Theorem 2.1 You will copy the statements of the Exercises and Theorems from the textbook here.
Answer You will enter your solutions and proofs here.
Let $f(x) \in \mathbb{Z}[x]$. If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, then we say that the degree of $f(x)$ is n. The rational numbers consist of elements of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. In other words:

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

The rational numbers consist of elements of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. In other words:

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

Let $A \subset \mathbb{N} . A \cup B A \cap B x \in A$

$$
\begin{align*}
f(x) & =\int_{-\infty}^{x} e^{t} d t \tag{1}\\
& =e^{x} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
g(x) & =\frac{d}{d t}\left(e^{t x^{2}}\right) \\
& =x^{2} e^{t x^{2}}
\end{aligned}
$$

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

