FIVE MINUTE REVIEW FOR WEEK 7.

Question 1. Simplify $\frac{1}{x+3}+\frac{1}{x^{2}-9}$.
Answer 1.

$$
\frac{1}{x+3}+\frac{1}{x^{2}-9}=\frac{x-3}{(x-3)(x+3)}+\frac{1}{(x-3)(x+3)}=\frac{x-2}{(x-3)(x+3)}
$$

Question 2. Simplify $1+\frac{1}{1+\frac{1}{1+x}}$.
Answer 2.

$$
1+\frac{1}{1+\frac{1}{1+x}}=1+\frac{1+x}{1+x+1}=1+\frac{x+1}{x+2}=\frac{x+2+x+1}{x+2}=\frac{2 x+3}{x+2}
$$

Question 3. State the Fundamental Theorem of Calculus.
Answer 3. (a) Let f be integrable on $[a, b]$, and define a function F on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

If f is continuous at $c \in[a, b]$, then F is differentiable at c, and

$$
\frac{d F}{d x}(c)=f(c)
$$

(b) If f is integrable on $[a, b]$ and $f(t)=\frac{d g}{d t}$ for some function $g(t)$, then

$$
\int_{a}^{b} f(t) d t=g(b)-g(a)
$$

Question 4. $\frac{d}{d x}\left(a^{x}\right)=$? $(a>1)$
Answer 4.

$$
\frac{d}{d x}\left(a^{x}\right)=\frac{d}{d x}\left(e^{x \log (a)}\right)=\log (a) e^{x \log (a)}=\log (a) a^{x}
$$

Question 5. $\frac{d}{d \theta}\left(\sin \left(\theta^{2}\right)\right)=$?

Answer 5.

$$
\frac{d}{d \theta}\left(\sin \left(\theta^{2}\right)\right)=2 \theta \cos \left(\theta^{2}\right)
$$

Question 6. $\frac{d}{d s} \int_{0}^{3 s} f(\tau) g(\tau) d \tau=$?

Answer 6.

$$
\frac{d}{d s} \int_{0}^{3 s} f(\tau) g(\tau) d \tau=3 f(3 s) g(3 s)
$$

Question 7. $\int_{0}^{1} \frac{d \xi}{1+\xi^{2}}=$?
Answer 7. Let $\xi=\tan \theta$ so that $1+\xi^{2}=1+\tan ^{2} \theta=\frac{1}{\cos ^{2} \theta}, d \xi=\frac{1}{\cos ^{2} \theta} d \theta$, and we are integrating from $\arctan (0)=0$ to $\arctan (1)=\frac{\pi}{4}$. Then

$$
\int_{0}^{1} \frac{d \xi}{1+\xi^{2}}=\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta \cdot \frac{d \theta}{\cos ^{2} \theta}=\frac{\pi}{4}
$$

Question 8. $\int_{a}^{b}(1+t) e^{t} d t=$?

Answer 8.

$$
\int_{a}^{b}(1+t) e^{t} d t=\int_{a}^{b} \frac{d}{d t}\left(t e^{t}\right) d t=b e^{b}-a e^{a}
$$

Question 9. Simplify $-\sum_{n \geq 0} x^{-n-1}$.
Answer 9.

$$
-\sum_{n \geq 0} x^{-n-1}=-\frac{1}{x} \sum_{n \geq 0}\left(x^{-1}\right)^{n}=-\frac{1}{x} \frac{1}{1-x^{-1}}=\frac{1}{1-x}
$$

provided that $\left|x^{-1}\right|<1$, i.e. $|x|>1$ (the radius of convergence for the series).
Question 10. Simplify $\sum_{k \geq 0} \frac{t^{k+1}}{2^{k} k!}$.
Answer 10.

$$
\sum_{k \geq 0} \frac{t^{k+1}}{2^{k} k!}=t \sum_{k \geq 0} \frac{\left(\frac{t}{2}\right)^{k}}{k!}=t e^{\frac{t}{2}}
$$

