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hydrodynamic turbulence domain coarsening in 
materials science

Q:  Can one construct random fields (stochastic processes) that are 
solutions to laws of mechanics?



This, of course, is very difficult. One must consider vastly simplified 
models in order to say something.

Among the simplest of these is Burgers equation with random initial 
data, known as Burgers turbulence.  The earliest results are due to 
Burgers, who studied the 1-D model with initial data a white noise in 
space (i.e., complete disorder).

More generally, we will consider random data for 1-D scalar 
conservation laws with convex flux.  As we will see, this leads us very 
naturally to a problem that lies at the juncture of probability, kinetic 
theory, and integrable systems.
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Main overall result:  If

with strictly convex flux              and            a Markov process in     
with only downward jumps, then the law of the entropy solution            
is completely integrable.*

xf ∈ C1
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∂tu+ ∂xf(u) = 0

u0(x) Markov

evolution of random field

∂tn = Q(n, n)

kinetic equation for 
shock statistics

exact solutions;
connections to random 
matrices

Hamiltonian structure;
complete integrability;

inverse scattering

Lax pair/zero-curvature 
representation
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Basics: Entropy solutions to 1-D scalar conservation laws



First, let us review some basic facts about solutions to

Classical solutions exist only for short time.  The unique entropy 
solution is given by a variational principle (Hopf-Lax formula) in terms 
of the initial potential:
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For Burgers equation, this is exactly the same procedure as adding a 
viscous dissipation, using the Cole-Hopf transformation for the 
potential to obtain the heat equation, and inverting back the 
corresponding solution.
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The evolution regularizes the paths to be of bounded variation for 
any positive time. Paths consist of rarefaction waves interspersed by 
downward jumps (shocks).

We will consider  !        to be a stochastic process in x. Since the 
variational principle is given in terms of the initial potential, data can 
be quite rough (white noise data = BM potential).
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1-D scalar conservation laws with random initial data
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Our work is greatly motivated by explicit solutions to Burgers with

(I) White noise initial data
[Burgers (‘50s), Groeneboom (’89), Frachebourg-Martin (’00), 
Avellaneda-E (’95)]

(II) Brownian (Lévy  ) initial data
[Sinai (’92), Carraro-Duchon (’94), Bertoin (’98)]

We return to these later.  First, some remarks:
•  These data are limits of Markov processes   . Furthermore, for 
each fixed t their corresponding solutions are Markov    in x.
•  The mechanism of shock clustering holds for any convex flux, 
not just for Burgers equation.

These structural results motivate us to consider
scalar conservation laws with convex flux and Markov    initial data
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Markov processes are characterized by transition semigroups               . 
Their generators are given by their action on test functions    :

{Qh}h≥0

ϕ
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Markov processes are characterized by transition semigroups               . 
Their generators are given by their action on test functions    :

{Qh}h≥0

ϕ

For stationary processes with BV paths and only downward jumps,

drift jumps

Aϕ(y) = b(y)����ϕ
�(y) +

�

z<y
n(y, dz)� �� �(ϕ(z)− ϕ(y))

x

y

z

Xx
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f ∈ C1

Theorem [Menon-Srinivasan (2010)]:
If           is strong Markov with only downward jumps (spectral 
negativity), then for fixed           and any strictly convex            , 
the entropy solution            is a Markov process in   .x



14

f ∈ C1

Theorem [Menon-Srinivasan (2010)]:
If           is strong Markov with only downward jumps (spectral 
negativity), then for fixed           and any strictly convex            , 
the entropy solution            is a Markov process in   .x

The same result holds for initial data which are the limit of spectrally 
negative Markov processes (for example, white noise).

Their motivation and proofs rely on previous work by Bertoin (’98), 
Groeneboom (’89), Chabanol-Duchon (’04) and others.  As we will 
see, the generalization to all convex fluxes plays an important role.
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Proof by picture:
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Proof by picture:

The Markov property holds at the random `time‘                as it is 
the last-passage of a strong Markov process (Hopf-Lax functional) at 
its minimum.

a(x∗, t∗)



So for each fixed time t, we have a generator of a process in   :
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Rankine-Hugoniot:

Derive “generator” in time by Itô’s formula for jump processes:



This is seen by considering backward Kolmogorov equations for the 
solution semigroups in    and   :

The zero-curvature equation                                  appears when 
we enforce compatibility (!! ! !    ).

If the initial data is a stationary Markov process then     and     do 
not depend on    then we have the Lax equation
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We have three other independent derivations using:

(i) a kinetic formulation by considering evolution of a single shock [as 
in Menon-Pego (’07)] 

(ii) Vol’pert’s BV calculus and Markov property [as in E-Vanden-
Eijnden (‘00)]

(iii) Hopf functional equation for the Fourier transform of the law of 
the solution [as in Chabanol-Duchon (’04)]

A rigorous proof is still missing.  This requires a closure property for 
Feller processes (Markov = measurability,  Feller = regularity). 
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The Lax/ZC equation is an evolution equation for the drift 
coefficient and the jump measure of            . What is this equation 
explicitly?

A(x, t)



Suppose jump measure has density              .  Then

20

Vlasov-Boltzmann equation 
for shock statistics



Suppose jump measure has density              .  Then

and right states y and z, then the shock speed is given by (8). Thus, formally,
one may consider B as a generator of the process u(x, t), t > 0. Of course, this is
only formal, because this process typically does not have the Markov property,
and we cannot expect these multipliers to be positive in general. Nevertheless,
let us persist with this analogy. The evolution of the one-point distributions is
then given by Kolmogorov’s forward equations

∂xp = A†p, and ∂tp = B†p. (23)

We now seek martingales in x and t. To this end, fix α > 0, (x0, t0), and
consider the processes ϕ (u(x0 + s, t0)) and ϕ (u(x0, t0 + s)) with s ∈ [0, α].
These processes are (formally!) martingales if ϕ solves Kolmogorov’s backward
equations

∂xϕ + Aϕ = 0, ∂tϕ + Bϕ = 0, (24)

in the domain (x, t) ∈ [x0, x0 +α]× [t0, t0 +α], and y, z ∈ R. If the compatibility
condition ϕxt = ϕtx holds for a sufficiently rich class of functions ϕ, we find

∂tA− ∂xB = [A,B]. (25)

In this form, the Lax equation is akin to zero curvature conditions in integrable
systems. If the process is stationary (in x), ∂xB vanishes and we obtain (22).

1.4 Kinetic theory

When we expand the commutator in (22), and separate the evolution of the drift
b and the jump measure n we obtain a kinetic equation that describes shock
clustering. The drift satisfies the differential equation

∂tb(y, t) = −f ′′(y)b2(y, t). (26)

Note that the drift does not depend on the jump measure. The jump density
n(y, z, t) dz = n(y, dz, t) satisfies the kinetic equation

∂tn(y, z, t)+ ∂y (nVy(y, z, t)) + ∂z (nVz(y, z, t)) = Q(n, n) + (27)

n (([f ]y,z − f ′(y)) ∂yb − bf ′′(y)) .

Here the velocities Vy and Vz in (27) are given by

Vy(y, z, t) = ([f ]y,z − f ′(y)) b(y, t), Vz(y, z, t) = ([f ]y,z − f ′(z)) b(z, t), (28)

and the collision kernel Q is

Q(n, n)(y, z, t) =

∫ y

z
([f ]y,w − [f ]w,z)n(y, w, t)n(w, z, t) dw (29)

−
∫ z

−∞
([f ]y,z − [f ]z,w)n(y, z, t)n(z, w, t) dw

−
∫ y

−∞
([f ]y,w − [f ]y,z)n(y, z, t)n(y, w, t) dw.

7

Drift:

Shocks:
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This is easily interpreted for Burgers turbulence and initial data with 
linear drift. In particular, mean-field theory is exact:

free streaming birth term

death from below death from above

21



Equivalence between Lax equation and kinetic equation obtained 
using that operators of the form

formally constitute a Lie algebra with bracket given by commutator. 
In particular,           also takes the form given above.

Q: To elucidate a Hamiltonian structure, is there an ∞-dim Lie group 
generated by this algebra? More on this later...

22

Aϕ(y) = b(y)ϕ�(y) +

�

z<y
n(y, z)(ϕ(z)− ϕ(y))dz



jump measure

jump measure

To summarize:
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Markov initial data

shock 
clustering with 
general flux

closure theorem

Lax / ZC 
equation

kinetic 
equation



As mentioned earlier, there are exact, self-similar solutions for 
Burgers equation with initial data a white noise or a Brownian 
motion (Lévy process).

24



Exact solution (I):  Burgers equation with white noise initial data

• P. Groeneboom, Brownian motion with a parabolic drift and Airy 
functions, Prob. Th. Rel. Fields, 81 (1989).
• L. Frachebourg & P. Martin, Exact statistical properties of the 
Burgers equation, J. Fluid Mech., 417 (2000).
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Initial potential is a 2-sided BM. Exact solution derived by 
Groeneboom (1989) (through purely probabilistic methods!)
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p(y) = P (u(x, 1) ∈ dy)/dy = J(y)J(−y) ∼ e−
2
3 |y|

3

, |y| → ∞

Solution process is Markov in space.  Statistics are self-similar, so we 
need only consider one-point and transition densities at time 1.  
First, the one-point density:
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Chernoff (1964): Estimation of the 
mode using a non-smooth kernel

“cube-root asymptotics”

p(y) = P (u(x, 1) ∈ dy)/dy = J(y)J(−y) ∼ e−
2
3 |y|

3

, |y| → ∞

Solution process is Markov in space.  Statistics are self-similar, so we 
need only consider one-point and transition densities at time 1.  
First, the one-point density:



Next, the transition probabilities given by components of solution 
generator:

27

A(t)ϕ(y) =
1

t
ϕ�(y) +

�

z<y

1

t1/3
n∗(yt

1/3, zt1/3)(ϕ(z)− ϕ(y))
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Next, the transition probabilities given by components of solution 
generator:
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Not originally presented this way.

A(t)ϕ(y) =
1

t
ϕ�(y) +

�

z<y

1

t1/3
n∗(yt

1/3, zt1/3)(ϕ(z)− ϕ(y))



Groeneboom’s solution satisfies the Lax equation.  This is checked by 
using the following identities for ! ! !       and    :
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                 is an Airy solution to Painlevé-II w/parameter 1/2:

Additionally, we can express Groeneboom’s solution in terms of the 
Airy kernel by using the resolvent of the Markov semigroup.



A comment:
Groeneboom’s derivation is a study of Brownian excursions on 
parabolic boundaries (Hopf-Lax functional).  Airy functions arise 
upon considering the diffusion process after flattening the boundary 
(Girsanov’s theorem). It remains to be seen how the solution can be 
rederived using techniques from integrable systems.
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s(1)(y)

ui

y
�(y)

x = u1 – u2 u2

q

s(2)(y)

( l*, �*)



Exact solution (II):  Burgers equation with Brownian initial data

• L. Carraro & J. Duchon, C.R. Acad. Sc. Paris Math., 319 (1994); 
Ann. IHP Anal. Nonlineaire, 15 (1998).
• J. Bertoin, The inviscid Burgers equation with Brownian initial 
velocity, Comm. Math. Phys., 193 (1998).

30



Lévy processes are simply Markov processes with independent 
increments.  Their transition probabilities are invariant in state space 
(e.g., BM started at 1 is equivalent to BM started at 0, modulo 
upward shift).

Closure: Burgers equation preserves the class of Lévy processes   .

Such processes are characterized by their Laplace exponent          
(i.e., symbol of generator):

31

ψ(q)

Aeqy = ψ(q)eqy, q > 0
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A(t)eqy = ψ(q, t)eqy

[A(t),B(t)]eqy = −ψ(q, t)∂qψ(q, t)e
qy
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A(t)eqy = ψ(q, t)eqy

[A(t),B(t)]eqy = −ψ(q, t)∂qψ(q, t)e
qy

∂tψ + ψ∂qψ = 0

Laplace exponent of solution process also satisfies Burgers equation! 
This had been obtained in the past [Bertoin, Duchon et. al] and the 
Lax equation gives the same result.
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BM initial data gives a self-similar solution:



Connections to random matrices and Wigner semicircle law
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BM initial data for Burgers turbulence connected to Wigner 
semicircle law via Dyson’s BM for eigenvalues of random matrices...
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35

Rescale                      , apply Cauchy transform:

 In large n limit,                                    and g satisfies Burgers eqn.:
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Self-similar solution is transform of Wigner semicircle law:
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Self-similar solution is transform of Wigner semicircle law:

SS soln’s to BM-Burgers turbulence and Dyson’s BM related through 
their respective integral transforms (Laplace transform of law vs. 
Cauchy transform of empirical measure):
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Cauchy 
transform

BM in Burgers 
turbulence

SS solution to 
Burgers eq’n

Dyson’s BM for 
random matricesLaplace 

transform
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Cauchy 
transform

BM in Burgers 
turbulence

SS solution to 
Burgers eq’n

Dyson’s BM for 
random matricesLaplace 

transform

Representation theory of infinite symmetric group (Kerov, 2000)

Plancherel growth
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Cauchy 
transform

BM in Burgers 
turbulence

SS solution to 
Burgers eq’n

Dyson’s BM for 
random matricesLaplace 

transform

Representation theory of infinite symmetric group (Kerov, 2000)

Plancherel growth“Smoluchowski growth”



Hamiltonian structure and complete integrability

38

G. Menon, “Complete integrability of shock clustering and Burgers 
turbulence,” ArXiv (2011)
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Main result:
When discretized, the Lax equation yields a Hamiltonian flow given 
by a principle of least action on `Markov groups.’  The deeper 
meaning/implication seems to be:

(i) The space of Markov (Feller) processes   with BV paths admits a 
natural symplectic structure

(ii) Every convex flux              generates a Hamiltonian flow with 
respect to this structure, and these flows commute

f ∈ C1



Finite-dimensional projections of the Lax equation are natural as 
they describe the evolution of a generator (now a matrix) of a 
continuous-time Markov chain on a finite set of states
                              .

u(x, t)

x

The generator is now a matrix with positive entries on the off-
diagonal and row sums equal to 0. If we relax the positivity 
constraint, this yields a Lie algebra           (call `Markov algebra’).

This generates a `Markov group’            .

y1 < y2 < · · · < yN

40

m(N)

M(N)
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Bij = FijAij , i �= j Fij = −f(yi)− f(yj)

yi − yj

Analogous to geodesic flow on SO(N) (Euler’s equation for rigid 
body motion)! In that case, the multiplier       is positive and defines 
a metric (and quadratic action) on SO(N). Geodesic flow is 
Hamiltonian with respect to this group structure.

In our model,       instead yields a principle of least action on the 
Markov group           . The flow can be shown to be Hamiltonian by 
an appropriate splitting at the level of Lie algebras.

M(N)

Fij

Fij
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Most importantly from probabilistic perspective, this flow is invariant 
on the space of lower triangular Markov matrices that are positive 
on the off diagonal (generators of Markov processes with only 
downward jumps).

Therefore, the original model is Hamiltonian (at least at the level of 
natural discretizations).



The Lax equation does not itself imply integrability (only gives N, not 
N^2 invariants).  However, it admits a spectral parameter as in 
Manakov (1976) for geodesic flow on SO(n):

!

That is,

For finite-dim. systems this gives an invariant spectral curve (and a 
Riemann-Hilbert problem via a matrix factorization):
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Using existing machinery and this `Markov group’ structure yields 
complete integrability of the flow.

Furthermore, the ZC equation can be solved by inverse scattering. In 
particular, the ZC equation is actually a variant of the n-wave model 
of Zakharov and Manakov (1973) from nonlinear optics!



Summary:

∂tu+ ∂xf(u) = 0

u0(x) Markov

evolution of random field

∂tn = Q(n, n)

kinetic equation for 
shock statistics

exact solutions;
connections to random 
matrices

Hamiltonian structure;
complete integrability;

inverse scattering

Lax pair/zero-curvature 
representation
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Thanks for your attention!
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Obtain     via Itô’s formula for jump processes:
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