On the hydrodynamic diffusion of rigid particles

O. Gonzalez

Introduction

Basic problem. Characterize how the diffusion and sedimentation properties of particles depend on their shape.

Diffusion:

Sedimentation:

Applications. Molecular separation techniques, structure determination; particle transport, mixing in microfluidic devices.

Outline

Introduction

Spherical bodies

Arbitrary bodies

Asymptotic analysis

Application to DNA
(Numerical method, if time permits)

Spherical bodies

Classic model for spherical bodies

Setup. Consider a dilute solution of identical spheres in a fluid subject to external loads.

$\rho(x, t) \quad \#$ spheres per unit volume of E.
$f^{\text {ext }}(x, t)$ external body force.
$\mu, T \quad$ fluid viscosity, temperature.

Modeling assumptions

Consider locally time-averaged forces and motion for each particle and assume:

1. Net force balance.

$$
f^{\mathrm{ext}}+f^{\text {hydro }}+f^{\text {osmotic }}=0
$$

2. Hydrodynamic force model.

$$
f^{\text {hydro }}=-6 \pi \gamma \mu v, \quad \gamma \text { radius }
$$

Modeling assumptions

3. Osmotic force model.

$$
f^{\text {osmotic }}=-\nabla \psi, \quad \psi=k T \ln \rho
$$

4. Conservation of mass.

$$
\frac{\partial}{\partial t} \int_{B} \rho d V+\int_{\partial B} \rho v \cdot n d A=0, \quad \forall B \subset E .
$$

Resulting model on E

Equations. Combining 1-3 and localizing 4 we get

$$
f^{\mathrm{ext}}-6 \pi \gamma \mu v-\frac{k T}{\rho} \nabla \rho=0, \quad \frac{\partial \rho}{\partial t}+\nabla \cdot[\rho v]=0
$$

Eliminating v gives

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\nabla \cdot\left[D \nabla \rho-C \rho f^{\mathrm{ext}}\right] \\
& D=\frac{k T}{6 \pi \mu \gamma}, \quad C=\frac{1}{6 \pi \mu \gamma}
\end{aligned}
$$

Remark. Various experiments can measure D or C and hence γ.

Example: centrifuge experiment

D and/or C can be determined from speed of moving front $r_{f}(t)$.

Arbitrary bodies

Model for arbitrary bodies

Setup. Consider a dilute solution of identical bodies in a fluid subject to external loads.

Local coord space

$\rho(q, \eta, t) \quad \#$ bodies per unit volume of $E \times \mathrm{SO}_{3}$.
$\left(f^{\text {ext }}, \tau^{\text {ext }}\right)(q, \eta, t), \quad$ external body force, torque.
$\mu, T \quad$ fluid viscosity, temperature.

Modeling assumptions

Consider locally time-averaged loads and motion for each particle and assume:

1. Net force and torque balance.

Modeling assumptions

2. Hydrodynamic force model.

$$
\begin{aligned}
& {\left[\begin{array}{l}
f \\
\tau
\end{array}\right]^{\text {hydro }}=-\left[\begin{array}{ll}
L_{1} & L_{3} \\
L_{2} & L_{4}
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right]} \\
& \text { or }
\end{aligned}
$$

$\left[\begin{array}{c}v \\ \omega\end{array}\right] \quad=-\left[\begin{array}{ll}M_{1} & M_{3} \\ M_{2} & M_{4}\end{array}\right]\left[\begin{array}{l}f \\ \tau\end{array}\right]^{\text {hydro }}$
or

$$
\mathcal{V}=-\mathcal{M} \mathcal{F}^{\text {hydro }} \in \mathbb{R}^{6}
$$

where
$L=L(\Gamma, c), \quad M=M(\Gamma, c) \in \mathbb{R}^{6 \times 6}$
$\mathcal{M}=\Lambda^{-1} M \Lambda^{-T}, \quad \nu=\Lambda^{-1}\left[\begin{array}{l}v \\ \omega\end{array}\right]$.

Modeling assumptions

3. Osmotic force model.

$$
\begin{gathered}
\mathcal{F}^{\text {osmotic }}=-\nabla \psi \\
\psi=k T \ln \rho, \quad \nabla=\left(\nabla_{q}, \nabla_{\eta}\right) .
\end{gathered}
$$

4. Conservation of mass.

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\mathcal{B}} \rho g d V+\int_{\partial \mathcal{B}} \rho g \mathcal{V} \cdot \mathcal{N} d A=0 \\
& \forall \mathcal{B} \subset \mathcal{E} \times \mathcal{A}
\end{aligned}
$$

Resulting model on $E \times \mathrm{SO}_{3}$

Equations. Combining 1-3 and localizing 4 we get

$$
\mathcal{F}^{\mathrm{ext}}-\mathcal{M}^{-1} \mathcal{V}-\frac{k T}{\rho} \nabla \rho=0, \quad \frac{\partial(\rho g)}{\partial t}+\nabla \cdot[\rho g \mathcal{V}]=0
$$

Eliminating \mathcal{V} gives

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=g^{-1} \nabla \cdot\left[g \mathcal{D} \nabla \rho-g \rho \mathcal{C} \mathcal{F}^{\mathrm{ext}}\right] \\
& \mathcal{D}=k T \mathcal{M}(\Gamma, c), \quad \mathcal{C}=\mathcal{M}(\Gamma, c) .
\end{aligned}
$$

Remark. Model is fully coupled b/w translations and rotations.

Detail on hydrodynamic model

$$
\left[\begin{array}{l}
f \\
\tau
\end{array}\right]^{\text {hydro }}=-\left[\begin{array}{ll}
L_{1} & L_{3} \\
L_{2} & L_{4}
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

Detail on hydrodynamic model

$$
\begin{aligned}
\mu \Delta u & =\nabla p & & \text { in } \mathbb{R}^{3} \backslash \Omega \\
\nabla \cdot u & =0 & & \text { in } \mathbb{R}^{3} \backslash \Omega \\
u & =v+\omega \times(x-c) & & \text { on } \Gamma \\
u, p & \rightarrow 0 & & \text { as }|x| \rightarrow \infty
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
f \\
\tau
\end{array}\right]^{\text {hydro }}=-\left[\begin{array}{ll}
L_{1} & L_{3} \\
L_{2} & L_{4}
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

$M(\Gamma, c)=L(\Gamma, c)^{-1} \in \mathbb{R}^{6 \times 6}$, where $L(\Gamma, c)$ is a Dirichlet-to-Neumann map.

Asymptotic analysis

Basic question

Question. What does the coupled model imply about various observable densities of interest?
$\frac{\partial \rho_{c}}{\partial t}=?$ where ρ_{c} is \# of ref points c per unit volume of E.

Basic question

Question. What does the coupled model imply about various observable densities of interest?
$\frac{\partial \rho_{n}}{\partial t}=?$ where ρ_{n} is \# of ref points n per unit area of S_{2}.

Scale separation

Result. For particles of arbitrary shape, there is a natural scale separation for dynamics on E and SO_{3}.

particle

Translations: $\quad t_{E}=$ time to diffuse across E
Rotations: $\quad t_{S}=$ time to diffuse across $\left.\mathrm{SO}_{3}\right\} \quad \frac{t_{S}}{t_{E}} \sim\left(\frac{\ell}{L}\right)$

The two-scale structure is ideal setting for asymptotics; the small param is $\varepsilon=\ell / L \ll 1$.

Limiting model on E

Result. For particles of arbitrary shape Γ and mobility tensor $M(\Gamma, c)$, the leading-order equation on E on the scale t_{E} is

$$
\begin{gathered}
\frac{\partial \rho_{c}}{\partial t}=\nabla \cdot\left[D_{c} \nabla \rho_{c}-\rho_{c} h^{\mathrm{ext}}\right] \\
D_{c}=\frac{k T}{3} \operatorname{tr}\left[M_{1}(\Gamma, c)\right], \quad h^{\mathrm{ext}}=\text { avg ext load } \\
\rho_{c}=\# \text { of ref points } c \text { per unit volume of } E
\end{gathered}
$$

Property of model on E

Result. The diffusivity D_{c} depends on body shape Γ and ref point c. For each Γ, there is a unique $c_{*} \in \mathbb{R}^{3}$ such that

$$
D_{c_{*}}=\min _{c \in \mathbb{R}^{3}} D_{c} .
$$

Limiting model on S_{2}

Result. For particles whose shape Γ and mobility tensor $M(\Gamma, c)$ satisfy an elongation condition wrt the body axis n, the leading-order equation on S_{2} on the scale t_{S} is

$$
\begin{gathered}
\frac{\partial \rho_{n}}{\partial t}=D_{n} \Delta \rho_{n} \\
D_{n}=\frac{k T}{2} \operatorname{tr}\left[P_{n} M_{4}(\Gamma, c) P_{n}\right], \quad P_{n}=\text { proj orthog to } n \\
\rho_{n}=\# \text { of ref points } n \text { per unit area of } S_{2} .
\end{gathered}
$$

Property of model on S_{2}

Result. The diffusivity D_{n} depends on body shape Γ and ref vector n, but not ref point c. For each Γ, there is at least one $n_{*} \in S_{2}$ such that

$$
D_{n_{*}}=\min _{n \in S_{2}} D_{n} .
$$

Application

Estimation of hydrated radius

Problem. Given experimental measurements of D_{c} and D_{n} for various sequences, we seek to fit the radius parameter r in a geometric model.

$$
\begin{aligned}
& \Gamma(S, r), S=D N A \text { sequence. } \\
& r=?
\end{aligned}
$$

$$
D_{c}=\frac{k T}{3} \operatorname{tr}\left[M_{1}(\Gamma(S, r), c)\right], \quad D_{n}=\frac{k T}{2} \operatorname{tr}\left[P_{n} M_{4}(\Gamma(S, r), c) P_{n}\right] .
$$

Results for straight model: $D_{c_{*}}$ vs sequence length

Curves: numerics $w / r=10,11, \ldots, 15 \AA$ (top to bottom).
Symbols: experiments (ultracentrifuge, light scattering, electrophoresis).
Estimated radius: $r=10-15 \AA$.

Results for curved model: $D_{c_{*}}$ vs sequence length

Curves: numerics on straight model (same as before).
Open symbols: experimental data (same as before).
Crosses, pluses: numerics on curved model w/r=10, $r=15 \AA$.
Estimated radius: $r=12-17 \AA$.

Results for straight model: $D_{n_{*}}$ vs sequence length

Curves: numerics $\mathrm{w} / \mathrm{r}=12,11, \ldots, 18 \AA$ (top to bottom).
Symbols: experiments (birefringence, light scattering).
Estimated radius: $r=13-17 \AA$.

Results for curved model: $D_{n_{*}}$ vs sequence length

Curves: numerics on straight model (same as before).
Open symbols: experimental data (same as before).
Crosses, pluses: numerics on curved model $\mathrm{w} / r=12, r=18 \AA$.
Estimated radius: $r=10-12 \AA$.

Numerical method

Numerical method for $M(\Gamma, c)$

$$
\left[\begin{array}{l}
f \\
\tau
\end{array}\right]^{\text {hydro }}=-\left[\begin{array}{ll}
L_{1} & L_{3} \\
L_{2} & L_{4}
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

Numerical method for $M(\Gamma, c)$

$$
\begin{array}{rll}
\mu \Delta u & =\nabla p & \\
\text { in } \mathbb{R}^{3} \backslash \Omega \\
\nabla \cdot u & =0 & \\
\text { in } \mathbb{R}^{3} \backslash \Omega \\
u & =U[v, \omega] & \\
\text { on } \Gamma \\
u, p & \rightarrow 0 & \\
\text { as }|x| \rightarrow \infty
\end{array} \quad \Rightarrow \quad\left[\begin{array}{l}
f \\
\tau
\end{array}\right]^{\text {hydro }}=-\left[\begin{array}{ll}
L_{1} & L_{3} \\
L_{2} & L_{4}
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

The computation of $M(\Gamma, c)=L^{-1}(\Gamma, c) \in \mathbb{R}^{6 \times 6}$ requires six solutions of the exterior Stokes equations with data $U[v, \omega](x)=v+\omega \times(x-c)$.

Boundary integral formulation

Stokes kernels (singular solns):
$G(x, y)$ single-layer, $\quad H(x, y)$ double-layer.

Boundary integral formulation

Stokes kernels (singular solns): $G(x, y)$ single-layer, $\quad H(x, y)$ double-layer.

Actual, parallel surfaces:
「 actual, $\quad \gamma$ parallel, $\quad 0<\phi<\phi_{\Gamma}$ offset param.

Boundary integral formulation

Stokes kernels (singular solns): $G(x, y)$ single-layer, $\quad H(x, y)$ double-layer.

Actual, parallel surfaces:
「 actual, $\quad \gamma$ parallel, $\quad 0<\phi<\phi_{\Gamma}$ offset param.

Mixed representation:
$u(x)=\lambda \int_{\gamma} G(x, \xi) \psi(y(\xi)) d a_{\xi}+(1-\lambda) \int_{\Gamma} H(x, y) \psi(y) d a_{y}$
$0<\lambda<1$ interpolation param, $\quad \psi$ potential density.

Boundary integral formulation

Stokes kernels (singular solns):
$G(x, y)$ single-layer, $\quad H(x, y)$ double-layer.

Actual, parallel surfaces:
「 actual, $\quad \gamma$ parallel, $\quad 0<\phi<\phi_{\Gamma}$ offset param.

Mixed representation:
$u(x)=\lambda \int_{\gamma} G(x, \xi) \psi(y(\xi)) d a_{\xi}+(1-\lambda) \int_{\Gamma} H(x, y) \psi(y) d a_{y}$
$0<\lambda<1$ interpolation param, $\quad \psi$ potential density.

Integral equation:
Given U find ψ s.t. $\quad x_{0} \lim _{x} \quad u\left(x_{0}\right)=U(x) \quad$ for all $x \in \Gamma$.

$$
x_{o} \in \mathbb{R}^{3} \backslash \Omega
$$

Properties of formulation

$$
A^{G} \psi+A^{H} \psi+c \psi=U
$$

Integral operators:

$$
\begin{aligned}
& \left(A^{G} \psi\right)(x)=\int_{\Gamma} G^{\lambda, \phi}(x, y) \psi(y) d a_{y}
\end{aligned} \begin{gathered}
\text { regular } \\
\left(A^{H} \psi\right)(x)=\int_{\Gamma} H^{\lambda}(x, y) \psi(y) d a_{y}
\end{gathered} \quad \text { weakly singular. }
$$

Properties of formulation

$$
A^{G} \psi+A^{H} \psi+c \psi=U
$$

Integral operators:

$$
\begin{aligned}
& \left(A^{G} \psi\right)(x)=\int_{\Gamma} G^{\lambda, \phi}(x, y) \psi(y) d a_{y}
\end{aligned} \begin{gathered}
\text { regular } \\
\left(A^{H} \psi\right)(x)=\int_{\Gamma} H^{\lambda}(x, y) \psi(y) d a_{y}
\end{gathered} \quad \text { weakly singular. }
$$

Solvability theorem: Under mild assumptions, there exists a unique $\psi \in C^{0}$ for any $\Gamma \in C^{1,1}, \phi \in\left(0, \phi_{\Gamma}\right), \lambda \in(0,1)$ and $u \in C^{0}$.

Properties of formulation

$$
A^{G} \psi+A^{H} \psi+c \psi=U
$$

Integral operators:

$$
\begin{array}{lc}
\left(A^{G} \psi\right)(x)=\int_{\Gamma} G^{\lambda, \phi}(x, y) \psi(y) d a_{y} & \text { regular } \\
\left(A^{H} \psi\right)(x)=\int_{\Gamma} H^{\lambda}(x, y) \psi(y) d a_{y} & \text { weakly singular. }
\end{array}
$$

Solvability theorem: Under mild assumptions, there exists a unique $\psi \in C^{0}$ for any $\Gamma \in C^{1,1}, \phi \in\left(0, \phi_{\Gamma}\right), \lambda \in(0,1)$ and $U \in C^{0}$.

Mobility tensor: Solutions for six independent sets of data are required to determine M.

$$
\underbrace{(v, \omega) \longrightarrow U \longrightarrow \psi \longrightarrow\left(f^{\text {hyd }}, \tau^{\text {hyd }}\right)}_{6 \text { times }} \longrightarrow L \longrightarrow M
$$

Locally-corrected Nystrom discretization

Arbitrary quadrature rule:
y_{b} nodes, $\quad W_{b}$ weights, $\quad h>0$ mesh size, $\quad \ell \geq 1$ order.

Locally-corrected Nystrom discretization

Arbitrary quadrature rule:
y_{b} nodes, $\quad W_{b}$ weights, $\quad h>0$ mesh size, $\quad \ell \geq 1$ order.
Partition of unity functions:
$\zeta_{b}(x) \widetilde{y}_{b}, \quad \widehat{\zeta}_{b}(x)-{\widetilde{y_{b}}}^{L}, \quad \zeta_{b}+\widehat{\zeta}_{b}=1$.

Locally-corrected Nystrom discretization

Arbitrary quadrature rule:
y_{b} nodes, $\quad W_{b}$ weights, $\quad h>0$ mesh size, $\quad \ell \geq 1$ order.
Partition of unity functions:
$\zeta_{b}(x) \quad \dot{y}_{b} \quad, \quad \widehat{\zeta}_{b}(x)-\dot{y}_{b} \quad, \quad \zeta_{b}+\widehat{\zeta}_{b}=1$.
Discretized operators:
$\left(A_{h}^{G} \psi\right)(x)=\sum_{b} G^{\lambda, \phi}\left(x, y_{b}\right) \psi\left(y_{b}\right) W_{b}$
$\left(A_{h}^{H} \psi\right)(x)=\sum_{b} \zeta_{b}(x) H^{\lambda}\left(x, y_{b}\right) \psi\left(y_{b}\right) W_{b}+\widehat{\zeta}_{b}(x) R_{x}\left(y_{b}\right) \psi\left(y_{b}\right)$
R_{x} local poly correction at $x, \quad p \geq 0$ degree of correction.

Locally-corrected Nystrom discretization

Arbitrary quadrature rule:
y_{b} nodes, $\quad W_{b}$ weights, $\quad h>0$ mesh size, $\quad \ell \geq 1$ order.
Partition of unity functions:
$\zeta_{b}(x) \quad \dot{y}_{b} \quad, \quad \widehat{\zeta}_{b}(x)-\dot{y}_{b} \quad, \quad \zeta_{b}+\widehat{\zeta}_{b}=1$.
Discretized operators:
$\left(A_{h}^{G} \psi\right)(x)=\sum_{b} G^{\lambda, \phi}\left(x, y_{b}\right) \psi\left(y_{b}\right) W_{b}$
$\left(A_{h}^{H} \psi\right)(x)=\sum_{b} \zeta_{b}(x) H^{\lambda}\left(x, y_{b}\right) \psi\left(y_{b}\right) W_{b}+\widehat{\zeta}_{b}(x) R_{x}\left(y_{b}\right) \psi\left(y_{b}\right)$
R_{x} local poly correction at $x, \quad p \geq 0$ degree of correction.

Moment conditions:

R_{x} chosen s.t. $A_{h}^{H} g=A^{H} g$ for all local polys g at x up to degree p.

Properties of discretization

$$
\begin{gathered}
A^{G} \psi+A^{H} \psi+c \psi=U \\
A_{h}^{G} \psi_{h}+A_{h}^{H} \psi_{h}+c \psi_{h}=U
\end{gathered}
$$

Solvability theorem: Under mild assumptions, there exists a unique $\psi_{h} \in C^{0}$ for any $\Gamma \in C^{1,1}, \phi \in\left(0, \phi_{\Gamma}\right), \lambda \in(0,1)$ and $U \in C^{0}$.

Properties of discretization

$$
\begin{gathered}
A^{G} \psi+A^{H} \psi+c \psi=U \\
A_{h}^{G} \psi_{h}+A_{h}^{H} \psi_{h}+c \psi_{h}=U
\end{gathered}
$$

Solvability theorem: Under mild assumptions, there exists a unique $\psi_{h} \in C^{0}$ for any $\Gamma \in C^{1,1}, \phi \in\left(0, \phi_{\Gamma}\right), \lambda \in(0,1)$ and $U \in C^{0}$.

Convergence theorem: Under mild assumptions, if $\Gamma \in C^{m+1,1}$ and $\psi \in C^{m, 1}$, then as $h \rightarrow 0$

$$
\begin{array}{ll}
\left\|\psi-\psi_{h}\right\|_{\infty} \rightarrow 0 & \forall \ell \geq 1, p \geq 0, m \geq 0 \\
\left\|\psi-\psi_{h}\right\|_{\infty} \leq C h & \forall \ell \geq 1, p=0, m \geq 1 \\
\left\|\psi-\psi_{h}\right\|_{\infty} \leq C h^{\min (\ell, p, m)} & \forall \ell \geq 1, p \geq 1, m \geq 1
\end{array}
$$

Conditioning: singular values σ vs parameters λ, ϕ

Results for method with $p=0$ and $\ell=1$.
$\phi / \phi_{\Gamma}=\frac{1}{8}$ (dots), $\frac{2}{8}$ (crosses), $\frac{3}{8}$ (pluses), $\ldots, \frac{7}{8}$ (triangles).
Condition number $\frac{\sigma_{\max }}{\sigma_{\min }} \leq 10^{1.5}$ for $\left(\lambda, \phi / \phi_{\Gamma}\right)$ near $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Accuracy: computed load $f^{\text {hyd }}$ vs mesh size h

Results for method with $p=0$ and various ℓ, λ, ϕ.
Convergence is visible; limited by iterative solver.

