
Introduction Background Mobility coefficient Transport velocity

On the Stokesian hydrodynamics of rigid bodies

O. Gonzalez

University of Texas at Austin



Introduction Background Mobility coefficient Transport velocity

Introduction

Goal. To characterize the hydrodynamic mobility properties of a
rigid body in a viscous fluid under Stokes flow conditions.
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Introduction

Motivation. Hydrodynamic mobility properties of a body play a
central role in models of diffusion, sedimentation and transport.

diffusion
sedimentation

transport

Applications. Microfluidic devices for separation and mixing of
particles; magnetic microswimmers; free-soln DNA sequencing.
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Background

Setup. Consider slow, quasi-static motion of a body in an infinite
viscous fluid.
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u(x), p(x) velocity and pressure fields in fluid.
f , τ external force and torque on body.
v , ω linear and angular velocity of body.
c reference point for velocities, loads.
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Background

Fluid-body equations. Stokes system in exterior domain for fluid;
balance of external and hydrodynamic loads for body.

∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = v + ω × (x − c) on Γ = ∂Ω
u, p → u∞, p∞ as |x | → ∞

f +
∫

Γ σ[u, p]n dA = 0
τ +

∫
Γ(x − c)× σ[u, p]n dA = 0
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Here σ[u, p] = 2 sym(∇u)− pI is stress field in fluid; all
quantities non-dimensional.
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Background

Basic BVP. Given (u∞, p∞, f , τ) determine (u, p, v , ω).

∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = v + ω × (x − c) on Γ = ∂Ω
u, p → u∞, p∞ as |x | → ∞

f +
∫

Γ σ[u, p]n dA = 0
τ +

∫
Γ(x − c)× σ[u, p]n dA = 0

Assume Γ is closed, bounded, non-self-intersecting and class C 1,α;
well-developed analysis/numerics based on potential theory.
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Background

Stokes matrices. When conditions at infinity are zero, there is an
invertible linear map between (v , ω) ∈ R6 and (f , τ) ∈ R6.

∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = v + ω × (x − c) on Γ = ∂Ω
u, p → 0, 0 as |x | → ∞

f +
∫

Γ
σ[u, p]n dA = 0

τ +
∫

Γ
(x − c)× σ[u, p]n dA = 0

(v , ω) = M(f , τ), M =

[
M1 M3

M2 M4

]
, M = MT > 0

(f , τ) = L(v , ω), L =

[
L1 L3

L2 L4

]
, L = LT > 0
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Mobility coefficient

Definition. Consider body subject to a unit force in fluid at rest at
infinity; consider velocity along force, average over orientations.

v , f velocity, force at c

vf = v · f component along f

M = avg
f ∈S2 vf average over |f | = 1

f

oo

oo

v

p   = 0

u   = 0,

c

M is called the mobility coefficient; it is the average velocity
imparted to the body along an imposed unit force.
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Mobility coefficient

Interpretation. M is average velocity along a unit force when
either force or body orientation are fixed, and other is randomized.

M = avg
f ∈S2 vf fc

fc

M naturally arises in transport problems; proportional to diffusion,
sedimentation coefficients.
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Mobility coefficient

Characterization. The mobility coefficient M can be expressed in
terms of the Stokes matrix M.

(v , ω) = M(f , τ), τ = 0 =⇒ v = M1f

vf = v · f = f ·M1f

M = avg
f ∈S2 vf =

1

3
tr(M1)

Can compute using boundary-element techniques; but there are
various natural questions for analysis.
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Mobility coefficient

Questions. How does M vary among bodies of different shape?
Are there simple criteria for ordering shapes by M?
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Mobility coefficient

Inclusion monotonicity theorem. [Hill & Power; and others]. Let
Γ1 and Γ2 be body surfaces, with reference points c1 and c2. If Γ1

can be enclosed by Γ2, with c1 and c2 superimposed, then

M1 ≥M2.

Γ
1

c
1

Γ
2

c
2
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Mobility coefficient

Remarks.

- Inclusion theorem implies

“smaller body” =⇒ “higher mobility”.

- Result provides little insight for filament-type bodies
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Mobility coefficient

Inverse chord theorem. Let Γ be a body surface with reference
point c at its centroid. Then

2 min
x,y∈Γ

1

|x− y|
≤ 6πM ≤ avg

x,y∈Γ

1

|x− y|
.

Γ

c

x

y
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Mobility coefficient

Remarks.

- Theorem implies geometric inequality for arbitrary surfaces

2 min
x ,y∈Γ

1

|x − y |
≤ avg

x ,y∈Γ

1

|x − y |
.

- Theorem implies existence of a characteristic chord length
|x∗ − y∗| such that

6πM =
1

|x∗ − y∗|
.
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Mobility coefficient

Remarks.

- Lower bound in theorem suggests the heuristic

“higher min
x ,y∈Γ

1

|x − y |
” =⇒ “higher mobility”.
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Mobility coefficient

Remarks.

- Upper bound in theorem suggests the heuristic

“lower avg
x ,y∈Γ

1

|x − y |
” =⇒ “lower mobility”.

lower

x

y

x
y
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Mobility coefficient

Example bounds. 2minx ,y∈Γ
1
|x−y | ≤ 6πM ≤ avg x ,y∈Γ

1
|x−y | .

1.000 ≤ 1.209 ≤ 1.220 1.000 ≤ 1.521 ≤ 1.533

0.750 ≤ 0.966 ≤ 0.992 0.712 ≤ 0.892 ≤ 0.921
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Mobility coefficient

Example application. Mobility coefficient M can be used to
estimate structural features of molecular bodies.

If DNA is modeled as a filament,
what would be its effective
radius in solution?

Can estimate radius by fitting computed values of M to
experimental data.
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Mobility coefficient

Example application. Mobility coefficient M can be used to
estimate structural features of molecular bodies.

If DNA is modeled as a filament,
what would be its effective
radius in solution?

Can estimate radius by fitting computed values of M to
experimental data.
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Mobility coefficient

Geometric models. For comparison, consider two different
models for a DNA sequence S ; each has uniform radius r .

Straight model:

axial length determined by
number of basepairs in S .

Curved model:

axial length, curvature determined
by sequence composition of S .
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Mobility coefficient

Geometric models. For comparison, consider two different
models for a DNA sequence S ; each has uniform radius r .

Straight model:

axial length determined by
number of basepairs in S .

Curved model:

axial length, curvature determined
by sequence composition of S .
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Mobility coefficient
Results for straight model.
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Curves: numerics with r = 10, 11, . . . , 15Å from top to bottom.

Open circles, triangles: data from sedimentation, diffusion.

Open squares: data from electrophoresis.

Estimate of hydrated radius: r = 10− 15Å.
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Mobility coefficient
Results for curved model.
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Curves: numerics on straight model as before.

Open symbols: experimental data as before.

Crosses, pluses: numerics on curved model w/r = 10, r = 15Å.

Revised estimate of hydrated radius: r = 12− 17Å.
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Transport velocity

Definition. Consider body in an ambient fluid flow; let flow freely
carry body with no external forces acting.

u∞, p∞ ambient flow fields

v , ω body velocities

oo oo

ω

v

u   , p

c

(v , ω) are called transport velocities; they are imparted to the body
as it is carried by the fluid.
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Transport velocity
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Transport velocity

BVP formulation. Given (u∞, p∞) we can determine (v , ω) and
disturbed flow (u, p) via the following

∆u = ∇p in R3\Ω
∇ · u = 0 in R3\Ω

u = v + ω × (x − c) on Γ = ∂Ω
u, p → u∞, p∞ as |x | → ∞

∫
Γ σ[u, p]n dA = 0∫
Γ(x − c)× σ[u, p]n dA = 0

Can characterize (v , ω) in terms of Stokes matrix M and loads
(f∞, τ∞) associated with ambient flow.
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Transport velocity

Questions. How do transport velocities depend on body shape?
What happens in limiting cases as body volume tends to zero?

point curve surface
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Transport velocity

Sphere limit theorem. Consider a sphere of radius r and center
c . Then

lim
r↓0

v = u∞(c).

oo oou   , p

v

c
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Transport velocity

Remarks.

- Theorem implies limiting sphere would follow streamlines.

oo oou   , p

- Theorem extends to zero-radius limit of more general shapes.

cc
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Transport velocity

Cylinder limit theorem. Consider a cylinder with axis A and
radius r , with capped ends, and reference point c at its centroid.
Then

`A · lim
r↓0

v =
∫
A u∞ ds

IA · lim
r↓0

ω =
∫
A(x − c)× u∞ ds

oo oou   , p

ω

v

c

A

where `A and IA are the length and second-moment matrix for the
line segment A.
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Transport velocity

Remarks.

- Theorem implies limiting cylinder may not follow streamlines.

oo oou   , p

- Theorem extends to zero-radius limit of general tubular shapes.

c
A
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