Linear Transformation Exercises

Olena Bormashenko

December 12, 2011

1. Determine whether the following functions are linear transformations. If they are, prove it; if not, provide a counterexample to one of the properties:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]
$$

Solution:

This IS a linear transformation. Let's check the properties:
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$: Let \vec{x} and \vec{y} be vectors in \mathbb{R}^{2}. Then, we can write them as

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \vec{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

By definition, we have that

$$
T(\vec{x}+\vec{y})=T\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1}+x_{2}+y_{2} \\
x_{2}+y_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
T(\vec{x})+T(\vec{y}) & =T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+T\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+x_{2}+y_{1}+y_{2} \\
x_{2}+y_{2}
\end{array}\right]
\end{aligned}
$$

Thus, we see that $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$, so this property holds.
(2) $T(c \vec{x})=c T(\vec{x})$: Let \vec{x} be as above, and let c be a scalar. Then,

$$
T(c \vec{x})=T\left[\begin{array}{l}
c x_{1} \\
c x_{2}
\end{array}\right]=\left[\begin{array}{c}
c x_{1}+c x_{2} \\
c x_{2}
\end{array}\right]
$$

while

$$
c T(\vec{x})=c\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
c x_{1}+c x_{2} \\
c x_{2}
\end{array}\right]
$$

Therefore, $T(c \vec{x})=c T(\vec{x})$, so this property holds as well.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{2} \\
y^{2}
\end{array}\right]
$$

Solution:

This is NOT a linear transformation. It can be checked that neither property (1) nor property (2) from above hold. Let's show that property (2) doesn't hold. Let

$$
\vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and let $c=2$. Then,

$$
T(\vec{x})=T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and therefore, we have that

$$
2 T(\vec{x})=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

However, we have

$$
T(2 \vec{x})=T\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

Thus, we see that $2 T(\vec{x}) \neq T(2 \vec{x})$, and hence T is not a linear transformation.
(c) Fix an $m \times n$ matrix A. Then, let $T: \mathcal{M}_{l m} \rightarrow \mathcal{M}_{l n}$, with

$$
T(B)=B A
$$

Solution:

This IS a linear transformation. Let's check the properties:
(1) $T(B+C)=T(B)+T(C)$: By definition, we have that

$$
T(B+C)=(B+C) A=B A+C A
$$

since matrix multiplication distributes. Also, we have that

$$
T(B)+T(C)=B A+C A
$$

by definition. Thus, we see that $T(B+C)=T(B)+T(C)$, so this property holds.
(2) $T(d B)=d T(B)$: By definition,

$$
T(d B)=(d B) A=d B A
$$

while

$$
d T(B)=d B A
$$

Therefore, $T(d B)=d T(B)$, so this property holds as well.
(d) Let V be the vector space of functions from \mathbb{R} to \mathbb{R}, under normal function addition and scalar multiplication. Then, let $T: V \rightarrow \mathbb{R}^{2}$, with

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f(1)+1
\end{array}\right]
$$

Solution:

This is NOT a linear transformation. Neither property (1) nor property (2) hold. Let's show that property (1) doesn't hold. Let f and g be functions in V such that $f(x)=1, g(x)=x$. Then, we have that

$$
(f+g)(x)=x+1
$$

Therefore, we see that

$$
T(f)+T(g)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

while

$$
T(f+g)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Thus, $T(f)+T(g) \neq T(f+g)$, and therefore T is not a linear transformation.
2. For the following linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find a matrix A such that $T(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x-y \\
3 y \\
4 x+5 y
\end{array}\right]
$$

Solution:

To figure out the matrix for a linear transformation from \mathbb{R}^{n}, we find the matrix A whose first column is $T\left(\vec{e}_{1}\right)$, whose second column is $T\left(\vec{e}_{2}\right)$ - in general, whose i th column is $T\left(\vec{e}_{i}\right)$. Here, by definition we have that

$$
T\left(\vec{e}_{1}\right)=T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right], T\left(\vec{e}_{2}\right)=T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
5
\end{array}\right]
$$

Thus,

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 3 \\
4 & 5
\end{array}\right]
$$

(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, satisfying

$$
T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], T\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right]
$$

Solution:

We need to find $T\left(\vec{e}_{2}\right)$ and $T\left(\vec{e}_{2}\right)$. Given the information we have, this is easiest to do by writing \vec{e}_{1} and \vec{e}_{2} as linear combinations of

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
$$

We start with \vec{e}_{1}. We solve

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Setting up the system of equations as usual and solving yields $c_{1}=$ $3, c_{2}=-1$. Thus, we have that

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Now, since $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$, and $T(c \vec{x})=c T(\vec{x})$, this gets us that

$$
\begin{aligned}
T\left[\begin{array}{l}
1 \\
0
\end{array}\right] & =T\left(3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right) \\
& =T\left(3\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+T\left((-1)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right) \\
& =3 T\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(-1) T\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =3\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+(-1)\left[\begin{array}{c}
-2 \\
5
\end{array}\right]=\left[\begin{array}{c}
5 \\
-11
\end{array}\right]
\end{aligned}
$$

Similarly, we get that

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=(-2)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and a calculation like the one above yields

$$
\begin{aligned}
T\left[\begin{array}{l}
0 \\
1
\end{array}\right] & =(-2) T\left[\begin{array}{l}
1 \\
1
\end{array}\right]+T\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =(-2)\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+\left[\begin{array}{c}
-2 \\
5
\end{array}\right]=\left[\begin{array}{c}
-4 \\
9
\end{array}\right]
\end{aligned}
$$

Combining the information, we see that

$$
A=\left[\begin{array}{cc}
5 & -4 \\
-11 & 9
\end{array}\right]
$$

(c) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $T(\vec{x})$ is \vec{x} rotated by 30° clockwise.

Solution:

Again, we need to figure out $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$. Basic trigonometry shows that

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\sqrt{3} / 2 \\
-1 / 2
\end{array}\right] \\
& T\left(\vec{e}_{1}\right)=T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
\sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

Thus,

$$
A=\left[\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right]
$$

