Interpolation
via weighted ℓ_1 minimization

Rachel Ward
University of Texas at Austin

December 12, 2014

Joint work with Holger Rauhut (Aachen University)
Function interpolation

Given a function $f : \mathcal{D} \to \mathbb{C}$ on a domain \mathcal{D}, interpolate or approximate f from sample values $y_1 = f(u_1), \ldots, y_m = f(u_m)$.

\[f(u) = \sum_{j \in \Gamma} x_j \psi_j(u), \quad |\Gamma| = N \]

Approaches:

▶ Standard interpolation: Choose $m = N$. Find appropriate Γ and sampling points u_1, u_2, \ldots, u_m.

▶ Least squares regression: Choose $N < m$; minimize $\|y - Ax\|_2$ where $A_{\ell, j} = \psi_j(u_\ell)$ is the sampling matrix.

▶ Compressive sensing methods: Choose $N > m$. Exploit approximate sparsity of coefficient vector x to solve the underdetermined system $y = Ax$.

Function interpolation

Given a function \(f : D \to \mathbb{C} \) on a domain \(D \), interpolate or approximate \(f \) from sample values \(y_1 = f(u_1), \ldots, y_m = f(u_m) \).

Assume the form

\[
 f(u) = \sum_{j \in \Gamma} x_j \psi_j(u), \quad |\Gamma| = N
\]

Approaches:

- **Standard interpolation**: Choose \(m = N \). Find appropriate \(\Gamma \) and sampling points \(u_1, u_2, \ldots, u_m \).
- **Least squares regression**: Choose \(N < m \); minimize \(\|y - Ax\|_2 \) where \(A_{\ell,j} = \psi_j(u_\ell) \) is the *sampling matrix*.
- **Compressive sensing methods**: Choose \(N > m \). Exploit approximate sparsity of coefficient vector \(x \) to solve the underdetermined system \(y = Ax \).
Orthonormal systems

\[D: \text{domain endowed with a probability measure } \nu. \]
\[\psi_j : D \to \mathbb{C}, \ j \in \Gamma \ (\text{finite or infinite}) \]
\[\{\psi_j\}_{j \in \Gamma} \text{ is an orthonormal system: } \int_D \psi_j(t)\overline{\psi_k(t)}d\nu(t) = \delta_{j,k} \]
Orthonormal systems

L_2-normalized Legendre polynomials

\(\mathcal{D}\): domain endowed with a probability measure \(\nu\).
\(\psi_j : \mathcal{D} \rightarrow \mathbb{C}, j \in \Gamma\) (finite or infinite)
\(\{\psi_j\}_{j \in \Gamma}\) is an orthonormal system: \(\int_{\mathcal{D}} \psi_j(t)\overline{\psi_k(t)}d\nu(t) = \delta_{j,k}\)

Examples:

- Trigonometric system: \(\psi_j(t) = e^{2\pi i j t}\),
 \(\mathcal{D} = [0, 1], d\nu(t) = dt, \|\psi_j\|_\infty \leq 1.\)
Orthonormal systems

\[L_2 \text{-normalized Legendre polynomials} \]

\(\mathcal{D} \): domain endowed with a probability measure \(\nu \).
\[\psi_j : \mathcal{D} \to \mathbb{C}, \ j \in \Gamma \text{ (finite or infinite)} \]
\(\{\psi_j\}_{j \in \Gamma} \) is an orthonormal system:
\[\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{j,k} \]

Examples:

- Trigonometric system: \(\psi_j(t) = e^{2\pi i j t} \),
 \(\mathcal{D} = [0, 1], \ d\nu(t) = dt, \ \|\psi_j\|_\infty \leq 1 \).

- \(L_2 \)-normalized Legendre polynomials \(L_j \):
 \(\mathcal{D} = [-1, 1], \ d\nu(t) = dt, \ \|L_j\|_\infty = \sqrt{2j + 1} \).
Orthonormal systems

\[L_2 \text{-normalized Legendre polynomials} \]

\(\mathcal{D} \): domain endowed with a probability measure \(\nu \).

\(\psi_j : \mathcal{D} \to \mathbb{C}, \ j \in \Gamma \) (finite or infinite)

\(\{ \psi_j \}_{j \in \Gamma} \) is an orthonormal system:

\[\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{j,k} \]

- Tensor products of Legendre polynomials:

\[\mathcal{D} = [-1, 1]^d, \ j = (j_1, j_2, \ldots, j_d), \ L_j = \prod_{k=1}^d L_{j_k}, \]

\[\|L_j\|_\infty = \prod_{k=1}^d \sqrt{2j_k + 1}. \]

In high-dimensional problems, smoothness is not enough to avoid curse of dimension – too local! We will combine smoothness and sparsity.
Smoothness and weights

In general, \(\|f\|_{L^\infty} + \|f'\|_{L^\infty} \) promotes smoothness.

Consider \(\psi_j(t) = e^{2\pi ijt}, j \in \mathbb{Z}, t \in [0, 1] \)

Derivatives satisfy \(\|\psi'_j\|_{L^\infty} = 2\pi |j|, j \in \mathbb{Z} \).

For \(f(t) = \sum_j x_j \psi_j(t) \),

\[
\|f\|_{L^\infty} + \|f'\|_{L^\infty} = \| \sum_j x_j \psi_j \|_{L^\infty} + \| \sum_j x_j \psi'_j \|_{L^\infty}
\leq \sum_{j \in \mathbb{Z}} |x_j| (\|\psi_j\|_{L^\infty} + \|\psi'_j\|_{L^\infty})
= \sum_{j \in \mathbb{Z}} |x_j| (1 + 2\pi |j|) =: \|x\|_{\omega,1}.
\]
Smoothness and weights

In general, \(\|f\|_{L^{\infty}} + \|f'\|_{L^{\infty}} \) promotes smoothness.

Consider \(\psi_j(t) = e^{2\pi i j t}, j \in \mathbb{Z}, t \in [0, 1] \)

Derivatives satisfy \(\|\psi'_j\|_{\infty} = 2\pi |j|, j \in \mathbb{Z}. \)

For \(f(t) = \sum_j x_j \psi_j(t), \)

\[
\|f\|_{L^{\infty}} + \|f'\|_{L^{\infty}} = \| \sum_j x_j \psi_j \|_{L^{\infty}} + \| \sum_j x_j \psi'_j \|_{\infty} \leq \sum_{j \in \mathbb{Z}} |x_j| (\|\psi_j\|_{L^{\infty}} + \|\psi'_j\|_{L^{\infty}}) \]

\[
= \sum_{j \in \mathbb{Z}} |x_j| (1 + 2\pi |j|) =: \|x\|_{\omega,1}.
\]

Weighted \(\ell_1 \)-coefficient norm promotes smoothness. It also promotes sparsity!
Weighted norms and weighted sparsity

Weighted ℓ_1 norm: pay a higher price to include certain indices

$$\|x\|_{\omega,1} = \sum_{j \in \Gamma} \omega_j |x_j|$$

New: weighted sparsity:

$$\|x\|_{\omega,0} := \sum_{j: x_j \neq 0} \omega_j^2$$

x is called weighted s-sparse if $\|x\|_{\omega,0} \leq s$.

Weighted best s-term approximation error:

$$\sigma_s(x)_{\omega,1} := \inf_{z: \|z\|_{\omega,0} \leq s} \|x - z\|_{\omega,1}$$
(Weighted) Compressive Sensing

Recover a weighted s-sparse (or weighted-compressible) vector x from measurements $y = Ax$, where $A \in \mathbb{C}^{m \times N}$ with $m < N$.

Weighted ℓ_1-minimization

$$\min_{z \in \mathbb{C}^N} \| z \|_{\omega,1} \quad \text{subject to } Az = y$$

“Noisy” version

$$\min_{z \in \mathbb{C}^N} \| z \|_{\omega,1} \quad \text{subject to } \| Az - y \|_2 \leq \eta$$
(Weighted) Compressive Sensing

Recover a weighted s-sparse (or weighted-compressible) vector \mathbf{x} from measurements $\mathbf{y} = \mathbf{Ax}$, where $\mathbf{A} \in \mathbb{C}^{m \times N}$ with $m < N$.

Weighted ℓ_1-minimization

$$\min_{\mathbf{z} \in \mathbb{C}^N} \| \mathbf{z} \|_{\omega,1} \quad \text{subject to } \mathbf{Az} = \mathbf{y}$$

“Noisy” version

$$\min_{\mathbf{z} \in \mathbb{C}^N} \| \mathbf{z} \|_{\omega,1} \quad \text{subject to } \| \mathbf{Az} - \mathbf{y} \|_2 \leq \eta$$

Keep in mind sampling matrix:

$$\mathbf{A} = \begin{pmatrix}
\psi_1(u_1) & \psi_2(u_1) & \ldots & \ldots & \psi_N(u_1) \\
\psi_1(u_2) & \psi_2(u_2) & \ldots & \ldots & \psi_N(u_2) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\psi_1(u_m) & \psi_2(u_m) & \ldots & \ldots & \psi_N(u_m)
\end{pmatrix}$$
Numerical example - comparing different reconstructions

- Original function
- Least squares – D=15
- Exact interpolation, D=30
- Unweighted l1 minimizer
- Weighted l1 minimizer, $\omega_j = j^{1/2}$

\[f(u) = \frac{1}{1+25u^2}. \] Draw \(m = 30 \) sampling points \(u_\ell \) i.i.d. from uniform measure on \([-1, 1]\).

Interpolate (exactly or approximately) the samples \(y_\ell = f(u_\ell) \) by various choices of \(\{x_j\} \) in

\[f^\#(u) = \sum_{j=0}^{80} x_j e^{\pi i j u} \]

*Stability of unweighted \(\ell_1 \) minimization given exact sparsity: Rauhut, W. ’09
*Stability of least squares regression: Cohen, Davenport, Leviatan 2011
Numerical example - comparing different reconstructions

Different trials correspond to different random draws of $m = 30$ sampling points from uniform measure on $[-1, 1]$.
Numerical example - comparing different reconstructions

Same experiment, but now interpolating/approximating by Legendre polynomials, and sampling points are from Chebyshev measure on $[-1, 1]$, $d\nu(u) = \frac{du}{\pi \sqrt{1-u^2}}$.
What is going on?

Runge’s function and its Legendre polynomial coefficients

Compare coefficient indices picked up by various reconstruction methods:

- Least squares
- unweighted ℓ_1 minimization
- weighted ℓ_1 minimization
Back to Compressive Sensing setting

Recover a weighted s-sparse (or weighted-compressible) vector \mathbf{x} from measurements $\mathbf{y} = \mathbf{A}\mathbf{x}$, where $\mathbf{A} \in \mathbb{C}^{m \times N}$ with $m < N$.

Weighted ℓ_1-minimization

$$\min_{\mathbf{z} \in \mathbb{C}^N} \sum_{j=1}^{N} \omega_j |z_j| \quad \text{subject to} \quad \mathbf{A}\mathbf{z} = \mathbf{y}$$

Keep in mind sampling matrix:

$$
\mathbf{A} = \begin{pmatrix}
\psi_1(u_1) & \psi_2(u_1) & \ldots & \ldots & \psi_N(u_1) \\
\psi_1(u_2) & \psi_2(u_2) & \ldots & \ldots & \psi_N(u_2) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\psi_1(u_m) & \psi_2(u_m) & \ldots & \ldots & \psi_N(u_m)
\end{pmatrix}
$$
Weighted restricted isometry property (WRIP)

Definition (with H. Rauhut ’13)

The weighted restricted isometry constant $\delta_{\omega,s}$ of a matrix $A \in \mathbb{C}^{m \times N}$ is defined to be the smallest constant such that

$$(1 - \delta_{\omega,s})\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_{\omega,s})\|x\|_2^2$$

for all $x \in \mathbb{C}^N$ with $\|x\|_{\omega,0} = \sum_{\ell:x_\ell \neq 0} \omega_\ell^2 \leq s$.

Unweighted "uniform" restricted isometry property (Candès, Tao ’05): $\omega \equiv 1$.

Since we assume $\omega_j \geq 1$, WRIP is weaker than "uniform" RIP.

Related: Model-based compressive sensing (Baraniuk, Cevher, Duarte, Hedge, Wakin ’10)
Weighted restricted isometry property (WRIP)

Definition (with H. Rauhut ’13)

The weighted restricted isometry constant $\delta_{\omega,s}$ of a matrix $A \in \mathbb{C}^{m \times N}$ is defined to be the smallest constant such that

$$(1 - \delta_{\omega,s})\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_{\omega,s})\|x\|_2^2$$

for all $x \in \mathbb{C}^N$ with $\|x\|_{\omega,0} = \sum_{\ell: x_\ell \neq 0} \omega_j^2 \leq s$.

Unweighted “uniform” restricted isometry property (Candès, Tao ’05): $\omega \equiv 1$.

Since we assume $\omega_j \geq 1$, WRIP is weaker than “uniform” RIP.

Related: Model-based compressive sensing (Baraniuk, Cevher, Duarte, Hedge, Wakin ’10)
Weighted restricted isometry property (WRIP)

Definition (with H. Rauhut ’13)

The weighted restricted isometry constant $\delta_{\omega,s}$ of a matrix $A \in \mathbb{C}^{m \times N}$ is defined to be the smallest constant such that

$$(1 - \delta_{\omega,s}) \| x \|_2^2 \leq \| Ax \|_2^2 \leq (1 + \delta_{\omega,s}) \| x \|_2^2$$

for all $x \in \mathbb{C}^N$ with $\| x \|_{\omega,0} = \sum_{\ell: x_\ell \neq 0} \omega_j^2 \leq s$.

Weights allow us to analyze sampling matrices from function systems with unbounded $\| \cdot \|_\infty$ norm. Uniform RIP does not hold for such matrices!
Weighted RIP of random sampling matrix

\[\psi_j : \mathcal{D} \to \mathbb{C}, \text{ orthonormal system w.r.t. prob. measure } \nu. \text{ and} \]
\[\| \psi_j \|_\infty \leq \omega_j. \]

Sampling points \(u_1, \ldots, u_m \) taken i.i.d. at random according to \(\nu \).
Random sampling matrix \(A \in \mathbb{C}^{m \times N} \) with entries \(A_{\ell j} = \psi_j(u_\ell) \).
Weighted RIP of random sampling matrix

\[\psi_j : \mathcal{D} \to \mathbb{C}, \text{ orthonormal system w.r.t. prob. measure } \nu. \text{ and } \|\psi_j\|_\infty \leq \omega_j. \]

Sampling points \(u_1, \ldots, u_m \) taken i.i.d. at random according to \(\nu. \) Random sampling matrix \(A \in \mathbb{C}^{m \times N} \) with entries \(A_{\ell j} = \psi_j(u_\ell). \) Fix \(s, \) and choose \(N \) so that \(\omega_1, \omega_2, \ldots, \omega_N \leq s/2. \)

Theorem (with H. Rauhut, '13)

If

\[m \geq C \delta^{-2} s \log^3(s) \log(N) \]

then the weighted restricted isometry constant of \(\frac{1}{\sqrt{m}} A \) **satisfies** \(\delta_{\omega,s} \leq \delta \) **with high probability.**
Weighted RIP of random sampling matrix

\(\psi_j : D \to \mathbb{C} \), orthonormal system w.r.t. prob. measure \(\nu \) and \(\| \psi_j \|_\infty \leq \omega_j \).

Sampling points \(u_1, \ldots, u_m \) taken i.i.d. at random according to \(\nu \). Random sampling matrix \(A \in \mathbb{C}^{m \times N} \) with entries \(A_{\ell j} = \psi_j(u_\ell) \).

Fix \(s \), and choose \(N \) so that \(\omega_1, \omega_2, \ldots, \omega_N \leq s/2 \).

Theorem (with H. Rauhut, '13)

If

\[
m \geq C \delta^{-2} s \log^3(s) \log(N)
\]

then the weighted restricted isometry constant of \(\frac{1}{\sqrt{m}} A \) satisfies \(\delta_{\omega,s} \leq \delta \) with high probability.

Generalizes previous results (Candès, Tao, Rudelson, Vershynin) for uniformly bounded systems, \(\| \psi_j \|_\infty \leq K \) for all \(j \).
Recovery via weighted ℓ_1-minimization

Theorem (with H. Rauhut)

Let $A \in \mathbb{C}^{m \times N}$ have the WRIP with weights (ω) and $\delta_{\omega,3s} < 1/3$. For $x \in \mathbb{C}^N$ and $y = Ax + e$ with $\|e\|_2 \leq \eta$ let $x^\#$ be a minimizer of

$$\min \|z\|_{\omega,1} \quad \text{subject to} \quad \|Az - y\|_2 \leq \eta.$$

Then

$$\|x - x^\#\|_{\omega,1} \leq C_1 \sigma_s(x)_{\omega,1} + D_1 \sqrt{s} \eta$$

Generalizes unweighted ℓ_1 minimization results (Candès, Romberg, Tao '06, Donoho '06).
Recovery via weighted ℓ_1-minimization

Theorem (with H. Rauhut)

Let $A \in \mathbb{C}^{m \times N}$ have the WRIP with weights (ω) and $\delta_{\omega,3s} < 1/3$. For $x \in \mathbb{C}^N$ and $y = Ax + e$ with $\|e\|_2 \leq \eta$ let $x^\#$ be a minimizer of

$$\min \|z\|_{\omega,1} \quad \text{subject to} \quad \|Az - y\|_2 \leq \eta.$$

Then

$$\|x - x^\#\|_{\omega,1} \leq C_1 \sigma_s(x)_{\omega,1} + D_1 \sqrt{s} \eta$$

Generalizes unweighted ℓ_1 minimization results (Candès, Romberg, Tao '06, Donoho '06).

Should be of independent interest in structured sparse recovery problems / sparse recovery problems with nonuniform priors on support.
Prior work on weighted ℓ_1 minimization

Weighted ℓ_1 norm: $\|x\|_{\omega,1} = \sum_{j \in \Gamma} \omega_j |x_j|$

Many previous works on the analysis of weighted ℓ_1 minimization! Focused on the finite-dimensional setting, and with analysis based on unweighted sparsity

- von Borries, Miosso, and Potes 2007
- Vaswani and Lu 2009, Jacques 2010, Xu 2010
- Khajehnejad, Xu, Avestimehr, and Hassibi (2009 & 2010)
- Friedlander, Mansour, Saab, and Yilmaz 2012, Misra and Parrilo 2013
- Peng, Hampton, Doostan 2013 - sparse polynomial chaos approximation of high-dimensional stochastic functions
Suppose that $|\Gamma| = N < \infty$.

Given samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ of $f(u) = \sum_{j \in \Gamma} x_j \psi_j(u)$, reconstruction amounts to solving $y = Ax$ where $A \in \mathbb{C}^{m \times N}$ is the sampling matrix $A_{\ell,j} = \psi_j(u_\ell)$. Choose u_1, \ldots, u_m i.i.d. according to ν in order to analyze WRIP of sampling matrix.
Back to function interpolation

Suppose that $|\Gamma| = N < \infty$.

Given samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ of

$$f(u) = \sum_{j \in \Gamma} x_j \psi_j(u)$$

reconstruction amounts to solving $y = Ax$ where $A \in \mathbb{C}^{m \times N}$ is the sampling matrix $A_{\ell,j} = \psi_j(u_{\ell})$

- Previous analysis suggests: use weighted ℓ_1-minimization with weights $\omega_j \geq \|\psi_j\|_{L_\infty}$ or $\omega_j \geq \|\psi'_j\|_{L_\infty}$ to recover weighted-sparse or weighted-compressible x when $m < N$.

- Choose u_1, \ldots, u_m i.i.d. at random according to ν_ψ in order to analyze WRIP of sampling matrix.

- x will not be exactly sparse. Measure residual error $f - f^\#$ in which norm? Recall $\|g\|_{L_\infty} + \|g'\|_{L_\infty} \leq \|g\|_{\omega,1}$ if $\omega_j \geq \|\psi'_j\|_{L_\infty}$
Interpolation via weighted ℓ_1 minimization

Suppose $f(u) = \sum_{j \in \Gamma} x_j \psi_j(u), \quad |\Gamma| = N < \infty$

Set weights $\omega_j > \|\psi_j\|_{\infty}$
Interpolation via weighted ℓ_1 minimization

Suppose $f(u) = \sum_{j \in \Gamma} x_j \psi_j(u)$, $|\Gamma| = N < \infty$

Set weights $\omega_j > \|\psi_j\|_\infty$

Theorem

From $m \asymp s \log^3(s) \log(N)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ where $u_j \sim \nu_\psi$, if $x^\#$ is the solution to

$$\min_{z \in \mathbb{C}^\Gamma} \|z\|_{\omega,1} \quad \text{subject to } Az = y$$

and $f^\#(u) = \sum_{j \in \Gamma} x^\#_j \psi_j(u)$,
Interpolation via weighted ℓ_1 minimization

Suppose $f(u) = \sum_{j \in \Gamma} x_j \psi_j(u)$, \(|\Gamma| = N < \infty\)

Set weights $\omega_j > \|\psi_j\|_\infty$

Theorem

From $m \asymp s \log^3(s) \log(N)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ where $u_j \sim \nu_\psi$, if $x^\#$ is the solution to

$$
\min_{z \in \mathbb{C}^\Gamma} \|z\|_{\omega,1} \quad \text{subject to} \quad Az = y
$$

and $f^\#(u) = \sum_{j \in \Gamma} x^\#_j \psi_j(u)$, then with high probability,

$$
\|f - f^\#\|_\infty \leq \|f - f^\#\|_{\omega,1} \leq C_1 \sigma(f)_{\omega,1}
$$
Interpolation via weighted ℓ_1 minimization

Suppose $f(u) = \sum_{j \in \Gamma} x_j \psi_j(u)$, $|\Gamma| = N < \infty$

Set weights $\omega_j > \|\psi_j\|_\infty$

Theorem

From $m \asymp s \log^3(s) \log(N)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ where $u_j \sim \nu_\psi$, if $x^\#$ is the solution to

$$\min_{z \in \mathbb{C}^\Gamma} \|z\|_{\omega,1} \text{ subject to } Az = y$$

and $f^\#(u) = \sum_{j \in \Gamma} x^\#_j \psi_j(u)$, then with high probability,

$$\|f - f^\#\|_\infty \leq \|f - f^\#\|_{\omega,1} \leq C_1 \sigma(f)_{\omega,1}$$

More realistic: $|\Gamma| = \infty$. How to pass to a finite dimensional approximation in a principled way?
Weighted function spaces

\[A_{\omega,p} = \{ f : f(u) = \sum_{j \in \Gamma} x_j \psi_j(u), \| f \|_{\omega,p} := \| x \|_{\omega,p} < \infty \} \]

Interesting range: \(0 \leq p \leq 1 \)

\(A_{\omega,p} \subset A_{\omega,q} \) if \(p < q \)

Solving \(m \asymp s \log^3(s) \log(N) \) for \(s \), a Stechkin-type error bound yields

\[\| f - f^\# \|_{L^\infty} \leq \| f - f^\# \|_{\omega,1} \leq C_1 \left(\frac{\log(N)^4}{m} \right)^{1/p-1} \| f \|_{\omega,p} \]
Approximation in infinite-dimensional spaces

Suppose $|\Gamma| = \infty$, $\lim_{|j| \to \infty} \omega_j = \infty$ and $\omega_j > \|\psi_j\|_\infty$. **
Approximation in infinite-dimensional spaces

Suppose $|\Gamma| = \infty$, $\lim_{|j| \to \infty} \omega_j = \infty$ and $\omega_j > \|\psi_j\|_\infty$.

Theorem

Suppose $f \in A_{\omega, p}$ for some $0 < p < 1$. Fix s, and set $\Gamma_s = \{j \in \Gamma : \omega_j^2 \leq s/2\}$.
Approximation in infinite-dimensional spaces

Suppose $|\Gamma| = \infty$, $\lim_{|j| \to \infty} \omega_j = \infty$ and $\omega_j > \|\psi_j\|_\infty$.

Theorem

Suppose $f \in A_{\omega,p}$ for some $0 < p < 1$. Fix s, and set $\Gamma_s = \{j \in \Gamma : \omega_j^2 \leq s/2\}$.

Draw $m \geq Cs \log^3(s) \log(|\Gamma_s|)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ according to ν_ψ, and let $x^\#$ be the solution to

$$
\min_{z \in C\Gamma_s} \|z\|_{\omega,1} \text{ subject to } \|Ax - y\|_2 \leq \sqrt{m/s} \cdot \|f - f_{\Gamma_s}\|_{\omega,1}
$$

Then with high probability,

$$
\|f - f^\#\|_{L_\infty} \leq \|f - f_{\Gamma_s}\|_{\omega,1}
$$

Using greedy alternative such as weighted iterative hard thresholding, do not need to know $\sqrt{m/s} \|f - f_{\Gamma_s}\|_{\omega,1}$, get same bound.

Put $f^\# = \sum_{j \in \Gamma_s} x_j^\# \psi_j$.

Approximation in infinite-dimensional spaces

Suppose $|\Gamma| = \infty$, $\lim_{|j| \to \infty} \omega_j = \infty$ and $\omega_j > \|\psi_j\|_\infty$.

Theorem

Suppose $f \in A_{\omega,p}$ for some $0 < p < 1$. Fix s, and set

$\Gamma_s = \{j \in \Gamma : \omega_j^2 \leq s/2\}$.

Draw $m \geq C_s \log^3(s) \log(|\Gamma_s|)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ according to ν_ψ, and let $x^\#$ be the solution to

$$\min_{z \in C_{\Gamma_s}} \|z\|_{\omega,1} \text{ subject to } \|Ax - y\|_2 \leq \sqrt{m/s} \|f - f_{\Gamma_s}\|_{\omega,1}$$

Put $f^\# = \sum_{j \in \Gamma_s} x^\#_j \psi_j$. Then with high probability,

$$\|f - f^\#\|_{L^\infty} \leq \|f - f^\#\|_{\omega,1} \leq C_1 \left(\frac{\log^4(N)}{m}\right)^{1/p-1} \|f\|_{\omega,p}$$
Approximation in infinite-dimensional spaces

Suppose $|\Gamma| = \infty$, $\lim_{|j| \to \infty} \omega_j = \infty$ and $\omega_j > \|\psi_j\|_\infty$.

Theorem

Suppose $f \in A_{\omega,p}$ for some $0 < p < 1$. Fix s, and set $\Gamma_s = \{j \in \Gamma : \omega_j^2 \leq s/2\}$.

Draw $m \geq Cs \log^3(s) \log(|\Gamma_s|)$ samples $y_1 = f(u_1), \ldots, y_m = f(u_m)$ according to ν_ψ, and let $x^\#$ be the solution to

\[\min_{z \in C_{\Gamma_s}} \|z\|_{\omega,1} \text{ subject to } \|Ax - y\|_2 \leq \sqrt{m/s} \|f - f_{\Gamma_s}\|_{\omega,1} \]

Put $f^\# = \sum_{j \in \Gamma_s} x_j^\# \psi_j$. Then with high probability,

\[\|f - f^\#\|_L^\infty \leq \|f - f^\#\|_{\omega,1} \leq C_1 \left(\frac{\log^4(N)}{m} \right)^{1/p-1} \|f\|_{\omega,p} \]

Using greedy alternative such as weighted iterative hard thresholding, do not need to know $\sqrt{m/s} \|f - f_{\Gamma_s}\|_{\omega,1}$, get same bound
Function approximation in high dimensions

Important: For domains $\mathcal{D} = [-1, 1]^d$, don’t want number of measurements m in resulting bound to grow much with d.

L^2-normalized Chebyshev polynomials $T_j(u) = \sqrt{2} \cos(j \arccos u)$,

$T_0(u) \equiv 1$, $j \in \mathbb{N}$,

Tensorized Chebyshev polynomials $T_k(u) = \prod_{j=1}^d T_{k_j}(u_j)$,

$u = (u_j)_{j \geq 1}$, $k \in \mathcal{F}$,

$\mathcal{F} = \{k = (k_1, k_2, ...), k_j \in \mathbb{N}\}$,

Product probability measure $\eta \equiv \bigotimes_{j \geq 1} du_j \pi \sqrt{1-u_j^2}$, $\in \mathcal{D}$.

$\{T_k\}_{k \in \mathcal{F}}$ forms orthonormal basis for $L^2(\mathcal{D}, d\eta)$.

Function approximation in high dimensions

Important: For domains $\mathcal{D} = [-1, 1]^d$, don’t want number of measurements m in resulting bound to grow much with d.

L^2-normalized Chebyshev polynomials

$$T_j(u) = \sqrt{2} \cos(j \arccos u), \quad T_0(u) \equiv 1, \quad j \in \mathbb{N},$$

Tensorized Chebyshev polynomials

$$T_k(u) = \prod_{j=1}^d T_{k_j}(u_j) = \prod_{j \in \text{supp } k} T_{k_j}(u_j), \quad u = (u_j)_{j \geq 1}, \quad k \in \mathcal{F},$$

$$\mathcal{F} = \{k = (k_1, k_2, \ldots), k_j \in \mathbb{N}\}$$
Function approximation in high dimensions

Important: For domains $\mathcal{D} = [-1, 1]^d$, don’t want number of measurements m in resulting bound to grow much with d.

L^2-normalized Chebyshev polynomials

$$T_j(u) = \sqrt{2} \cos(j \arccos u), \quad T_0(u) \equiv 1, \quad j \in \mathbb{N},$$

Tensorized Chebyshev polynomials

$$T_k(u) = \prod_{j=1}^{d} T_{k_j}(u_j) = \prod_{j \in \text{supp } k} T_{k_j}(u_j), \quad u = (u_j)_{j \geq 1}, \quad k \in \mathcal{F},$$

$$\mathcal{F} = \{ k = (k_1, k_2, \ldots), k_j \in \mathbb{N} \}$$

Product probability measure

$$\eta = \bigotimes_{j \geq 1} \frac{du_j}{\pi \sqrt{1 - u_j^2}}, \quad \in \mathcal{D}.$$
Sparse recovery for tensorized Chebyshev polynomials

L^∞-bound for the tensorized Chebyshev polynomials T_k:

$$\| T_k \|_\infty = 2^{\| k \|_0 / 2}.$$

Choice of weights:

$$\omega_k = \bigotimes_{j=1}^d (k_j + 1)^{1/2} \geq 2^{\| k \|_0 / 2}$$

Encourages both sparse and low-order tensor products
Sparse recovery for tensorized Chebyshev polynomials

L^∞-bound for the tensorized Chebyshev polynomials T_k:

$$
\| T_k \|_\infty = 2 \| k \|_0 / 2.
$$

Choice of weights:

$$
\omega_k = \bigotimes_{j=1}^d (k_j + 1)^{1/2} \geq 2 \| k \|_0 / 2
$$

Encourages both *sparse* and *low-order* tensor products

Subset of indices forms a hyperbolic cross:

$$
\Lambda_0 = \{ k \in \mathbb{N}_0^d : \omega_k^2 \leq s \}
$$

[Kuhn, Sickel, Ulrich, 2014, Cohen, DeVore, Foucart, Rauhut 2011]:

$$
|\Lambda_0| \leq e^d s^{2+\log(d)}
$$
Apply weighted ℓ_1 theory:

Consider a function

$$f = \sum_{k \in \Lambda} x_k T_k \quad \text{on } [-1, 1]^d, \quad f \in A_{\omega,p}$$

- Fix s, and fix $\Lambda_0 = \{k \in \mathbb{N}^d : \omega_k^2 \leq s\}$ Reduced basis
- Fix number of samples $m \geq Cs \log^4(s) \log(d)$
- Draw m samples $y_\ell = f(u_\ell)$ according to Chebyshev measure
- Let $A \in \mathbb{C}^{m \times N}$ be sampling matrix with entries $A_{\ell,k} = T_k(u_\ell)$.
- Let $x^\#$ be solution of

$$\min \|x\|_{\omega,1} \text{ subject to } \|Ax - y\|_2 \leq \sqrt{m/s} \|f - f_{\Lambda_0}\|_{\omega,1}$$

and set $f^\# = \sum_{k \in \Lambda_0} x_{k}^\# T_k$.
Apply weighted ℓ_1 theory:

Consider a function

$$f = \sum_{k \in \Lambda} x_k T_k \quad \text{on } [-1, 1]^d, \quad f \in A_{\omega,p}$$

- Fix s, and fix $\Lambda_0 = \{ k \in \mathbb{N}^d : \omega_k^2 \leq s \}$ Reduced basis
- Fix number of samples $m \geq Cs \log^4(s) \log(d)$
- Draw m samples $y_\ell = f(u_\ell)$ according to Chebyshev measure
- Let $A \in \mathbb{C}^{m \times N}$ be sampling matrix with entries $A_{\ell,k} = T_k(u_\ell)$.
- Let $x^\#$ be solution of

$$\min \| x \|_{\omega,1} \text{ subject to } \| Ax - y \|_2 \leq \sqrt{m/s} \| f - f_{\Lambda_0} \|_{\omega,1}$$

and set $f^\# = \sum_{k \in \Lambda_0} x_k^\# T_k$.

Then with probability exceeding $1 - e^{-d \log^3(s)}$,

$$\| f - f^\# \|_\infty \leq C_1 \left(\frac{\log^4(s) \log(d)}{m} \right)^{1/p-1} \| f \|_{\omega,p}$$
Limitations of weighted ℓ_1 approach

In the previous example,

$$N = |\Lambda_0| = e^d s^{2+\log_2(d)}$$

Weighted ℓ_1 minimization as a reconstruction method on such large scale problems is impractical

Fix $\tilde{s} \ll s$. Least squares projection onto

$$\tilde{N} = e^d \tilde{s}^{2+\log_2(d)}$$

is faster, but too greedy

Can we meet in the middle?
Summary

- We introduced weighted ℓ_1 minimization for stable and robust function interpolation, as taking into account both sparsity and smoothness present in natural functions of interest.
- Along the way, we extended the notion of restricted isometry property to weighted restricted isometry property, a more mild condition that allows us to treat function systems with increasing $\| \cdot \|_\infty$ norm.
- Weighted ℓ_1 minimization can overcome curse of dimension w.r.t. number of samples in high-dimensional approximation problems.
Extensions:

- We observe empirically that weighted \(\ell_1 \) minimization is “faster” than unweighted \(\ell_1 \) minimization. The steeper the weights, the faster. Justification?

- We observe that, with error on measurements \(y = f(u) + \xi \), reconstruction results are similar, provided that the regularization parameter is chosen correctly in regularization methods. Equality constrained \(\ell_1 \) minimization, weighted or not, leads to overfitting. Why?
References

