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Introduction

Basic problem. Characterize how the diffusion and sedimentation
properties of particles depend on their shape.

Diffusion:

Sedimentation:

Applications. Molecular separation techniques, structure
determination; particle transport, mixing in microfluidic devices.
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Spherical bodies
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Classic model for spherical bodies

Setup. Consider a dilute solution of identical spheres in a fluid
subject to external loads.

Physical

domain

x

E R
3

R
3

E

space

Configuration

ext
f

ρ(x , t) # spheres per unit volume of E .
f ext(x , t) external body force.
µ,T fluid viscosity, temperature.
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Modeling assumptions

Consider locally time-averaged forces and motion for each particle
and assume:

1. Net force balance.

f

hydro

f
osmotic

f
ext f ext + f hydro + f osmotic = 0.

2. Hydrodynamic force model.

γ

vf
hydro f hydro = −6πγµv , γ radius.
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Modeling assumptions

3. Osmotic force model.

f

f osmotic = −∇ψ, ψ = kT ln ρ.

4. Conservation of mass.

B
∂

∂t

∫
B
ρ dV +

∫
∂B
ρv · n dA = 0, ∀B ⊂ E .



Introduction Spherical bodies Arbitrary bodies Asymptotic analysis Application to DNA

Resulting model on E

Equations. Combining 1-3 and localizing 4 we get

f ext − 6πγµv − kT

ρ
∇ρ = 0,

∂ρ

∂t
+∇ · [ρv ] = 0.

Eliminating v gives

∂ρ

∂t
= ∇ · [D∇ρ− Cρf ext]

D =
kT

6πµγ
, C =

1

6πµγ
.

Remark. Various experiments can measure D or C and hence γ.
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Example: centrifuge experiment

elapsed

time

ra

air

r
b

solute + solvent 

ωspin

rotor

cell

air solute

solvent

r ra b

ρ

r ra b

ρt > 0

r ra brf (t)

ρt = 0 t >> 0

D and/or C can be determined from speed of moving front rf (t).
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Arbitrary bodies
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Model for arbitrary bodies

Setup. Consider a dilute solution of identical bodies in a fluid
subject to external loads.

R
3

E

Physical

domain

Configuration

space

Local coord

space

E x SO3 R
12

(x,R) (q,η)

R
6

E Ax

ext

ext
τ

f

ρ(q, η, t) # bodies per unit volume of E × SO3.
(f ext, τ ext)(q, η, t), external body force, torque.
µ,T fluid viscosity, temperature.
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Modeling assumptions

Consider locally time-averaged loads and motion for each particle
and assume:

1. Net force and torque balance.

ext
f

τ
ext

f
osmotic

osmotic
τ

τ
hydrohydro

f

c

[
f
τ

]ext
+

[
f
τ

]hydro
+

[
f
τ

]osmotic

=

[
0
0

]
or

Fext + Fhydro + Fosmotic = 0 ∈ R6

where

F = ΛT

[
f
τ

]
local basis components.
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Modeling assumptions

2. Hydrodynamic force model.

f
hydro

hydro
τ

ω

v

Γ

c

[
f
τ

]hydro
= −

[
L1 L3

L2 L4

] [
v
ω

]
or[
v
ω

]
= −

[
M1 M3

M2 M4

] [
f
τ

]hydro
or

V = −MFhydro ∈ R6

where

L = L(Γ, c), M = M(Γ, c) ∈ R6×6

M = Λ−1MΛ−T , V = Λ−1

[
v
ω

]
.
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Modeling assumptions

3. Osmotic force model.

F

Fosmotic = −∇ψ
ψ = kT ln ρ, ∇ = (∇q,∇η).

4. Conservation of mass.

B

∂

∂t

∫
B

ρg dV +

∫
∂B
ρgV ·N dA = 0

∀B ⊂ E×A.
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Resulting model on E × SO3

Equations. Combining 1-3 and localizing 4 we get

Fext −M−1V− kT

ρ
∇ρ = 0,

∂(ρg)

∂t
+∇ · [ρgV] = 0.

Eliminating V gives

∂ρ

∂t
= g−1∇ · [gD∇ρ− gρCFext]

D = kTM(Γ, c), C = M(Γ, c).

Remark. Model is fully coupled b/w translations and rotations.
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Detail on hydrodynamic model

f
hydro

hydro
τ

v

ω

u(x), p(x)

Γ = Ω

Ω

c

x

µ∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = v + ω × (x − c) on Γ
u, p → 0 as |x | → ∞

⇒

[
f
τ

]hydro
= −

[
L1 L3

L2 L4

] [
v
ω

]

M(Γ, c) = L(Γ, c)−1 ∈ R6×6, where L(Γ, c) is a Dirichlet-to-Neumann map.
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Asymptotic analysis
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Basic question

Question. What does the coupled model imply about various
observable densities of interest?

∂ρc
∂t

=? where ρc is # of ref points c per unit volume of E .

R
3

E R
3

E

c

∂ρn
∂t

=? where ρn is # of ref points n per unit area of S2.

R
3

E R
3

S
2

n
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Scale separation

Result. For particles of arbitrary shape, there is a natural scale
separation for dynamics on E and SO3.

particleE 3E x SO

L

L

1

Translations: tE = time to diffuse across E

Rotations: tS = time to diffuse across SO3

 tS
tE
∼
(
`

L

)2

The two-scale structure is ideal setting for asymptotics; the small
param is ε = `/L << 1.
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Limiting model on E

Result. For particles of arbitrary shape Γ and mobility tensor
M(Γ, c), the leading-order equation on E on the scale tE is

∂ρc
∂t

= ∇ · [Dc∇ρc − ρchext]

Dc =
kT

3
tr[M1(Γ, c)], hext = avg ext load

ρc = # of ref points c per unit volume of E .

R
3

E

c
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Property of model on E

Result. The diffusivity Dc depends on body shape Γ and ref point
c . For each Γ, there is a unique c∗ ∈ R3 such that

Dc∗ = min
c∈R3

Dc .

Γ

c

c
*
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Limiting model on S2

Result. For particles whose shape Γ and mobility tensor M(Γ, c)
satisfy an elongation condition wrt the body axis n, the
leading-order equation on S2 on the scale tS is

∂ρn
∂t

= Dn∆ρn

Dn =
kT

2
tr[PnM4(Γ, c)Pn], Pn = proj orthog to n

ρn = # of ref points n per unit area of S2.

R
3

S
2

n
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Property of model on S2

Result. The diffusivity Dn depends on body shape Γ and ref vector
n, but not ref point c . For each Γ, there is at least one n∗ ∈ S2

such that
Dn∗ = min

n∈S2

Dn.

Γ

c
n

*
n
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Application
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Estimation of hydrated radius

Problem. Given experimental measurements of Dc and Dn for
various sequences, we seek to fit the radius parameter r in a
geometric model.

Γ(S , r), S = DNA sequence.
r = ?

Dc =
kT

3
tr[M1(Γ(S , r), c)], Dn =

kT

2
tr[PnM4(Γ(S , r), c)Pn].
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Results for straight model: Dc∗ vs sequence length
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Curves: numerics w/r = 10, 11, . . . , 15Å (top to bottom).

Symbols: experiments (ultracentrifuge, light scattering, electrophoresis).

Estimated radius: r = 10− 15Å.
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Results for curved model: Dc∗ vs sequence length
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Curves: numerics on straight model (same as before).

Open symbols: experimental data (same as before).

Crosses, pluses: numerics on curved model w/r = 10, r = 15Å.

Estimated radius: r = 12− 17Å.
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Results for straight model: Dn∗ vs sequence length
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Curves: numerics w/r = 12, 11, . . . , 18Å (top to bottom).

Symbols: experiments (birefringence, light scattering).

Estimated radius: r = 13− 17Å.
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Results for curved model: Dn∗ vs sequence length
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Curves: numerics on straight model (same as before).

Open symbols: experimental data (same as before).

Crosses, pluses: numerics on curved model w/r = 12, r = 18Å.

Estimated radius: r = 10− 12Å.
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Numerical method
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Numerical method for M(Γ, c)

f
hydro

hydro
τ

v

ω

u(x), p(x)

Γ = Ω

Ω

c

x

µ∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = U[v , ω] on Γ
u, p → 0 as |x | → ∞

⇒

[
f
τ

]hydro
= −

[
L1 L3

L2 L4

] [
v
ω

]

The computation of M(Γ, c) = L−1(Γ, c) ∈ R6×6 requires six solutions of

the exterior Stokes equations with data U[v , ω](x) = v + ω × (x − c).
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Numerical method for M(Γ, c)
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Boundary integral formulation

ξ γ

y

n(y) φ

Γ= Ω

Stokes kernels (singular solns):
G (x , y) single-layer, H(x , y) double-layer.

Actual, parallel surfaces:
Γ actual, γ parallel, 0 < φ < φΓ offset param.

Mixed representation:
u(x) = λ

∫
γ G (x , ξ)ψ(y(ξ)) daξ + (1− λ)

∫
Γ H(x , y)ψ(y) day

0 < λ < 1 interpolation param, ψ potential density.

Integral equation:
Given U find ψ s.t. lim

xo → x
xo ∈ R3\Ω

u(xo) = U(x) for all x ∈ Γ.



Introduction Spherical bodies Arbitrary bodies Asymptotic analysis Application to DNA

Boundary integral formulation

ξ γ

y

n(y) φ

Γ= Ω

Stokes kernels (singular solns):
G (x , y) single-layer, H(x , y) double-layer.

Actual, parallel surfaces:
Γ actual, γ parallel, 0 < φ < φΓ offset param.

Mixed representation:
u(x) = λ

∫
γ G (x , ξ)ψ(y(ξ)) daξ + (1− λ)

∫
Γ H(x , y)ψ(y) day

0 < λ < 1 interpolation param, ψ potential density.

Integral equation:
Given U find ψ s.t. lim

xo → x
xo ∈ R3\Ω

u(xo) = U(x) for all x ∈ Γ.



Introduction Spherical bodies Arbitrary bodies Asymptotic analysis Application to DNA

Boundary integral formulation

ξ γ

y

n(y) φ

Γ= Ω

Stokes kernels (singular solns):
G (x , y) single-layer, H(x , y) double-layer.

Actual, parallel surfaces:
Γ actual, γ parallel, 0 < φ < φΓ offset param.

Mixed representation:
u(x) = λ

∫
γ G (x , ξ)ψ(y(ξ)) daξ + (1− λ)

∫
Γ H(x , y)ψ(y) day

0 < λ < 1 interpolation param, ψ potential density.

Integral equation:
Given U find ψ s.t. lim

xo → x
xo ∈ R3\Ω

u(xo) = U(x) for all x ∈ Γ.



Introduction Spherical bodies Arbitrary bodies Asymptotic analysis Application to DNA

Boundary integral formulation
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Properties of formulation

AGψ + AHψ + cψ = U

Integral operators:

(AGψ)(x) =
∫

Γ G
λ,φ(x , y)ψ(y) day regular

(AHψ)(x) =
∫

Γ H
λ(x , y)ψ(y) day weakly singular.

Solvability theorem: Under mild assumptions, there exists a
unique ψ ∈ C 0 for any Γ ∈ C 1,1, φ ∈ (0, φΓ), λ ∈ (0, 1) and
U ∈ C 0.

Mobility tensor: Solutions for six independent sets of data are
required to determine M.

(v , ω) −→ U −→ ψ −→ (f hyd, τhyd)︸ ︷︷ ︸
6 times

−→ L −→ M.
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Locally-corrected Nystrom discretization

Γ= Ω

Arbitrary quadrature rule:
yb nodes, Wb weights, h > 0 mesh size, ` ≥ 1 order.

Partition of unity functions:

ζb(x) y
b , ζ̂b(x) y

b , ζb + ζ̂b = 1.

Discretized operators:
(AG

h ψ)(x) =
∑

b G
λ,φ(x , yb)ψ(yb)Wb

(AH
h ψ)(x) =

∑
b ζb(x)Hλ(x , yb)ψ(yb)Wb + ζ̂b(x)Rx(yb)ψ(yb)

Rx local poly correction at x , p ≥ 0 degree of correction.

Moment conditions:
Rx chosen s.t. AH

h g = AHg for all local polys g at x up to degree p.
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Properties of discretization

AGψ + AHψ + cψ = U
AG
h ψh + AH

h ψh + cψh = U

Solvability theorem: Under mild assumptions, there exists a
unique ψh ∈ C 0 for any Γ ∈ C 1,1, φ ∈ (0, φΓ), λ ∈ (0, 1) and
U ∈ C 0.

Convergence theorem: Under mild assumptions, if Γ ∈ Cm+1,1

and ψ ∈ Cm,1, then as h→ 0

||ψ − ψh||∞ → 0 ∀` ≥ 1, p ≥ 0,m ≥ 0
||ψ − ψh||∞ ≤ Ch ∀` ≥ 1, p = 0,m ≥ 1

||ψ − ψh||∞ ≤ Chmin(`,p,m) ∀` ≥ 1, p ≥ 1,m ≥ 1.
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Conditioning: singular values σ vs parameters λ, φ
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Results for method with p = 0 and ` = 1.

φ/φΓ = 1
8 (dots), 2

8 (crosses), 3
8 (pluses), . . ., 7

8 (triangles).

Condition number σmax

σmin
≤ 101.5 for (λ, φ/φΓ) near ( 1

2 ,
1
2 ).
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Accuracy: computed load f hyd vs mesh size h
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Results for method with p = 0 and various `, λ, φ.

Convergence is visible; limited by iterative solver.
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