ular to deal with lo
alization we 
ombine the theory of paramultipli
ation presented in 
hapter2 with the theory of pseudodi�erential operators. On
e equation (5.1.1) is in a lo
alized form weanalyze the nonlinear term and the dissipation term separately. We obtain an upper bound for thenonlinear term, and a lower bound for the dissipation term. Then we �gure out a balan
e betweenthese two terms. For ea
h lo
alization s
ale we introdu
e a bad 
ube as a 
ube where the nonlinear66



67term dominates the dissipation term. However by using 
overing lemma of Vitali we are able to 
ountnumber of bad 
ubes at ea
h s
ale, whi
h is enough to obtain an estimate on the Hausdor� dimensionof the singular set. We do all that in this 
hapter. Then in 
hapters 6 and 7 we prove regularity outsideof the bad set.This 
hapter is organized as follows. In se
tion 5.2 we employ Littlewood-Paley operators andpseudodi�erential operators to lo
alize the equation (5.1.1) in frequen
y and spa
e. In se
tion 5.3 weanalyze the dissipation term. In se
tion 5.4 we obtain an upper bound on the nonlinear term. Inse
tion 5.5 we des
ribe the singular set and its 
overing.5.2 Littlewood Paley theory and Pseudodi�erential operatorsHere we lo
alize the equation (5.1.1) in frequen
y and spa
e.We shall use a standard Littlewood Paley partition of frequen
y spa
e as introdu
ed in 
hapter 1.The idea of Littlewood-Paley theory is that Pjf is like a 
ombination of wavelets supported on 
ubesof length 2�j . Bernstein's inequality is sharp only when a large proportion of the L2 energy of Pjf is
on
entrated in a single one of these 
ubes. Hen
e one is led to try to lo
alize Pjf in spa
e on su
h
ubes. However by Heisenberg un
ertainty prin
iple we 
annot a
hieve perfe
t lo
alization both infrequen
y and spa
e. It is important to noti
e that we have some room for error sin
e our goal is aHausdor� dimension estimate whi
h is a 
losed 
ondition. Therefore we �x an � > 0 and never try tolo
alize better than within 2�j(1��).Our lo
alization is nearly perfe
t if we ignore negligible quantities. More pre
isely, whenever we areat s
ale j, we negle
t quantities of size . 2�100j sin
e they will not a�e
t our estimates. Similarly wenegle
t operators whose norms are smaller than 2�100j provided they will only be applied to fun
tions



68whose norms are . 1. The 
hoi
e of 100 is arbitrary. It is large enough so that it does not a�e
t the L1norm of u. But in fa
t our te
hniques for showing quantities are negligible rely on S
hwartz fun
tionproperties and 
ould give an arbitrary exponent with loss in the 
onstant. The 
urrent approa
h workswell prin
ipally be
ause of 
onservation of energy, sin
e the L2 norm of u is 
ertainly . 1.Now let us lo
alize in spa
e. For any 
ube Q with sidelength greater than 2�j(1�2�), we de�nea bump fun
tion �Q;j whi
h is positive, is bounded above by 1, equals 1 on Q and is 0 outside of(1 + 2�j�)Q. Further, we require for ea
h multiindex � that there is a 
onstant C� independent of Qso that jD��Q;jj � C�2j�jj(1��): (5.2.1)We say that any bump fun
tion whi
h satis�es estimates (5.2.1) is of type j.The map �Q;jPj a
ts mu
h like a proje
tion, and we shall treat jj�Q;jPjf jjL2 as if it were a wavelet
oeÆ
ient. When we deal with a 
ube Q of sidelength 2�j(1�2�); we shall de�ne j(Q) = j and we shalldenote jj�Q;j(Q)Pjf jjL2 by fQ. Further if j(Q) = j, we say that Q is at level j.Here we note that �Q;jPj is a pseudodi�erential operator. In order to see that we re
all de�nitionof a pseudodi�erential operator a

ording to Taylor (47) .De�nition 5.2.1 We say that the operatorp(x;D)f(x) := Z p(x; �)f̂(�)eix��d�



69with a symbol p(x; �) is in 
lass OPSm�;Æ if there is a 
onstant Ca;b su
h that:jDbxDa�p(x; �)j � Ca;bh�im��jaj+Æjbj;for all a, b, where h�i = (1+j�j2) 12 , and �; Æ 2 [0; 1℄. Herem stands for the order of the pseudodi�erentialoperator, and (�; Æ) for its type.Thus �Q;jPj , with the symbol �Q;j(x)pj(�), is a pseudodi�erential operator in 
lass OPS01;1��.Now we will show that �Q;jPj is lo
alized in frequen
y, up to negligible terms.Proposition 5.2.2 Given f with jjf jjL2 . 1, and � a bump fun
tion of type j, the quantityjj�Pjf � ~Pj�Pjf jjL2is negligible.Proof Let us de�ne � = �1 + �2; where �̂2(�) = �fj�j> 1100 2jg�̂(�). We have�Pjf � ~Pj�Pjf = �1Pjf � ~Pj�1Pjf + �2Pjf � ~Pj�2Pjf:By our estimates on the derivatives of �, we 
an getjj�2(�)jjL1 = negligible;



70while, be
ause of the Fourier transform supports,~Pj�1Pjf = �1Pjf:Thus the proposition is proved.We would like to have a Bernstein's type inequality for �Q;jPj too, i.e. an inequality whi
h allowsus to move from jj�Q;jPj jjL2 to jj�Q;jPj jjL1 . Combining Bernstein's inequality itself and Proposition5.2.2, we get the following extremely useful lemma, whi
h we 
ould think of as \super Bernstein'sinequality".Lemma 5.2.3 Let � be a bump fun
tion of type j. Thenjj�Pjf jjL1 . 2 3j2 jj�Pjf jjL2 + negligible:Proof We negle
t negligible terms. Then we have �Pjf = ~Pj�Pjf , by proposition 5.2.2. We estimatejj ~Pj�Pjf jjL1 by Bernstein's inequality.Before formulating the proposition whi
h shows that �Q;jPj is lo
alized in spa
e let us re
all asymp-toti
 formula for produ
t of two pseudodi�erential operators that will be useful in the proof of Propo-sition 5.2.4. We state the produ
t rule a

ording to (47). More pre
isely, if pj(x; �) 2 OPSmj�j ;Æj , and0 � Æ2 < � � 1 with � = min(�1; �2), thenp1(x;D)p2(x;D) = q(x;D) 2 OPSm1+m2�;Æ ;



71with Æ = max(Æ1; Æ2), and q(x; �) �X��0 ij�j�! D�� p1(x; �)D�xp2(x; �): (5.2.2)Now we show that �Q;jPj is lo
alized in spa
e too, up to negligible terms.Proposition 5.2.4 For any 
ube Q, we have that for any f with jjf jjH� . 1 with � < 10 that(1� �(1+2��j(Q)2 )Q;j(Q))Pj�Q;j(Q)f;is negligible.Proof (1� �(1+2��j(Q)2 )Q;j(Q))Pj�Q;j(Q);is a 
omposition of type (1; 1 � �) pseudodi�erential operators whose symbols have disjoint support.Thus when we apply formula (5.2.2) the term of order zero is equal to zero, and we are left with higherorder derivatives, whi
h is smoothing.Noti
e that the above proposition really says that we 
an move bump fun
tions a
ross LittlewoodPaley proje
tions as long as the bump fun
tions proliferate and in
rease in support. In other words,the proposition 
an be rewritten as�(1+2��j(Q)2 )Q;j(Q)Pj�Q;j(Q) = Pj�Q;j(Q) + negligible:



72Similarly, this 
an be used to remove in
onvenient bump fun
tions, provided there is a smaller bumpfun
tion already present in the expression.Proposition 5.2.5 Let C be a 
overing of a set E by 
ubes of sidelength 2�j(1�2�) for some �xed j.Then for any f 2 L2, we have jj�EPjf jj2L2 �XQ2C f2Q:Proof We simply observe thatXQ2C f2Q = Z (XQ2C �2Q;j)jPjf j2 � Z �EjPjf j2:
Essentially what we have done up to now is to use approximations to proje
tions whi
h are uniformlypseudodi�erential operators of type (1; 1� �). The negligible intera
tion of distant squares 
an be justas well derived from the asymptoti
 formula for 
omposition of su
h operators. The 
omposition of two(1; 1 � �) operators whose symbols have disjoint support is in�nitely smoothing and hen
e negligible.Now we are ready to write a lo
alized form of the Navier-Stokes equations with hyper-dissipation.Let u be a solution to the equation (5.1.1).In light of divergen
e-free 
ondition r � u = 0, we 
an rewrite (5.1.1) as

�u�t + T (u � ru) = �(��)�u; (5.2.3)



73where T is the proje
tion into divergen
e free ve
tor �elds. The operator T is a singular integraloperator and is also a Fourier multiplier. We pi
k a 
ube Q of side length 2�j(1�2�) and 
ompute theL2 pairing of the equation with Pj�2Q;jPju. We obtain the energy estimate
12 ddtu2Q = h�T (u � ru); Pj�2Q;jPjui � h(��)�u; Pj�2Q;jPjui (5.2.4)We shall estimate the two terms on the right hand side of (5.2.4) separately.5.3 DissipationIn this se
tion we analyze the dissipation termh(��)�u; Pj�2Q;jPjui:As before we use the notation ~Pj = 2Xk=�2Pj+k:This has the advantage that Pj = ~PjPj :We make some de�nitions. We de�ne for ea
h 
ube Q, the set N 1(Q), the nu
lear family of Q tobe a union of sets AQ; BQ; CQ;DQ; EQ, where AQ; BQ; CQ;DQ; EQ are 
overs of ~Q = (1 + 2��j4 )Q by



74fewer than 1024 
ubes ea
h at levels respe
tively j � 2; j � 1; j; j + 1; and j + 2. We de�ne re
ursivelyN l(Q) to be the union of all N 1(Q0) for all Q0 2 N l�1(Q). Thus in parti
ular, we have#(N l(Q)) � 213l;sin
e 5(210) < 213.Now we are ready to state and prove the lower bound on the dissipation term:Proposition 5.3.1 Let Q be a 
ube and j = j(Q). Thenh(��)�u; Pj�2Q;jPjui � 
22�ju2Q � C2(2��2�)j XQ02N 1(Q)u2Q0 � negligible (5.3.1)Proof Note thath(��)�u; Pj�2Q;jPjui = h�Q;jPj(��)�u; �Q;jPjui= h(��)��Q;jPju; �Q;jPjui+ h[�Q;jPj; (��)�℄u; �Q;jPjui= X + Y:



75Note that X := h(��)��Q;jPju; �Q;jPjui= jj(��)�2 �Q;jPjujj2L2& 22�j jj ~Pj�Q;jPjujj2L2= 22�ju2Q � negligible;where the last equality follows from Proposition 5.2.2.To estimate Y we shall use (5.2.2). Let p1(x; �) be a symbol of (��)�, let p2(x; �) be a symbol of�Q;jPj , and q(x; �) be a symbol of [(��)�; �Q;jPj ℄. Then we have:q(x; �) � X��0 ij�j�! D�� p1(x; �)D�xp2(x; �)�X��0 ij�j�! D�� p2(x; �)D�xp1(x; �)= [p1(x; �)p2(x; �)� p2(x; �)p1(x; �)℄+ [ 12�iD�p1(x; �)Dxp2(x; �)� 12�iD�p2(x; �)Dxp1(x; �)℄+ [( 12�i )2D2�p1(x; �)D2xp2(x; �) � ( 12�i )2D2�p2(x; �)D2xp1(x; �)℄:::Sin
e �Q;jPj is a pseudodi�erential operator in the 
lassOPS01;1��, and (��)� is a pseudodi�erentialoperator in the 
lass OPS2�1;0, the asymptoti
 formula for q(x; �) implies:jq(x; �)j � 12�i h�i(2���) + ( 12�i )2h�i(2��2�) + :::



76Thus we observe that [�Q;jPj ; (��)�℄ is of order 2�� �. Further by Proposition 5.2.2, we have[�Q;jPj ; (��)�℄ ~Pj � [�Q;jPj ; (��)�℄ = negligible:Even further, applying Proposition 5.2.4, we getY = h[�Q;jPj ; (��)�℄� ~Q;j ~Pju; �Q;jPjui+ negligible:Now applying the mapping properties of operators of order 2�� � we getjY j � 2(2���)j jj� ~Q;j ~PjujjL2 jj�Q;jPjujjL2 (5.3.2)whi
h for any number K, by Cau
hy S
hwartz impliesjY j . 1K 22�ju2Q +K2(2��2�)j jj� ~Q;j ~Pjujj2L2 :Now applying Proposition 5.2.5, we get the desired result.Let us de�ne for every l, u2N l(Q) = XQ02N l(Q)u2Q0 :Then we have



77Corollary 5.3.2 Let Q be a 
ube and j = j(Q). Then for any l,XQ02N l(Q)h(��)�u; Pj�2Q0;jPjui � 
22�ju2N l(Q) � C2(2��2�)ju2N l+1(Q) � negligible (5.3.3)Proof Simply sum proposition 5.3.1 over N l(Q).We want to use Proposition 5.3.1 to �ght against the growth of uQ. Thus the term 2(2��2�)ju2Q0would appear to be a serious nuisan
e. However heuristi
ally speaking if the term 2(2��2�)ju2Q0 istoo large 
ompared to the �rst term on the right-hand side of Proposition 5.3.1 we 
an extend our
onsideration from a 
ube Q0 to its nu
lear family N (Q0). Then if the term 2(2��2�)ju2N (Q0) is still tolarge we go from N (Q0) to its nu
lear family and so on up to N l(Q0). However we will have to stop atsome point be
ause of 
onservation of energy. We make this pre
ise by the following lemma, whi
h we
all \good neighbors".Lemma 5.3.3 For any interval of time J � [0; T ℄ and any 
ube Q we may �nd an l < 400� so thatZJ u2N l(Q)dt+ negligible & 2��j ZJ u2N l+1(Q)dt: (5.3.4)Proof By 
onservation of energy, for every l � 400� and every t we have,u2N l+1(Q) . 1:



78Sin
e our 
onstants 
an depend on T this meansZJ u2N l+1(Q)dt . 1:Now suppose the lemma is false. Applying the opposite of (5.3.4), for l = 1 : : : 400� ; we getZJ u2N 2(Q)dt+ negligible . 2�399j = negligible;whi
h implies that (5.3.4) holds for l = 1.We will be able to apply Lemma 5.3.3 together with Corollary 5.3.2 to show that for any 
ube andany interval in time, there is an lth iterated nu
lear family for small l whi
h is undergoing dissipation.5.4 An upper bound on the nonlinear termNow we turn our attention to the termGQ = h�T (u � ru); Pj�2Q;jPjui:We rewrite it as GQ = h��Qj ~PjTPj(u � ru); �Q;jPjui:Now we use the \tri
hotomy". We 
an writePj(u � ru) = Hj;lh +Hj;hl +Hj;hh +Hlo
;



79where the low-high part is given byHj;lh = Xk<j� 1000� Pj((Pku) � ~Pjru);the high-low part is given by Hj;hl = Xk<j� 1000� Pj(( ~Pju) � Pkru);the high-high part is givenHj;hh = Xk>j+ 1000� Pj(( ~Pku) � Pkru) + Xk>j+ 1000� Pj((Pku) � ~Pkru);(te
hni
ally that was the end of the tri
hotomy) and the lo
al part is given byHlo
 = Xj� 1000� <k<j+ 1000� Pj(( ~Pku) � Pkru) + Xj� 1000� <k<j+ 1000� Pj((Pku) � ~Pkru):Now we break up GQ in the obvious way:GQ = GQ;lh +GQ;hl +GQ;hh +GQ;lo
;where GQ;lh = h��Q;j ~PjTHj;lh; �Q;jPjui;GQ;hl = h��Q;j ~PjTHj;hl; �Q;jPjui;



80GQ;hh = h��Q;j ~PjTHj;hh�Q;jPjui;GQ;lo
 = h��Q;j ~PjTHj;lo
; �Q;jPjui:Our goal is to �nd an upper bound on GQ. Now �xing Q and j we would like to estimate ea
h ofGQ;lh; GQ;hl; GQ;hh; and GQ;lo
. Before going into details let us intuitively explain how we obtain thesebounds. For example let us heuristi
ally dis
uss how we obtain a bound on GQ;lh. We remark that weare on the level of pie
es lo
alized in frequen
y, i.e. on the level of Littlewood-Paley operators. Thenwe need to estimate L2-norm of the produ
t:jjPku � ~PjrujjL2 ; (5.4.1)where k stands for a low frequen
y part, and j for a high frequen
y part. First we apply the H�olderinequality, jjf � gjjL2 � jjf jjL2 jjgjjL1 ;having in mind that we shall 
hoose a fun
tion g to be one of Pku, ~Pjru so that we 
an applyBernstein's inequality on jjgjjL1 in the most eÆ
ient way. Sin
e Bernstein's inequality is more eÆ
ientwhen applied on low-frequen
y part we 
hoose a fun
tion g to be Pku, while we 
hoose ~Pjru to be fin H�older's inequality. All this is on the level of Littlewood-Paley operators only. Indeed we deal withpie
es lo
alized in frequen
y and spa
e too, and instead of Pku we shall be able to deal with �lPku.However thanks to the 
al
ulus developed in se
tion 5.2, we are able to use the idea just des
ribed. In



81su
h a way by employing H�older and \super-Bernstein's" inequalities we obtain an upper bound forthe a
tual GQ.We take a moment to be 
areful about how we lo
alize. For any k < j, de�ne Qk = 2(j�k)(1�2�)Q.For any k � j (in
luding j) de�ne Qk = (1 + 2��k2 )Q.Then we haveLemma 5.4.1 For any Æ > 0jGQ;lhj+ jGQ;hlj . j� 1000�Xk=Æj 2 3k2 +juQkuN 1(Q)uQ + 2j(1+ 3Æ2 )uN 1(Q)uQ + negligible:Proof We 
onsider for k < j � 1000� , the relevant expressionGQ;lh;k = h��Q;jPjT (Pku ~Pjru); �Q;jPjui:We divide this into two 
ases whi
h are k < Æj and k � Æj. In the se
ond 
ase, we use the idea ofProposition 5.2.4 (we just have to use a higher degree of smoothing than is used in that proposition)to observe GQ;lh;k = h��Q;jPjT ((�Qk ;kPk)u � r(�Qj ;j ~Pju)); �Q;jPjui+ negligible:(This is be
ause r a
ts on �Qj ;j only where it has a negligible e�e
t on the whole quantity by Propo-sition 5.2.4.) Now we simply observe by Proposition 5.2.3 thatjj�Qk;kPkujjL1 . 2 3k2 uQk + negligible;



82and by Proposition 5.2.4, the proof of Proposition 5.2.2 (to 
ontrol the a
tion of r) and Proposition5.2.5 that jjr�Qj ;j ~PjujjL2 . 2juN 1(Q) + negligible:On the other hand for the �rst 
ase, there is no point in lo
alizing to Qk be
ause k is too small andso the error is too big. Thus in in this 
ase, we simply estimatejjPkujjL1 . 2 3Æj2 uQk . 2 3Æj2 :This last appli
ation of 
onservation of energy a

ounts for the pe
uliar homogeneity of our result. Weare pleased to 
ontrol the energy in very large s
ales by 1.Summing these estimates gives the desired bound for GQ;lh. The bound for GQ;hl pro
eeds likewise(and gives a better estimate sin
e the derivative falls on the level k term.)
Lemma 5.4.2 jGQ;lo
j . 2 5j2 uQu2N 1000� (Q) + negligible:Proof From the de�nition of GQ;lo
 we have:GQ;lo
 = 2Xl=�2[ j+ 1000�Xk=j� 1000� h�Q;jPjT (Pk+lu � rPku); �Q;jPjui+ j+ 1000�Xk=j� 1000� h�Q;jPjT (Pku � rPk+lu); �Q;jPjui℄:



83Sin
e the above sum has only . 1 many terms by applying Proposition 5.2.4, we observe that forsome parti
ular values of k; ljGQ;lo
j . jh�Q;jPjT (�Qj ;jPku � �Qj ;jrPk+lu); �Q;jPjuij+ negligible:Now we apply Proposition 5.2.3 together with Cau
hy S
hwartz to obtainjj�Qj ;jPkujjL1 . 2 3j2 jj�Qj ;jPkujjL2 + negligible:Using Proposition 5.2.5, we observe thatjj�Qj ;jPkujjL2 . uN 1000� (Q):Finally dire
t 
al
ulation showsjj�Qj ;jrPk+lujjL2 . jjr�(1+2�2�j3 )Qj ;jPk+lujj . 2juN 1000� (Q) + negligible;where the �rst inequality 
omes from the fa
t that �(1+2�2�j3 )Qj ;j = 1 on the support of �Qj ;j and these
ond inequality 
omes again from Proposition 5.2.5. Combining all these estimates proves the lemma.
Lemma 5.4.3 jGQ;hhj . Xk>j+ 1000� uQ2 3j2 +kjj�Qj ;jPkujj2L2 :



84Proof We begin similarly to before by estimatingh�Q;jPjT (Pku � r ~Pku); �Q;jPjui:With the other terms one 
an pro
eed likewise. Now, similarly to what we have already done, weobserve that we 
an write this as,h�Q;jPjT (�Qj ;jPku � r�Qj ;j ~Pku); �Q;jPjui+ negligible:Now we estimate jj�Q;jPjujjL1 . 2 3j2 uQ + negligible;jjr�Qj ;j ~PkujjL2 . 2k 2Xl=�2 jj�Qj ;jPk+lujjL2 + negligible:Combining these estimates gives the desired inequality.In fa
t, we get a slightly better estimate, for instan
e by the div-
url lemma, but it does not seemto be ne
essary.The previous three lemmas are somewhat wasteful, parti
ularly in the de�nition of the lo
al part.We are using more squares than we need to 
over. For the result of the 
hapter 6 we need a somewhatmore eÆ
ient de
omposition, whi
h is proved in exa
tly the same way. We formulate it here.For Q a 
ube at level j, we de�ne the an
estors of Q,A(Q) = fQkg�j<k<j�4:



85For k � j � 4, we de�ne the 
olle
tion Sk(Q) to be a 
overing (with overlap . 1) of the 
ube Qj�4 by
ubes at level k. We de�ne the stri
t extended familyE(Q) = j+ 1000�[k=j�4 Sk(Q);and we de�ne F(Q), the followers of Q byF(Q) = [k>j+ 1000� Sk(Q):Then applying the same estimates as in the proofs of lemmas 5.4.1, 5.4.2 and 5.4.3, to a slightlydi�erent de
omposition we obtainCorollary 5.4.4 For any Æ > 0 we 
an estimateGQ . ZQ;lhhl + ZQ;lo
 + ZQ;hh + 2j(1+ 32 Æ)uQuN 1(Q);where ZQ;lhhl = Xk<j�4 XQ02N 1(Q) 2j+ 3k2 uQkuQ0uQ;and ZQ;lo
 = 2 5j2 XQ0;Q002E(Q)uQuQ0uQ00 ;



86and �nally ZQ;hh = Xk>j+ 1000� 2 3j2 +kuQ XQ02Sk(Q) u2Q0 :Proof This time we de�ne: H 0j;lh = Xk<j�4Pj((Pku) � ~Pjru);H 0j;hl = Xk<j�4Pj(( ~Pju) � Pkru);H 0j;hh = Xk>j+ 1000� Pj(( ~Pku) � Pkru) + Xk>j+ 1000� Pj((Pku) � ~Pkru); ;and H 0lo
 = Xj�4<k<j+ 1000� Pj(( ~Pku) � Pkru) + Xj�4<k<j+ 1000� Pj((Pku) � ~Pkru); :Now we break up GQ in the obvious way:GQ = G0Q;lh +G0Q;hl +G0Q;hh +G0Q;lo
;where G0Q;lh = h��Q;j ~PjTH 0j;lh; �Q;jPjui;G0Q;hl = h��Q;j ~PjTH 0j;hl; �Q;jPjui;G0Q;hh = h��Q;j ~PjTH 0j;hh�Q;jPjui;



87G0Q;lo
 = h��Q;j ~PjTH 0j;lo
; �Q;jPjui:Now we simply estimate ea
h of the G0's as before.
5.5 Singular setIn this se
tion for ea
h s
ale j we introdu
e notion of a bad 
ube, and a bad set. Intuitively bad
ube is a 
ube on whi
h the nonlinear term dominates the dissipation term, while bad set is a 
ertainunion of bad 
ubes at s
ale j. On ea
h s
ale j we shall use Vitali's lemma to 
over the 
orrespondingbad set. We shall be able to 
ount elements of these 
overings, and that will imply the bound onHausdor� dimension of our singular set.Now we are ready to des
ribe our singular set. We will say that a 
ube Q of sidelength 2�j(1�2�) isbad if Z T0 Z Xk�j 22�kj�Q;kPkuj2 & 2�(5�4�)j�100�j : (5.5.1)Let Ej be the union of 2 3000� Q for all 
ubes Q of sidelength 2�j(1�2�) whi
h are bad.We will need the following well known 
overing lemma of Vitali (see (44)):Lemma 5.5.1 Let C be any 
olle
tion of 
ubes, then there is a sub
olle
tion C0 so that any two 
ubesin C0 are pairwise disjoint and so that [Q2CQ � [Q2C0 5Q:



88Proposition 5.5.2 There is 
overing Qj of Ej by 
ubes of sidelength 2�j(1�2�) so that#(Qj) . 2(5�4�)j+100�j :Proof Let C be the 
olle
tion of 
ubes 2Q where Q is a bad 
ube at level j. >From Lemma 5.5.1 weknow that there are disjoint 
ubes f2Q�g�2Z su
h that the 
olle
tion 
onsisting of f10Q�g 
overs theset Ej . Any 
ube of sidelength 10 � 2�j(1�2�) 
an be 
overed by 1000 
ubes of sidelength 2�j(1�2�) (and1000 is a 
onstant.) We will de�ne Qj to be the 
overing formed by the union of the thousandths ofthe elements of f10Q�g .In order to 
ount 
ubes in Qj it is enough to 
ount the disjoint 
ubes used in the 
onstru
tion ofQj .However we know sin
e the 2Q�'s are disjoint thatX� Xk Z T0 22�kj�Q�;kPkuj2 . Z T0 Z j��uj2 . 1 (5.5.2)by 
onservation of energy, while we knowX� Xk Z T0 22�kj�Q�;kPjuj2 & #(Qj)2�(5�4�)j�100�j (5.5.3)by the badness of the 
ubes.Combining the inequalities (5.5.2) and (5.5.3) implies the 
laim.We pause for a moment to apply Lemma 4.2.1.



89Corollary 5.5.3 The dimension of E = lim supj�!1Ej is bounded by 5� 4�+O(�).If we 
ould show that if x =2 E then x is a regular point of u at time T - in other words thatlim supt�!T ju(x; t)j <1:(Indeed if we 
ould show it is a regular point for a derivative of u of any �xed order) this wouldimmediately imply Theorem 1.2.2.



CHAPTER 6CRITICAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS WITHHYPER-DISSIPATION6.1 Introdu
tionWe 
ontinue to 
onsider the Navier-Stokes equations with hyper-dissipation. In this 
hapter forea
h s
ale of frequen
y lo
alization j, we prove a 
ertain level of regularity, whi
h is valid away fromthe 
orresponding bad set. This level of regularity shall express a balan
e between the nonlinear andthe dissipation terms as in the 
ase of the dyadi
 Navier-Stokes equations with hyper-dissipation.Let E be de�ned as in the previous 
hapter, i.e.E = lim supj�!1 Ej ;where Ej stands for the bad set at s
ale j.First we investigate what are the immediate 
onsequen
es of x =2 E. Saying that x =2 E is the sameas saying that there exists a j so that so that for any k > j, we have x =2 Ek. Denote Fj as the setof points with this property. To prove a regularity statement about E, it suÆ
es to show that thatstatement holds for any j0, provided x 2 Fj0 . However �xing j, we may 
hange our 
onstants in thede�nition of bad square so that x is not 
ontained in any bad squares. Thus we may as well assume xis 
ontained in no bad squares. This will be our hypothesis in this 
hapter. (And, the 
onstants willnow depend on j0.) 90



91Now we would like to introdu
e a level of regularity whi
h intuitively separates the bad set from its
omplement. As in the dyadi
 heuristi
 as long as the dissipation term dominates the nonlinear termthe growth of uQ should be under 
ontrol. Heuristi
ally, the worst part of the nonlinear part GQ isGQ;lo
 whi
h looks at s
ale j like 2 5j2 u3Q. On the other hand, dissipation gives de
ay like 22�ju2Q. Thisshould mean that as long as uQ < 22(�� 54 )j; the growth of uQ ought to be under 
ontrol. It is thisestimate whi
h we will show in the following se
tion for any Q not 
ontained in Ek for any k > j0.6.2 Criti
al regularity theoremTheorem 6.2.1 Let Q be as above, then there is a 
onstant C, depending only on T , the initial
onditions for u, the 
onstant in the de�nition of badness, and j0 so thatuQ(t) < C22(�� 54� �2 )j(Q):Proof We pro
eed by 
ontradi
tion. Suppose the theorem is false. We let T0 be the �rst time and Qbe the largest 
ube so that uQ(T0) > C22(�� 54� �2 )j :Now sin
e our initial data is smooth, at the initial time, (sin
e j is 
hosen suÆ
iently large), wehave uQ(0) . 2�1000j : (6.2.1)



92Re
all that in 
hapter 5 we wrote a lo
alized version of the energy equation for the Navier-Stokesequation in the form: 12 ddtu2Q = h�T (u � ru); Pj�2Q;jPjui � h(��)�u; Pj�2Q;jPjui;whi
h was by introdu
ing GQ rewritten as12 ddtu2Q = GQ � h(��)�u; Pj�2Q;jPjui:Therefore having in mind the lower bound on the dissipation termh(��)�u; Pj�2Q;jPjui � 
22�ju2Q �C2(2��2�)j XQ02N 1(Q) u2Q0 � negligibleas well as (6.2.1), it must be the 
ase thatZ T00 (GQ(t)� 
22�ju2Q + C2(2��2�)j XQ02N 1(Q) u2Q0)dt & 24(�� 54� �2 )j :By using the \good neighbors" proposition, we 
an repla
e Q by an extended nu
lear family N l(Q),with l < 400� for whi
hZ T0 (�
22�ju2N l(Q) + C2(2��2�)ju2N l+1(Q))dt . �Z T0 22�ju2N l(Q):For the 
urrent theorem, this is all we need. Sin
e uN l(Q) also begins . 2�1000j , we must have



93Z T00 GN l(Q)(t)dt & 24(�� 54� �2 )j + Z T0 22�ju2N l(Q);where we de�ne GN l(Q)(t) = XQ12N l(Q)GQ1(t):Sin
e there are only . 1 
ubes in N l(Q), for this to be the 
ase, there must be a ~Q so thatZ T00 G ~Q(t)dt & 24(�� 54� �2 )j + Z T0 22�ju2N l( ~Q);We 
ontradi
t this by using Lemmas 5.4.1, 5.4.2, and 5.4.3 to estimate G ~Q. By our de�nition ofEj , the 
ube ~Q is 
ontained in no larger bad squares.Ea
h estimate 
ontains a fa
tor of u ~Q whi
h we take out using the estimate ju ~Qj . 22(�� 54� �2 )j ,whi
h we get from the de�nition of T0.First let Q1 be a nu
lear family member of ~Q and Q2 be a distant an
estor at level k. Supposek < Æj, we see that 2(1+ 3Æ2 )juQ1 . 22�juN l( ~Q). Thus we need not worry about this term.Suppose k > Æj. We must estimate Z T0 2 3k2 +juQ1uQ2dt:Note that both Q1 and Q2 are good squares. Thus we have the estimatesZ T0 23ku2Q2 � 2(2��2)k�10�k ;



94and Z T0 22ju2Q1 � 2(2��3)j�10�j :Applying Cau
hy-S
hwartz, we get (using � � 1)Z T0 2 3k2 +juQ1uQ2dt � 2( 4��52 )j�10�j :Summing over (there are only j terms) provides the desired estimate on G ~Q;hl+G ~Q;lh. We 
an estimateG ~Q;lo
 in the same way (by allowing k as large as j + 1000� .)We are left to estimate G ~Q;hh. We �x a s
ale k > j and pi
k k2 within 2 of k. Now we are left toestimate Z T00 2 3j2 +kjj� ~Q;kPkujjL2 jj� ~Q;k2Pk2ujjL2 :However sin
e ~Q is a good square, we haveZ 22�kj� ~Q;kPkuj2 � 2(4��5)j�10�j :Thus Z 2k+ 3j2 j� ~Q;kPkuj2 � 2( 4��52 )j�10�j�(2��1)(k�j);whi
h is an estimate that de
ays geometri
ally in k when � > 12 . By using the similar estimate for k2,applying Cau
hy S
hwartz and summing over k, we get the desired result.



CHAPTER 7BARRIER ESTIMATE FOR THE NAVIER-STOKES EQUATIONS WITHHYPER-DISSIPATION7.1 Introdu
tionIn this 
hapter we �nish the proof of the main theorem by proving that a solution of the Navier-Stokes equations with hyper-dissipation is regular outside of a 
ertain bad set. Ideally we would liketo prove that if x =2 E then lim supt�!T ju(x; t)j <1:However due to a 
ombinatorial issue we shall prove the same statement for a somewhat larger 
olle
tionthan one whi
h 
overs the set E.We shall prove regularity far inside a 
ube Q provided that one has a little better than 
riti
alregularity for the 
ube Q as well as smooth initial data. By \a little better than 
riti
al regularity forthe 
ube Q" we mean:� 
riti
al regularity for all 
ubes 
ontaining our 
ube Q, and� 
riti
al regularity for all boundary 
ubes of the 
ube Q.The last one whi
h we 
ould think of as a \safe boundary 
ondition" imposes the restri
tion on � whi
his � > 1.Now we shall prove a statement whi
h veri�es the \safe boundary 
ondition". We do that in se
tion7.2. Then in se
tion 7.3 we prove a barrier estimate whi
h guarantees regularity far inside the 
ube Q.95



967.2 Combinatori
sHere we shall verify that we 
an repla
e our 
ube Q with a slightly smaller 
ube whose boundary isaway from the singular set. Let us think heuristi
ally about the boundary of our 
ube Q. Sin
e we arein R3 the boundary of the 
ube Q is 2-dimensional. However the dimension of the singular set is 5�4�and this number is smaller than 1, provided that � > 1. Now we need to assure that 2-dimensionalboundary does not interse
t the singular set whose dimension is less than 1. We 
an do that be
ausewe are in 3 dimensions. In other words we will repla
e our 
ube Q with slightly smaller 
ube withsafe boundary. More pre
isely, we prove the theorem whi
h guarantees the existen
e of a number r,12 < r < 1 su
h that the 
ube rQ would have a ni
e boundary, i.e. boundary whi
h is away from a
ertain bad set.We begin with the set Ej whi
h is the union of a 
olle
tion Qj of 
ubes with sidelength 2�(1�2�)jhaving 
ardinality . 2(5�4�+100�)j . (We assume 4�� 4 > 200�.)Theorem 7.2.1 There exists a sequen
e of 
olle
tions Q0j of 
ubes of sidelength 2�(1�2�)j with #(Q0j) .2(5�4�+100�)j , so that for any Q of length 2�(1�2�)j whi
h does not interse
t any element Q0j there existsa number 12 < r < 1 with the following property: For no k > j is there ~Q 2 Qk so that100 ~Q \ �(rQ) 6= ; (7.2.1)Proof We refer to the elements of Qj as the bad 
ubes. We say that a 
ube of sidelength 2�(1�2�)j isvery bad if either it interse
ts a bad 
ube of the same length or it interse
ts more than 
2(5�4�+150�)(k�j)elements of 100Qk for some k > j with 
 a small 
onstant to be spe
i�ed later. Let E0j be the union



97of all very bad 
ubes of length 2�(1�2�)j , then by the estimates on the 
ardinality of the Qk's and bythe Vitali lemma, we 
an see that that E0j 
an be 
overed by . 2(5�4�+100�)j 
ubes of length 2�(1�2�)j .We refer to these 
ubes as Q0k. Now we need only prove (7.2.1).Let Q be a 
ube of length 2�(1�2�)j whi
h does not interse
t E0j. Let Dk(Q) be the set of elementsof 100Qk whi
h interse
t Q. Then we have the estimate#(Dk(Q)) � 
2(5�4�+150�)(k�j):Let fk(r) be the fun
tion de�ned from 12 to 1 whi
h 
ounts how many elements of Dk(Q) interse
t�(rQ). For ea
h Q0 2 Dk(Q) de�ne rQ0 to be that number so that the 
enter of Q0 lies on �(rQ0Q).Then fk(r) � XQ02Dk(Q)�(rQ0�100(2(1�2�)(j�k));rQ0+100(2(1�2�)(j�k))):Thus jjfk(r)jjL1 � 200
2(4��4�152�)(j�k) :Sin
e 4� � 4 > 200�; this estimate de
ays geometri
ally with k. By 
hoosing 
 suÆ
iently small, wemay arrange that jjXk>j fkjjL1 < 14 :Thus by T
heby
hev's inequality, jfr : jXk>j fk(r)j � 1gj � 14 :



98Therefore having in mind that fk(r) is integer valued, we 
on
lude that there must be a value of rbetween 12 and 1 so that fk(r) = 0 for all k > j. This is the value of r that we 
hoose.7.3 Barrier estimateIn this se
tion, we prove regularity on the interior of a 
ube Q, provided that one has 
riti
alregularity for 
ubes 
ontaining it and 
ubes Q0 for whi
h �Q \ 100Q0 6= ;.If Q is a 
ube and Q1 � Q, we de�ne d(Q1), the graph distan
e of Q1 to the boundary of Q byd(Q1) = k � 1, where k is the smallest positive integer so that2kQ1 \ �Q 6= ;:Lemma 7.3.1 Let Q be a 
ube. Suppose we know that for all t < T we have that for any 
ube Q0 sothat Q � Q0 with sidelength of Q0 being 2�l(1�2�), we have thatjuQ0(t)j . 2�l( 5�4�+2�2 );and suppose further that for any Q0 so that 100Q0 \ �Q 6= ; with sidelength of Q0 being 2�l(1�2�) andl > j � 2, we have that juQ0(t)j . 2�l( 5�4�+2�2 );then for any Q1 � Q of length 2�k(1�2�), we have the estimatejuQ1(t)j . 2�k�(Q1); (7.3.1)



99where �(Q1) = min(10; 5� 4�+ 2�2 + �(d(Q1)� 5)50 ):Proof The proof we present is by 
ontradi
tion.Noti
e that for all 
ubes Q1 of sidelength 2�(1�2�)k we havejuQ1(0)j . 2�1000k; (7.3.2)i.e. the lemma is satis�ed at time t = 0.Let t1 be the �rst time at whi
h the lemma fails and Q1 be one of the 
ubes for whi
h it fails. Itmust be the 
ase by hypothesis that 32Q1 does not interse
t �Q. Then we haveuQ1(t1) � 2�k�(Q1):Having in mind (7.3.2), we 
an �nd the time t0, being the last time before t1 whenuQ1(t0) . 2k(��(Q1)+ �10 ):Then we have Z t1t0 ddt(u2Q1) & 2�2k�(Q1): (7.3.3)However on the time interval (t0; t1) the lemma is satis�ed.



100We will invoke Corollary 5.4.4. Now for any Q2 2 E(Q1) we haved(Q2) � d(Q1)� 5: (7.3.4)This is be
ause Q2 � 32Q1. Further for any an
estor Q3 2 A(Q1) with Q3 having sidelength 2�(1�2�)l,with �k < l < k � 4, d(Q3) � d(Q1)� 5(k � l): (7.3.5)Further for any follower Q4 2 F(Q1) (that is a 
ube whi
h 
ontributes to GQ1;hh and is in parti
ular
ontained in 32Q1) of Q1 with Q4 having sidelength 2�(1�2�)l with l > k + 1000� , we haved(Q4) � d(Q1) + ( l � k2 ): (7.3.6)Applying (7.3.6), we 
on
lude that �(Q4) = 10. Thus we 
on
ludeZQ1;hh .Xl>k 2 5k2 23(l�k)2�20l2(��(Q1)+ �10 )k;by 
ounting the elements of Sl(Q) by 23(l�k). Cal
ulating, we �ndZQ1;hh . 2�( 352 +�(Q1))k;whi
h sin
e �(Q1) � 10; 
annot possibly a

ount for (7.3.3).



101Now applying (7.3.4) to Proposition 5.3.1, we observe that for any t between t0 and t1, we havedissipation at Q1 of & 22�ku2Q1(t) & 2(2��2�(Q1)+ �5 )k:Thus to rea
h a 
ontradi
tion, it suÆ
es to show that on this time intervalZQ1;hllh + ZQ1;lo
 . 2(2��2�(Q1)+ �5 )k:For this reason we 
an also ignore the ultra-low term 2j(1+ 32 Æ)uQ1uN 1(Q1) in Corollary 5.4.4.In the rest of the proof we shall use the advantage of the fa
t that the lemma is satis�ed on thetime interval (t0; t1). First noti
e that by (7.3.1) we have juQ1 j < 2�k�(Q1); for all t 2 [t0; t1℄.Using (7.3.1) and (7.3.4), we observe that for any Q2 in E(Q1) and for all t 2 [t0; t1℄ we haveuQ2 . 2�k�(Q2)= 2�k( 5�4�+2�2 + �(d(Q2)�5)50 )� 2�k( 5�4�+2�2 + �(d(Q1)�5)50 )+ k�10= 2�k�(Q1)+ k�10 ;and therefore uQ2 . 2(��(Q1)+ �10 )k: (7.3.7)



102On the other hand for any Q2 in E(Q1) we haveuQ2 . 2 (4��5�2�)k2 ; (7.3.8)by the lower bound on �.Thus by using (7.3.7) and (7.3.8) we bound ZQ1;lo
ZQ1;lo
 . XQ2;Q022E(Q1) 2 5k2 uQ2uQ02uQ1 . 2(2�� 4�5 �2�(Q1))k:Thus ZQ1;lo
 
annot 
ontribute to the growth.Now to estimate ZQ1;hllh, we observe that for Q01 2 N 1(Q1) we have the estimateuQ01 . 2(��(Q1)+ �10 )k;while for an
estor Q3 of sidelength 2�(1�2�)l, we apply (7.3.5) (as well as the hypotheses of the lemmafor squares larger than Q) uQ3 . 2 (4��5�2�)k2 +( 32�100�)(k�l);sin
e of 
ourse 32 > 5�4�2 + 200�. Now we just estimateZQ1;hllh .Xl X 2 3l2 +kuQ01uQ3uQ1 . 2(2�� 4�5 �2�(Q1))k:Thus uQ1 
ould not have grown whi
h is a 
ontradi
tion.



103But now we have in fa
t proven the main theorem. We de�ne E0j as in se
tion 7.2. We need to showthat u is regular at any x not 
ontained in any E0j with j larger than some integer jx. By 
hanging our
onstants, we 
an say x is not in any E0j. Now by theorems 6.2.1 and 7.2.1, for any 
ube Q 
enteredat x, we 
an �nd a 
ube almost half as large whi
h satis�es the hypotheses of Lemma 7.3.1. But the
on
lusion of the lemma implies that x is a regular point. Thus any singular point must be 
ontainedin E = lim supE0j . By lemma 4.2.1, we have dim(E) < 5� 4�+ 20�. Letting � tend towards 0, we getTheorem 1.2.2.



CHAPTER 8DYADIC MODELS AND BLOW-UP RESULTS8.1 Introdu
tionIn this 
hapter we revisit the dyadi
 model for the Euler equations and the Navier-Stokes equationswith hyper-dissipation in three dimenison. For the dyadi
 Euler equations we prove �nite time blow-up. In the 
ontext of the dyadi
 Navier-Stokes equations with hyper-dissipation we prove �nite timeblow-up in 
ase when the dissipation degree is suÆ
iently small.For both the dyadi
 Euler and the dyadi
 Navier-Stokes equations with hyper-dissipation we provean estimate whi
h gives a lower bound on the nonlinear term. Noti
e that in the 
ontext of partialregularity results presented in previous 
hapters we always used an upper bound on the nonlinear term.Then we 
al
ulated a balan
e betwwen the nonlinear and the dissipation term. However for the blow-up results one needs a lower bound on the nonlinear term. Su
h a bound des
ribes 
on
entration ofenergy suÆ
ient to produ
e a blow-up. We prove for the dyadi
 model that a lower bound guaranteesblow-up, provided that the dissipation degree is small. However we are not able to produ
e su
h alower bound for the a
tual equations themselves.Before going into details let us re
all the model. Following the notation introdu
ed in 
hapter 4, weuse the bilinear operator C(u; v), whi
h is built from two pie
es, Cu(u; v) and Cd(u; v), and we have:(Cd(u; u))Q = 2 5j(Q)2 u2~Q;104



105(Cu(u; u))Q = 2 5(j(Q)+1)2 uQ XQ02C1(Q) uQ0 ;C(u; u) = Cu(u; u)� Cd(u; u):Clearly we always have antisymmetry in the sense thathC(u; u); ui = 0:We shall say that a time varying \fun
tion" u satis�es the dyadi
 Euler equation provided thatdudt + C(u; u) = 0: (8.1.1)Also we shall say that u satis�es the dyadi
 Navier-Stokes equations with hyper-dissipation ifdudt + C(u; u) + (�)�u = 0: (8.1.2)We will restri
t our attention to \fun
tions" u all of whose 
oeÆ
ients uQ are initially positive.This 
lass of fun
tions is preserved by both 
ows (8.1.1) and (8.1.2). Let us verify that for the 
ow(8.1.1). Fix a dyadi
 
ube Q. We rewrite the equation (8.1.1) in terms of wavelet 
oeÆ
ients as follows:
duQ(t)dt + 2 5j(Q)2 uQ XQ02C1(Q) uQ0(t) = u2~Q(t): (8.1.3)



106Now we remark that the equation (8.1.3) is a �rst order linear ordinary di�erential equation inuQ(t) and its solution is: uQ(t) = 1�(t)(uQ(0) + Z t0 u2~Q(�)�(�)d�); (8.1.4)where �(t) = eR t0 2 5j(Q)2 PQ02C1(Q) uQ0(�)d� :Sin
e �(t) > 0 for all t, (8.1.4) implies that uQ(t) > 0 for all t > 0, provided that uQ(0) is positive.The 
hapter is organized as follows. In se
tion 8.2 we give a blow-up result for the dyadi
 Eulerequation. Then in se
tion 8.3 we present a proof of �nite time blow-up for the dyadi
 Navier-Stokesequations with small dissipation.8.2 The dyadi
 Euler equation8.2.1 Energy 
owOne of the most important features of the 
ow (8.1.1) is that it 
onserves energy. To be morepre
ise ddt(hu; ui) = 0 (8.2.1)This 
an be obtained by pairing (8.1.1) with u. Energy 
an be thought of as divided up amongst thenodes Q. To be more pre
ise, if we write E = hu; ui;



107then E = XQ2DEQ;where EQ = u2Q:The 
ow (8.1.1) gives rise to an extremely lo
al des
ription of energy 
ow along the tree D.To be pre
ise ddtEQ = EQ;in �EQ;out; (8.2.2)where EQ;in = 2 5j(Q)2 (E ~QpEQ);and EQ;out = XQ02C1(Q)EQ0;in:Thus energy is 
owing always from larger squares to smaller ones and indeed it 
ows along the edgesof the tree D.We de�ne a Carleson box by C(Q) = 1[k=1 Ck(Q);



108and the energy of a Carleson box by EC(Q) = XQ02C(Q)EQ0 :Also we shall introdu
e an extended Carleson box byC0(Q) � Q [ C(Q):Then we de�ne the energy of C0(Q) by EC0(Q) = XQ02C0(Q)EQ0 ;We immediately get the following proposition.Proposition 8.2.1.1 Let u be a time-varying \fun
tion" with positive 
oeÆ
ients evolving a

ordingto the 
ow (8.1.1). Then for any Q, the fun
tions in time given by EC(Q) and EC0(Q) are monotonein
reasing.8.2.2 The heartWe begin with an easy lemma about Carleson boxes.Lemma 8.2.2.1 For any � > 0, there is Æ(�) > 0, so that if we know thatEC(Q) > (1� Æ)2�(3+�)j(Q);



109then there exists Q0 2 C(Q); so that EC0(Q0) � 2�(3+�)j(Q0):Proof Let us suppose the 
on
lusion of the lemma is false, i.e.EC0(Q0) < 2�(3+�)j(Q0); (8.2.3)for all Q0 2 C(Q):On the other hand we know EC(Q) = XQ02C1(Q)EC0(Q0): (8.2.4)Now be
ause we are in dimension 3, there are exa
tly 23 elements Q0 2 C1(Q) with j(Q0) = j(Q)+1.Thus(8.2.4) 
ombined with (8.2.3) impliesEC(Q) � 23 � 2�(3+�)(j(Q)+1);and therefore EC(Q) � 2�� � 2�(3+�)j(Q)whi
h is a 
ontradi
tion provided we have 
hosen Æ suÆ
iently small that 2�� < 1� Æ.Now we prove the main lemma.



110Lemma 8.2.2.2 Fix j0 suÆ
iently large. Then there is a suÆ
iently small 0 < � < 1 so that if attime t0, we have EC0(Q) � 2�(3+�)j(Q); (8.2.5)with j(Q) > j0, then there is some t with t < t0 + 2��j(Q) and a 
ube Q0 2 C(Q) so that at time t, wehave EC0(Q0) � 2�(3+�)j(Q0).Proof We assume that the 
on
lusion of the lemma is false, i.e.EC0(Q0) < 2�(3+�)j(Q0);for all Q0 2 C(Q) and for all t 2 [t0; t0 + 2��j(Q)℄:In light of Lemma 8.2.2.1 and Proposition 8.2.1.1, it must be the 
ase that for all t 2 [t0; t0+2��j(Q)℄we have EQ � Æ2�(3+�)j(Q), sin
e otherwise be
ause of the hypothesis (8.2.5) we would have EC(Q) >(1� Æ)2�(3+�)j(Q), whi
h would by Lemma 8.2.2.1 lead to a 
ontradi
tion.Moreover sin
e energy 
ows only in the dire
tion of smaller squares and is 
onserved, it must bethat for any 
hild Q0 2 C1(Q), it is the 
ase thatEC(Q) � Z t0+2��j(Q)t0 EQ0;in;at time t0 + 2��j(Q). Thus sin
e EQ0;in = 2 5(j(Q)+1)2 EQuQ0 ;



111we must have Z t0+2��j(Q)t0 uQ0 . 1� ÆÆ 2�5j(Q)2 : (8.2.6)However we know thatduQ0dt = 2 5(j(Q)+1)2 EQ � 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00): (8.2.7)Thus integrating, applying the fa
t that for all t 2 [t0; t0 + 2��j(Q)℄, we have EQ > Æ2�(3+�)j(Q); anduQ00 . 2� 3j(Q)2 (we 
an a�ord to give ba
k the �), and using (8.2.6), we see that the �rst term of (8.2.7)dominates (for � suÆ
iently large and j(Q) suÆ
iently small) andZ t0+2��j(Q)t0 duQ0dt & Æ2�( 12+2�)j(Q);whi
h is a 
ontradi
tion by the fundamental theorem of 
al
ulus.
Corollary 8.2.2.3 Let u be a solution to (8.1.1) whi
h has initially all positive 
oeÆ
ients and at time0, has EQ > 2�(3+�)j(Q), for j(Q) > j0 with j0 as in the previous lemma. Then the H 32+� norm of ube
omes unbounded in �nite time.Proof We apply the lemma. We �nd a 
ube Q1 properly 
ontained in Q and a time t1 < 2��j(Q) sothat at t1 we have EC0(Q1) > 2�(3+�)j(Q1).



112We iterate this pro
edure �nding a 
ube Qk properly 
ontained in Qk�1 and and a time tk so thattk�1 � tk < tk�1 + 2��j(Qk�1) and at time tk we have EC0(Qk) > 2�(3+�)j(Qk).Estimating just using the 
oeÆ
ient at C0(Qk), we see that at time tk, we have thatjjujjH 32+� � 2 �j(Qk)2 :Sin
e j(Qk) is an in
reasing sequen
e of integers, this is going to 1. However sin
e,tk = (tk � tk�1) + (tk�1 � tk�2) + � � �+ t1 � 2��j(Q) + k�1Xl=1 2��j(Ql);and the j(Ql)'s are an in
reasing sequen
e of integers, we see that the sequen
e ftkg 
onverges to a�nite limit.We point our here that under 
ertain assumptions on the initial EQ(0) Corollary 8.2.2.3 guarantees�nite time blow-up of jjujjH 32+�-norm. This was obtained using an extended Carleson box C0(Q). In thenext se
tion we shall prove for the Navier-Stokes equations with small dissipation, �nite time blow-upof slightly weaker jjujjH2+� -norm. The reason for this is the fa
t that for the Navier-Stokes equationswith hyper-dissipation the energy itself is not 
onserved. Instead part of it dissipates at ea
h level ofour dyadi
 tree D.However from Fedor Nazarov (Nazarov, 2001, personal 
ommuni
ation) we learned his proof thatthe solution to the dyadi
 Navier-Stokes equations with enough dissipation stays bounded in a 
ertainCk spa
e provided that it started in the same Ck spa
e. The main tool in his proof is the followingobservation. Let us trun
ate the system of ODEs whi
h des
ribe the dyadi
 Navier-Stokes equations



113with hyper-dissipation. If provided with enough dissipation the system will s
atter all energy. Thereforeenergy 
annot be
ome 
on
entrated over �rst few levels. For example, this is true for the dyadi
 Navier-Stokes itself. The natural question is what does \enough dissipation" mean. In the following se
tionwe prove that in order to have �nite time blow-up the dissipation exponent � should be less than 14 .8.3 The dyadi
 Navier-Stokes equations with hyper-dissipation8.3.1 Energy 
owWe 
onsider the dyadi
 Navier-Stokes equations with hyper-dissipation (8.1.2). Sin
ehC(u; u); ui = 0;we have: ddt(hu; ui) + h(�)�u; ui = 0;and therefore we have energy de
ay: hu; ui + Z t0 h(�)�u; ui = 0: (8.3.1)Let us imagine that ea
h node Q along our tree D has a wastebasket whi
h is at time t �lled withR tt0 22�j(Q)u2Q:We de�ne the energy of a 
ube Q at time t as in the 
ase of the dyadi
 Euler equationEQ(t) = u2Q(t):



114For t greater than or equal to some �xed time t0 we introdu
e the energy of a wastebasket of a 
ubeQ at time t as WQ;t0(t) = Z tt0 22�j(Q)EQ:Then (8.3.1) is saying that the sum of energy at nodes plus energy at wastebaskets is 
ontrolled.Also we have a lo
al des
ription of energy 
ow along the tree D:
ddtEQ = EQ;in �EQ;out � 22�j(Q)EQ; (8.3.2)where EQ;in = 2 5j(Q)2 E ~QpEQ;and EQ;out = XQ02C1(Q)EQ0;in:Thus energy is 
owing always from larger squares to smaller ones and, ex
ept for portions whi
h go towastebaskets, energy 
ows along the edges of the tree D.We de�ne the energy of a Carleson box byEC(Q) = XQ02C(Q)EQ0 ;



115and the waste of a Carleson box by WC(Q);t0 = XQ02C(Q)WQ0;t0 :We immediately get the following proposition.Proposition 8.3.1.1 Let u be a time-varying \fun
tion" with positive 
oeÆ
ients evolving a

ordingto the 
ow (8.1.2). Then for any Q, the fun
tion in time given by EC(Q) + WC(Q);t0 is monotonein
reasing.8.3.2 Energy 
on
entrationAs in the Euler 
ase we begin with a lemma about Carleson boxes.Lemma 8.3.2.1 For any � > 0, there is Æ(�) > 0, so that if we know thatEC(Q) +WC(Q);t0 > (1� Æ)2�(4+�)j(Q);then there exists Q0 2 C(Q); so that EQ0 +WQ0;t0 � 2�(4+�)j(Q0):Proof Let us assume the lemma is false, i.e.EQ0 +WQ0;t0 < 2�(4+�)j(Q0); (8.3.3)



116for all Q0 2 C(Q).On the other hand we have:EC(Q) +WC(Q);t0 = XQ02C(Q)[EQ0 +WQ0;t0 ℄= 1Xk=1 XQ02Ck(Q)[EQ0 +WQ0;t0 ℄: (8.3.4)Now be
ause we are in dimension 3, there are exa
tly 23k elements Q0 2 Ck(Q) with j(Q0) = j(Q)+k.Thus by using (8.3.3) we 
an bound (8.3.4) from above by1Xk=1 23k � 2�(4+�)(j(Q)+k);whi
h is in turn the same as 2�(4+�)j(Q) 1Xk=1 2�(�+1)k: (8.3.5)Sin
e 1Xk=1 2�(�+1)k < 1we 
an 
hoose 0 < Æ < 1 su
h that 1Xk=1 2�(�+1)k = 1� Æ:



117Therefore (8.3.5) transforms into (1� Æ)2�(4+�)j(Q), and we obtainEC(Q) +WC(Q);t0 < (1� Æ)2�(4+�)j(Q);whi
h 
ontradi
ts the assumption of our lemma.Now we prove the main lemma.Lemma 8.3.2.2 Fix j0 suÆ
iently large. Then there exists an �, 0 < � < 1� 4� so that if at time t0,we have EQ +WQ;t0 � 2�(4+�)j(Q) (8.3.6)with j(Q) > j0; then there is some t with t < t0 + T , where2 (��1)j(Q)2 < T < 2�2�jand a 
ube Q0 2 C(Q) so that at time t, we haveEQ0 +WQ0;t0 � 2�(4+�)j(Q0):Proof We assume that the 
on
lusion of the lemma is false, i.e.EQ0 +WQ0;t0 < 2�(4+�)j(Q0); (8.3.7)



118for all Q0 2 C(Q), and for all t 2 [t0; t0 + T ℄.In light of Lemma 8.3.2.1 and Proposition 8.3.1.1, it must be the 
ase that for all t 2 [t0; t0 + T ℄,we have EQ(t) +WQ;t0(t) � Æ2�(4+�)j(Q); (8.3.8)sin
e otherwise be
ause of the hypothesis (8.3.6) we would haveEC(Q) +WC(Q) > (1� Æ)2�(4+�)j(Q); at some t 2 [t0; t0 + T ℄;whi
h would lead to a 
ontradi
tion by Lemma 8.3.2.1.Sin
e WQ;t0(t) is a monotone in
reasing fun
tion of t, (8.3.8) implies thatEQ(t) +WQ;t0(t0 + T ) � Æ2�(4+�)j(Q); for all t 2 [t0; t0 + T ℄;and therefore we have eitherEQ(t) � 12Æ2�(4+�)j(Q); for all t 2 [t0; t0 + T ℄; (8.3.9)or WQ;t0(t0 + T ) � 12Æ2�(4+�)j(Q): (8.3.10)



119We shall analyze those 
ases separately.First let us assume (8.3.10). Let Q0 an element of C1(Q). Then uQ0 satis�esduQ0dt = 2 5(j(Q)+1)2 u2Q � 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00)� 22�(j(Q)+1)uQ0 : (8.3.11)We shall integrate (8.3.11) on the time interval [t0; t0 + T ℄.In order to simplify our notation we introdu
e the following integrals:I1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Q;I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0)uQ00);I3 := Z t0+Tt0 22�(j(Q)+1)uQ0 :By using (8.3.10) we estimate I1 and obtainI1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Q & Æ2�( 32+2�+�)j : (8.3.12)We bound I2 as follows: I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0) uQ00)� Z t0+Tt0 2 5(j(Q)+2)2 uQ0 j XQ002C1(Q0) uQ00 j. 2 5j2 � T � 2�(4+�)j � 23;



120where the last inequality follows from (8.3.7). ThusI2 . T � 2�( 32+�)j: (8.3.13)Similarly we use (8.3.7) in order to getI3 := Z t0+Tt0 22�(j(Q)+1)uQ0 . T � 2(2��2� �2 )j : (8.3.14)One easily 
he
ks from (8.3.12), (8.3.13) and (8.3.14) that if 0 < � < 1� 4� and T < 2�2�j thenI1 � I2;as well as I1 � I3:Therefore after integrating (8.3.11) on the time interval [t0; t0 + T ℄ we 
on
lude thatZ t0+Tt0 duQ0dt & Æ2�( 32+2�+�)j ;whi
h is a 
ontradi
tion by the fundamental theorem of 
al
ulus, sin
e � < 1� 4�.



121Now we are left to verify 
ontradi
tion in the 
ase that one has (8.3.9). Let us assume (8.3.9).Moreover sin
e energy 
ows only in the dire
tion of smaller 
ubes and is 
onserved up to waste baskets,it must be that for any 
hild Q0 2 C1(Q), it is the 
ase thatEC(Q) +WC(Q);t0 � Z t0+Tt0 EQ0;in;at time t0 + T . Thus sin
e EQ0;in = 2 5(j(Q)+1)2 EQuQ0 ;we must have Z t0+Tt0 uQ0 . 1� ÆÆ 2�5j(Q)2 : (8.3.15)We integrate (8.3.11) on the time interval [t0; t0 + T ℄. By using (8.3.9) we bound I1 as follows:I1 := Z t0+Tt0 2 5(j(Q)+1)2 u2Qdt & T � Æ � 2�( 32+�)j: (8.3.16)We bound I2 as: I2 := Z t0+Tt0 2 5(j(Q)+2)2 uQ0( XQ002C1(Q0) uQ00)� Z t0+Tt0 2 5(j(Q)+2)2 uQ0 j XQ002C1(Q0) uQ00 j. 1� ÆÆ 2�(2+ �2 )j ;



122where the last inequality follows from (8.3.15) and (8.3.7). ThusI2 . 1� ÆÆ 2�(2+ �2 )j : (8.3.17)By using (8.3.15) we obtain the following bound on I3I3 := Z t0+Tt0 22�(j(Q)+1)uQ0 . 2(2�� 52 )j : (8.3.18)Again one easily 
he
ks from (8.3.16), (8.3.17) and (8.3.18) that I1 dominates provided that 0 <� < 1� 4� and T > 2 (��1)j2 .Therefore after integrating (8.3.11) on the time interval [t0; t0 + T ℄ we 
on
lude thatZ t0+Tt0 duQ0dt & T � Æ � 2�( 32+�)j;whi
h is a 
ontradi
tion by the fundamental theorem of 
al
ulus, sin
e T > 2 (��1)j(Q)2 .Lemma 8.3.2.3 Fix j0 suÆ
iently large. Then there exists an �, 0 < � < 1 � 4� su
h that if at timet0 we have EQ & 2�(4+�)j(Q) (8.3.19)



123with j(Q) > j0, then there is some time t with t < t0 + T , where2 (��1)j(Q)2 < T < 2�2�j(Q)and a 
ube Q0 2 C(Q) so that at time t, we haveEQ0 & 2�(4+�)j(Q0):Proof We shall prove the lemma by 
ontradi
tion. Assume the lemma is false, i.e.EQ0 < 2�(4+�)j(Q0); for all Q0 2 C(Q); and for all t 2 [t0; t0 + T ℄: (8.3.20)However from the hypothesis (8.3.19) and Lemma 8.3.2.2 we 
an �nd time t1 < t0 + T , where2 (��1)j(Q)2 < T < 2�2�j(Q) (8.3.21)and a 
ube Q1 2 C(Q) so that EQ1(t1) +WQ1;t0(t1) � 2�(4+�)j(Q1): (8.3.22)



124On the other hand by using monotoni
ity of the fun
tion WQ1;t0(t) and (8.3.20) we 
al
ulateEQ1(t1) +WQ1;t0(t1) < EQ1(t1) +WQ1;t0(t0 + T )= EQ1(t1) + Z t0+Tt0 22�j(Q1)EQ1< 2�(4+�)j(Q1) + 22�j(Q1) � 2�(4+�)j(Q1) � T. 2�(4+�)j(Q1);where the last inequality follows from (8.3.21).Thus EQ1(t1) +WQ1;t0(t1) . 2�(4+�)j(Q1);whi
h 
ontradi
ts (8.3.22), and the lemma is proved.Corollary 8.3.3 Let u be a solution to (8.1.2) whi
h has all positive 
oeÆ
ients and at time 0, hasEQ > 2�(4+�)j(Q), for j(Q) > j0 with j0 as in the previous lemma. Then the H2+� norm of u be
omesunbounded in �nite time.Proof We apply the lemma 8.3.2.3. We �nd a 
ube Q1 properly 
ontained in Q and a time t1 < T <2�2�j(Q) so that at t1 we have EQ1 & 2�(4+�)j(Q1).We iterate this pro
edure �nding a 
ube Qk properly 
ontained in Qk�1 and and a time tk so thattk�1 � tk < tk�1 + T < tk�1 + 2�2�j(Qk�1) and at time tk we have EQk & 2�(4+�)j(Qk).



125Estimating just using the 
oeÆ
ient at Qk, we see that at time tk, we have thatjjujjH2+� � 2 �j(Qk)2 :Sin
e j(Qk) is an in
reasing sequen
e of integers, this is going to 1. However sin
e,tk = (tk � tk�1) + (tk�1 � tk�2) + � � �+ t1 � 2�2�j(Q) + k�1Xl=1 2�2�j(Ql);and the j(Ql)'s are an in
reasing sequen
e of integers, we see that the sequen
e ftkg 
onverges to a�nite limit.
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